Disney Research


Illustration of novel interactions and connectivity options using Body Channel Communication. (A) Streaming music from a smartwatch through the body to the headphones; (B) Forming on-body sensor network between smartphones and heart rate monitor chest bands; (C) Authenticating and unlocking smart doors with elbows or hips; (D) Parental control to enable children opening doors only in the presence of adults.

Novel interactions that capacitively couple electromagnetic (EM) fields between devices and the human body are gaining more attention in the human-computer interaction community. One class of these techniques is Body Channel Communication (BCC), a method that overlays physical touch with digital information. Despite the number of published capacitive sensing and communication prototypes, there exists no guideline on how to design such hardware or what are the application limitations and possibilities. Specifically, wearable (groundless) BCC has been proven in the past to be extremely challenging to implement. Additionally, the exact behavior of the human body as an EM-field medium is still not fully understood today. Consequently, the application domain of BCC technology could not be fully explored. This paper addresses this problem. Based on a recently published general purpose wearable BCC system, we first present a thorough evaluation of the impact of various technical parameter choices and an exhaustive channel characterization of the human body as a host for BCC. Second, we discuss the implications of these results for the application design space and present guidelines for future wearable BCC systems and their applications. Third, we point out an important observation of the measurements, namely that BCC can employ the whole body as user interface (and not just hands or feet). We sketch several applications with these novel interaction modalities.

Additional Content

Copyright Notice

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.