Abstract
We present a novel approach to modeling stories using recurrent neural networks. Different story features are extracted using natural language processing techniques and used to encode the stories as sequences. These sequences can be learned by deep neural networks, in order to predict the next story events. The predictions can be used as an inspiration for writers who experience a writer’s block. We further assist writers in their creative process by generating visualizations of the character interactions in the story. We show that suggestions from our model are rated as highly as the real scenes from a set of films and that our visualizations can help people in gaining deeper story understanding.
Copyright Notice
The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.