Disney Research

Abstract

We present a robust, unbiased technique for intelligent light-path construction in path-tracing algorithms. Inspired by existing path-guiding algorithms, our method learns an approximate representation of the scene’s spatio-directional radiance field in an unbiased and iterative manner. To that end, we propose an adaptive spatio-directional hybrid data structure, referred to as SD-tree, for storing and sampling incident radiance. The SD-tree consists of an upper part—a binary tree that partitions the 3D spatial domain of the light field—and a lower part—a quadtree that partitions the 2D directional domain. We further present a principled way to automatically budget training and rendering computations to minimize the variance of the final image. Our method does not require tuning hyperparameters, although we allow limiting the memory footprint of the SD-tree. The aforementioned properties, its ease of implementation, and its stable performance make our method compatible with production environments. We demonstrate the merits of our method on scenes with difficult visibility, detailed geometry, and complex specular-glossy light transport, achieving better performance than previous state-of-the-art algorithms.

Additional Content

Copyright Notice

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.