Disney Research

Abstract

The kinematic motion of a robotic character is defined by its mechanical joints and actuators that restrict the relative motion of its rigid components. Designing robots that perform a given target motion as closely as possible with a fixed number of actuated degrees of freedom is challenging, especially for robots that form kinematic loops. In this paper, we propose a technique that simultaneously solves for optimal design and control parameters for robotic character whose design is parameterized with configurable joints. At the technical core of our technique is an efficient solution strategy that uses dynamic programming to solve for optimal state, control, and design parameters, together with a strategy to remove redundant constraints that commonly exist in general robot assemblies with kinematic loops. We demonstrate the efficacy of our approach by either editing the design of an existing robotic character, or by optimizing the design of a new character to perform a desired motion.

Additional Content

Copyright Notice

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.