Disney Research


We present an iterative learning control algorithm for accurate task space tracking of kinematically redundant robots with stringent joint position limits and kinematic modeling errors. The iterative learning control update rule is in the task space and consists of adding a correction to the desired end-effector pose based on the tracking error. The new desired end-effector pose is then fed to an inverse kinematics solver that uses the redundancy of the robot to compute feasible joint positions. We discuss the stability, the rate of convergence and the sensitivity to learning gain for our algorithm using quasi-static motion examples. The efficacy of the algorithm is demonstrated on a simulated four link manipulator with joint position limits that learns the modeling error to draw the figure eight in 4 trials.

Copyright Notice

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.