Disney Research


We propose a novel pre-filtering method that reduces the noise introduced by depth-of-field and motion blur effects in geometric buffers (G-buffers) such as texture, normal and depth images. Our pre-filtering uses world positions and their variances to effectively remove high-frequency noise while carefully preserving high-frequency edges in the G-buffers. We design a new anisotropic filter based on a per-pixel covariance matrix of world position samples. A general error estimator, Stein’s unbiased risk estimator, is then applied to estimate the optimal tradeoff between the bias and variance of pre-filtered results. We have demonstrated that our pre-filtering improves the results of existing filtering methods numerically and visually for challenging scenes where depth-of-field and motion blurring introduce a significant amount of noise in the G-buffers.

Copyright Notice

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.