Disney Research

Abstract

We present a method to acquire dynamic properties of facial skin appearance, including dynamic diffuse albedo encoding blood flow, dynamic specular intensity, and per-frame high-resolution normal maps for a facial performance sequence. The method reconstructs these maps from a purely passive multi-camera setup, without the need for polarization or requiring temporally multiplexed illumination. Hence, it is very well suited for integration with existing passive systems for facial performance capture. To solve this seemingly underconstrained problem, we demonstrate that albedo dynamics during a facial performance can be modeled as a combination of (1) a static, high-resolution base albedo map, modeling full skin pigmentation; and (2) a dynamic, one-dimensional component in the CIE L∗a∗b∗ color space, which explains changes in hemoglobin concentration due to blood flow. We leverage this albedo subspace and additional constraints on appearance and surface geometry to also estimate specular reflection parameters and resolve high-resolution normal maps with unprecedented detail in a passive capture system. These constraints are built into an inverse rendering framework that minimizes the difference of the rendered face to the captured images, incorporating constraints from multiple views for every texel on the face. The presented method is the first system capable of capturing high-quality dynamic appearance maps at full resolution and video framerates, providing a major step forward in the area of facial appearance acquisition.

Additional Content

Copyright Notice

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.