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Abstract

Point-based targets, such as checkerboards, are often not
practical for outdoor camera calibration, as cameras are
usually at significant heights requiring extremely large cal-
ibration patterns on the ground. Fortunately, it is possible
to make use of existing non-point landmarks in the scene
by formulating camera calibration in terms of image align-
ment. In this paper, we simultaneously estimate the camera
intrinsic, extrinsic and lens distortion parameters directly
by aligning to a planar schematic of the scene. For cam-
eras with square pixels and known principal point, finding
the parameters to such an image warp is equivalent to cali-
brating the camera. Overhead schematics of many environ-
ments resemble edge images. Edge images are difficult to
align using image-based algorithms because both the im-
age and its gradient are sparse. We employ a ‘long range’
gradient which enables informative parameter updates at
each iteration while maintaining a precise alignment mea-
sure. As a result, we are able to calibrate our camera mod-
els robustly using regular gradient-based image alignment,
given an initial ground to image homography estimate.

1. Introduction
Standard camera calibration algorithms employ a two-

stage approach which first identifies point correspondences
between the image and the world, and then finds parame-
ters which minimize the distance between projected world
points and their corresponding image locations [11]. Com-
monly, a set of feature point correspondences is established
by detecting corner-based features within an image of a
known calibration object (or adjacent frames if autocalibrat-
ing a moving scene). Checkerboards are perhaps the most
popular target because of their ease of use and manufacture.

In large outdoor scenes, checkerboards are impracti-
cal, as the necessary size may be on the order of me-
tres [9, 14]. Furthermore, landmark point features are of-
ten rare. Instead, lines and edges are the dominant feature

Figure 1. Landmark point-based features are rare in outdoor
sporting environments. Instead, one can calibrate the camera us-
ing edge-based features by aligning a synthetic view of pitch mark-
ings (inset) to a filtered camera image. Our long range gradient
permits convergence through gradient-based image alignment, as
indicated in the original image.

in urban [6, 15] and rural [16] areas; and sporting facili-
ties [7, 9, 21, 23] (see Figure 1). Lines are more difficult to
detect than points, as they require fusing information across
multiple pixels. One can estimate the parameters of a line
by searching for peaks in Hough space [23], or fitting to
a set of image locations (or both [7]). However, each of
these methods has inherent difficulties. A Hough transform
requires careful selection of quantization scale and non-
maxima suppression [7]; fitting to a set of points requires
identifying a subset of pixels from the image to which the
line must belong. Curved lines are more problematic, but
parametric fits can be computed for some shapes [8].

The image acquisition process introduces additional dif-
ficulties. For instance, the large coverage area of out-
door applications means wide-angle lenses will be com-
mon. These lenses generally induce distortion into the im-
age making straight lines appear curved [11]. Images cap-
tured relatively low to the ground will view features from an
oblique angle, which complicates line detection as a double
response from an edge filter may be expected or unexpected
depending on the width and (unknown) proximity of the line
to the camera.
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Our method is the first to estimate camera intrinsic,
extrinsic and lens distortion parameters by aligning an
overhead template to the camera image using gradient-
based optimization. Since we do not require a geometric
parametrization of the scene (described by detected point,
lines and curves in the camera and/or overhead views), we
are able to calibrate both the projective and lens parame-
ters simultaneously from arbitrary planar patterns. How-
ever, an estimate of the ground to image homography is
needed for initialization. Unlike previous image-based cali-
brations [17,18,22,26], we employ a reduced camera model
which assumes known pixel aspect ratio and principal point.
This slight restriction vastly improves the robustness of 3D
calibration from a 2D surface, as the projective parameters
are over determined. Unlike [17], we do not need a 3D
model of the scene, nor a complex initialization. We avoid
direct image comparisons (and the supplemental parameters
needed to account for differences in illumination [18, 26])
by matching the response of an image filter to a geometric
template. The camera parameters are estimated by aligning
the resulting two edge images (see Figure 1). Finally, we
employ a long range gradient which permits aligning two
edge images without needing an exhaustive search or itera-
tive multi-scale refinements.

