Disney Research


Many loss functions in representation learning are invariant under a continuous symmetry transformation. For example, the loss function of word embeddings (Mikolov et al., 2013b) remains unchanged if we simultaneously rotate all word and context embedding vectors. We show that representation learning models for time series possess an approximate continuous symmetry that leads to slow convergence of gradient descent. We propose a new optimization algorithm that speeds up convergence using ideas from gauge theory in physics. Our algorithm leads to orders of magnitude faster convergence and to more interpretable representations, as we show for dynamic extensions of matrix factorization and word embedding models. We further present an example application of our proposed algorithm that translates modern words into their historic equivalents.

Copyright Notice

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.