Abstract
Correspondence matching is one of the most common problems in computer vision, and it is often solved using photo-consistency of local regions. These approaches typically assume that the frequency content in the local region is consistent in the image pair, such that matching is performed on similar signals. However, in many practical situations this is not the case, for example with low depth of field cameras a scene point may be out of focus in one view and in-focus in the other, causing a mismatch of frequency signals. Furthermore, this mismatch can vary spatially over the entire image. In this paper we propose a local signal equalization approach for correspondence matching. Using a measure of local image frequency, we equalize local signals using an efficient scale-space image representation such that their frequency contents are optimally suited for matching. Our approach allows better correspondence matching, which we demonstrate with a number of stereo reconstruction examples on synthetic and real datasets.
Copyright Notice
The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.