2. Previous Work
Image-Based Calibration Image-based calibration esti-
mates camera parameters directly from pixel intensities. A
model of the scene including its appearance and geometry
(either 2D [12, 26] or 3D [17]) is required. Camera param-
eters p are estimated by minimizing the difference between
a rendered template of the scene and the camera image I.
Quite often the process includes auxiliary non-camera pa-
rameters to account for additional discrepancies, such as il-
lumination [18, 26].

We avoid additional parameters by aligning to a geomet-
ric template image T, which defines the locations of the
visual ground plane features. In many outdoor scenarios,
such templates are easily available. In sports, an overhead
rendering of the pitch is easy to obtain (or produce). In out-
door surveillance, the template could be generated using a
filtered satellite image. Kaminsky et al. [15] employed such
a strategy for aligning structure from motion point clouds
to the world. They conducted a coarse to fine brute force
search for the best 2D similarity transform which mapped
recovered 3D points to edges in the overhead view.

For a given set of camera parameters p, one can gener-
ate a greyscale image indicating the portion of each camera
pixel xi = (u, v) that overlaps with feature locations. This
is equivalent to warping the overhead image T into the cam-
era’s perspective T(W(x;p)), where the warp W(x;p) is
determined by projective and lens aspects of the camera (for
clarity, we have reversed the convention of [2] and warp the

template, not the image). Assuming one can generate an im-
age I indicating how likely each pixel within the camera’s
image corresponds to a visual feature (for instance, a simi-
larity measure based on colour), the optimal set of camera
parameters p� can be determined by minimizing the dis-
tance between each warped pixel W(xi;p) and the nearest
detected location [13], in much the same fashion that point-
based calibration minimizes projection error. The closest
detected pixel in I for a given warped pixel in T may change
from one iteration to the next.

Gradient-based Image Alignment Although image
plane distance is the appropriate error measure to minimize,
the difference between T(W(x;p)) and I(x) is nearly
equivalent, and is a solvable optimization problem. The for-
wards additive Lucas-Kanade algorithm [2] finds an optimal
set of warp parameters p� through the following iterative
steps:

1. Warp T with W(x;p) to compute T (W(x;p))

2. Compute error image E(x) = I(x)−T (W(x;p))

3. Warp gradient ∇T with W(x;p)

4. Evaluate Jacobian ∂W
∂p at (x;p)

5. Compute steepest descent ∇T∂W
∂p

6. Compute Hessian H =
�

x

�
∇T∂W

∂p

�T �
∇T∂W

∂p

�

7. Compute ∆p = H
−1

�
x

�
∇T∂W

∂p

�T
E(x)

8. Update p ← p+∆p

Edge Image Alignment The template image T for out-
door sports scenarios may resemble an edge image. The oc-
currence of strong edges within an image is relatively rare
compared to the number of pixels. This sparseness makes
edges difficult to use in gradient-based optimizations [24],
as the gradient of an edge filter is effectively non-zero in
only a small number of locations (see Figure 2). This means
a gradient-based optimizer receives little information about
how to modify the current parameters (by ∆p) to reach a
better solution. Furthermore, non-zero gradient locations
within an edge image may not indicate the quality of the
alignment, as one can only judge how well two images align
when there is a non-zero difference (the difference between
two sparse edge images is zero at most locations). How-
ever, the merits of edge features for alignment accuracy and
illumination invariance make them worthwhile features for
alignment.

Cootes and Taylor [5] computed the local orientation of
pixels (including a reliability estimate of this measure) to



I(x) T(W(x;p)) I(x)−T(W(x;p)) ∇Tx(W(x;p)) ∇Ty(W(x;p))

Figure 2. Edge images are difficult to align, as the image, template and its gradient are all sparse. In this example, the current parameters
p warp an edge in T reasonably close to an edge in I (within about 10 pixels). The non-zero elements of the error image indicate how
to update ∆p if there is corresponding gradient information in ∇T. However, since the gradient is sparse, there a few pixels which have
both non-zero difference and non-zero gradient. As a result, ∆p ≈ 0, and the optimizer is unable to converge to the correct solution.

improve the precision and reliability of fitting models to fa-
cial images. Since the process considered the reliability of
the orientation estimates, the algorithm focused on aligning
strong edge responses between a query image and a model.
Optimization was performed in a series of coarse to fine
resolutions. Wang et al. [24] also investigated fitting face
models to query images. Like Cootes and Taylor, they em-
ployed edges (via a Laplacian filter) for better fitting. The
optimized parameters were found using an exhaustive local
search.

