Abstract
To feel novel and engaging over time it is critical for an autonomous agent to have a large corpus of potential responses. As the size and multi-domain nature of the corpus grows, however, traditional hand-authoring of dialogue content is no longer practical. While crowdsourcing can help to overcome the problem of scale, a diverse set of authors contributing independently to an agent’s language can also introduce inconsistencies in expressed behavior. In terms of affect or mood, for example, incremental authoring can result in an agent who reacts calmly at one moment but impatiently moments later with no clear reason for the transition. In contrast, affect in natural conversation develops over time based on both the agent’s personality and contextual triggers. To better achieve this dynamic, an autonomous agent needs to (a) have content and behavior available for different desired affective states and (b) be able to predict what affective state will be perceived by a person for a given behavior. In this proof-of-concept paper, we explore a way to elicit and evaluate affective behavior using crowdsourcing. We show that untrained crowd workers are able to author content for a broad variety of target affect states when given semi-situated narratives as prompts. We also demonstrate that it is possible to strategically combine multimodal affective behavior and voice content from the authored pieces using a predictive model of how the expressed behavior will be perceived.
Copyright Notice
The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.