PoseMMR: A Collaborative Mixed Reality Authoring Tool for Character Animation

Augmented reality devices enable new approaches for character animation, e.g., given that character posing is three dimensional in nature it follows that interfaces with higher degrees-of-freedom (DoF) should outperform 2D interfaces. We present PoseMMR, allowing Multiple users to animate characters in a Mixed Reality environment, like how a stop-motion animator would manipulate a physical puppet, frame-by-frame, to create the scene. We explore the potential advantages of the PoseMMR can facilitate immersive posing, animation editing, version control and collaboration, and provide a set of guidelines to foster the development of immersive technologies as tools for collaborative authoring of character animation.

Learn More

The Role of Closed-Loop Hand Control in Handshaking Interactions

In this paper we investigate the role of haptic feedback in human/robot handshaking by comparing different force controllers. The basic hypothesis is that in human handshaking force control there is a balance between an intrinsic (open--loop) and extrinsic (closed--loop) contribution. We use an underactuated anthropomorphic robotic hand, the Pisa/IIT hand, instrumented with a set of pressure sensors estimating the grip force applied by humans. In a first set of experiments we ask subjects to mimic a given force profile applied by the robot hand, to understand how human perceive and are able to reproduce a handshaking force.

Learn More

On the Role of Stiffness and Synchronization in Human-Robot Handshaking

This paper presents a system for soft human-robot handshaking, using a soft robot hand in conjunction witha lightweight and impedance-controlled robot arm. Using this system, we study how different factors influencethe perceived naturalness, and give the robot different personality traits. Capitalizing on recent findings regardinghandshake grasp force regulation, and on studies of the impedance control of the human arm, we investigate the roleof arm stiffness as well as the kinaesthetic synchronization of human and robot arm motions during the handshake.The system is implemented using a lightweight anthropomorphic arm, with a Pisa/IIT Softhand wearing a sensorizedsilicone glove as the end-effector.

Learn More