3. Warp Parametrization
Lens distorted projective geometry is usually character-

ized by considering a point x� in the world mapped to a
location x in the image plane by a camera projection P(·)
(or a homography H(·) for planar geometry) followed by
lens distortion L(·). This definition allows one to visual-
ize the camera’s detected features registered to an overhead
view, as the reverse mapping is used to compute a warped
image [25]. Alignment in this domain would minimize the
distance between the locations of the back-projected mark-
ings and their expected positions. However, the more com-
mon oblique camera angle makes back-projection errors of
distant features much more apparent than close ones. As
a result, optimized parameters may give good alignment in
the overhead domain, but not when projected into the cam-
era image.

Minimizing the projection error (instead of the back-
projection error) requires the warp to be defined in the op-
posite direction. Assuming the world co-ordinate x� is de-
scribed in a planar co-ordinate system, the camera to ground
warp W becomes:

x� = W(x;p)

= H
−1(L−1(x;p);p). (1)

Lens Distortion Model For simplicity, we assume the
lens effects are radially symmetric with respect to a dis-
tortion centre e, and that the amount of distortion λ at a

particular point within the image depends only on the radial
distance. The direction of L — i.e. whether it distorts or
undistorts — is arbitrary [20, 22]. For convenience, we de-
fine the lens as undistorting and for consistency denote the
lens warp as L−1(x):

x̂ = L
−1(x)

= e+ λ(r) (x− e) , (2)

where r = �x−e� and x and x̂ are distorted and undistorted
locations in the camera’s image plane.

Since λ(r) is an arbitrary function of r ≥ 0, we
parametrize it as a Taylor expansion [11],

λ(r) = 1 + κ1r + κ2r
2 + κ3r

3 + · · ·+ κnr
n
. (3)

We fix the centre of distortion e at the centre of the im-
age, which means the lens is parametrized by n lens co-
efficients,

pL−1 = [κ1,κ2, . . . ,κn]. (4)

The experiments in this paper employ a single lens co-
efficient, either κ1, or κ2 with κ1

def
= 0 for compatibility

with other lens models [3]. It is worth noting that other
lens models, such as the rational polynomial expansion [4],
could be employed. The only real restriction is that the lens
model is parametrizable, unlike [10], and is differentiable.

Camera Projection Model Although a perspective cam-
era matrix P = KR[I| − C] has eleven degrees of freedom
in general, one can assume some of the intrinsic parameters
are known. For instance, a natural camera [11] assumes
zero skew and known pixel aspect ratio (typically unity).
For simplicity, we assume the principal point coincides with
the centre of the image, which means K has only one degree
of freedom (the focal length f ), and P has only seven (as
there are an additional six to describe 3D position and ori-
entation).

If the world co-ordinate system is defined such that
z = 0 corresponds to the ground plane, the ground to image



homography H can be extracted from the first, second and
fourth columns of the camera projection matrix P (up to a
scalar uncertainty).

x̂ = P

�
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�
x x

�
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��
x
�
x x

�
y 0 1

�T

= Hx�
, (5)

where

H ∼= KR




1 0 −Cx

0 1 −Cy

0 0 −Cz



 (6)

and
x� = H

−1x̂. (7)

The rotation matrix R describes the camera’s orienta-
tion with respect to the world co-ordinate system, and
has three degrees of freedom. There are many ways to
parametrize R. We chose the Rodrigues axis-angle notation
ω = [ωx,ωy,ωz] which describes R as a rotation of �ω�

radians about axis ω̂. Therefore, the projective component
of W(·) is parametrized by seven elements

pH = [f, Cx, Cy, Cz,ωx,ωy,ωz], (8)

which is one fewer than the ground to image plane homog-
raphy of a general projective camera [2].

