Spline-based Transformers
Robot Motion Diffusion Model: Motion Generation for Robotic Characters
Recent advancements in generative motion models have achieved remarkable results, enabling the synthesis of lifelike human motions from textual descriptions. These kinematic approaches, while visually appealing, often produce motions that fail to adhere to physical constraints, resulting in artifacts that impede real-world deployment. To address this issue, we introduce a novel method that integrates kinematic generative models with physics based character control. Our approach begins by training a reward surrogate to predict the performance of the downstream non-differentiable control task, offering an efficient and differentiable loss function. This reward model is then employed to fine-tune a baseline generative model, ensuring that the generated motions are not only diverse but also physically plausible for real-world scenarios. The outcome of our processing is the Robot Motion Diffusion Model (RobotMDM), a text-conditioned kinematic diffusion model that interfaces with a reinforcement learning-based tracking controller. We demonstrate theĀ effectiveness of this method on a challenging humanoid robot, confirming its practical utility and robustness in dynamic environments.
Agon Serifi
VMP: Versatile Motion Priors for Robustly Tracking Motion on Physical Characters
Recent progress in physics-based character control has made it possible to learn policies from unstructured motion data. However, it remains challenging to train a single control policy that works with diverse and unseen motions, and can be deployed to real-world physical robots. In this paper, we propose a two-stage technique that enables the control of a character with a full-body kinematic motion reference, with a focus on imitation accuracy. In a first stage, we extract a latent space encoding by training a variational autoencoder, taking short windows of motion from unstructured data as input. We then use the embedding from the time-varying latent code to train a conditional policy in a second stage, providing a mapping from kinematic input to dynamics-aware output. By keeping the two stages separate, we benefit from self-supervised methods to get better latent codes and explicit imitation rewards to avoid mode collapse. We demonstrate the efficiency and robustness of our method in simulation, with unseen user-specified motions, and on a bipedal robot, where we bring dynamic motions to the real world.
Optimal Design of Robotic Character Kinematics
In this paper, we propose a technique that simultaneously solves for optimal design and control parameters for a robotic character whose design is parameterized with configurable joints. At the technical core of our technique is an efficient solution strategy that uses dynamic programming to solve for optimal state, control, and design parameters, together with a strategy to remove redundant constraints that commonly exist in general robot assemblies with kinematic loops.
Transformer-based Neural Augmentation of Robot Simulation Representations
We propose to augment common simulation representations with a transformer-inspired architecture, by training a network to predict the true state of robot building blocks given their simulation state. Because we augment building blocks, rather than the full simulation state, we make our approach modular which improves generalizability and robustness.
DOC: Differentiable Optimal Control for Retargeting Motions onto Legged Robots
Legged robots are designed to perform highly dynamic motions. However, it remains challenging for users to retarget expressive motions onto these complex systems. In this paper, we present a Differentiable Optimal Control (DOC) framework that facilitates the transfer of rich motions from either animals or animations onto these robots.
ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact
We present a differentiable dynamics solver that is able to handle frictional contact for rigid and deformable objects within a unified framework. Through a principled mollification of normal and tangential contact forces, our method circumvents the main difficulties inherent to the non-smooth nature of frictional contact.
RobotSculptor: Artist-Directed Robotic Sculpting of Clay
We present an interactive design system that allows users to create sculpting styles and fabricate clay models using a standard 6-axisrobot arm.
Designing Robotically-Constructed Metal Frame Structures
We present a computational technique that aids with the design of structurally-sound metal frames, tailored for robotic fabrication using an existing process that integrate automated bar bending, welding, and cutting. Aligning frames with structurally-favorable orientations, and decomposing models into fabricable units, we make the fabrication process scale-invariant, and frames globally align in an aesthetically-pleasing and structurally-informed manner.
Page 1 of 1