Deep Generative Video Compression

The usage of deep generative models for image compression has led to impressive performance gains over classical codecs while neural video compression is still in its infancy. Here, we propose an end-to-end, deep generative modeling approach to compress temporal sequences with a focus on video. Our approach builds upon variational autoencoder (VAE) models for sequential data and combines them with recent work on neural image compression.

Learn More



Light Field Video Synthesis Using Inexpensive Surveillance Camera Systems

We present a light field video synthesis technique that can achieve accurate reconstruction given a low-cost, widebaseline camera rig. Our system called, INDiuM, novelly integrates optical flow with methods for rectification, disparity estimation, and feature extraction, which we then feed to a neural network view synthesis solver with widebaseline capability. A new bi-directional warping approach resolves reprojection ambiguities that would result from either backward or forward warping only. The system and method enables the use of off-the-shelf surveillance camera hardware in a simplified and expedited capture workflow. A thorough analysis of the refinement process and resulting view synthesis accuracy over state of the art is provided.

Learn More




Motion Fields to Predict Play Evolution in Dynamic Sport Scenes

Videos of multi-player team sports provide a challenging domain for dynamic scene analysis. Player actions and interactions are complex as they are driven by many factors, such as the short-term goals of the individual player, the overall team strategy, the rules of the sport, and the current context of the game.

Learn More