3.1. Warp Jacobian
The image to ground warp W(x;p) is fully character-

ized by (2), (3) and (7); and directly parametrized by the
eight camera parameters. The Jacobian of (1) is computed
by applying the chain rule to (7), followed by (2) and (3).
To compute the derivative of H−1, we introduce an interme-
diate expression G:

G
def
=




H11H22 − H12H21 H02H21 − H01H22 H01H12 − H02H11

H12H20 − H10H22 H00H22 − H02H20 H02H10 − H00H12

H10H21 − H11H20 H01H20 − H00H21 H00H11 − H01H10



 .

The partial derivative of an arbitrary element H−1
·· of H−1

with respect to parameter pj is then

∂H
−1
··

∂pj
=

∂G··
∂pj

det H− G··
∂ det H
∂pj

(det H)2
. (9)

Details of the remainder of the calculations are provided
as supplemental material.

3.2. Initialization
The alignment algorithm is initialized by specifying four

point (or line) correspondences between the camera image
and the geometric template T. A ground plane to image
plane homography Ĥ is estimated using the DLT algorithm
and ensuring the cheirality of the estimated matrix is correct

[11]. Initial values for the seven projective parameters (8)
are extracted from Ĥ by estimating the camera’s intrinsic K

and extrinsic R[I| − C] matrices. The lens parameters (4)
are initialized to zero, which corresponds to ideal pinhole
projection.

Intrinsic Matrix For a natural camera with known prin-
cipal point, the image of the absolute conic (IAC) ω =
K
−T

K
−1 has one degree of freedom: the focal length f . The

metric ground plane to image plane homography H must sat-
isfy two conditions with respect to the IAC [19]:

hT
1ωh

T
1 − hT

2ωh2 = 0, (10)

hT
1ωh2 = 0; (11)

where hi represents the i
th column of H. Therefore, given

a metric homography (such as the one estimated via DLT)
one can compute K (and therefore f ) from the above system
of over determined equations.

Extrinsic Matrix The non-perspective components of the
homography (6) are recovered by left multiplying H by K

−1

H
� ∼= K

−1
H ∼= R




1 0 −Cx

0 1 −Cy

0 0 −Cz



 . (12)

The first two normalized columns of H� will correspond
to the first two columns of R. One can estimate the camera’s
orientation as

R ≈

�
ĥ
�

1 ĥ
�

2 ĥ
�

1 × ĥ
�

2

�
, (13)

and then find the closest true orthonormal matrix using SVD
[27]. Once R has been estimated, C can be recovered from
the third column of H and the Rodrigues vector ω from R.

Optimization The ground to image plane homography
(6) extracted from the natural camera projection matrix P

may be significantly different from the unconstrained ho-
mography initially estimated via DLT. As a final initializa-
tion step, we optimize the projective warp parameters pH

(8) using Levenberg-Marquardt to ensure the homography
H extracted from the projection matrix is as close as possi-
ble to the initial homography Ĥ, with both matrices scaled
to have unit Frobenius norm.

4. Long Range Gradient
To overcome the narrow convergence range of an edge

image (see Figure 2), we compute a gradient of image T
at location x by fitting a plane to pixel intensities contained
within a (2n+1)× (2n+1) window centred at x. The gra-
dient for location x is given by ∇T(x) = [A,B]T, where
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Figure 3. (left) A one pixel wide line (black) and its long range gradient evaluated at various locations relative to x for window sizes
n = 1, 5 and 9 (indicated using red, green and blue respectively). For illustrative purposes, each gradient response has been normalized
relative to its maximum value (right). Note that the response for n = 1 is identical to that of a 3× 3 Sobel filter.

the parameters [A B C]T of the fitted plane are computed
by solving the over-determined system of equations:



−n −n 1

−n+ 1 −n 1
...




�
A
B
C

�
=




T (xx − n, xy − n)

T (xx − n+ 1, xy − n)
...



. (14)

Fitting parametric models to image intensities is a stan-
dard technique for estimating more precise measurements
(as discussed in [1]). Here, we deliberately use a large win-
dow size to propagate information. In the case of an edge
image, approximating the gradient at x by fitting a plane to
the nearby intensities is roughly equivalent to a signed dis-
tance transform. For example, consider the cross-section of
a one pixel wide binary edge response (see Figure 3). For
various half-window sizes n, the gradient increases linearly
with the distance from x up to its maximum (which occurs
at −n). The sign of the gradient indicates the direction to-
wards the centre location x.

The gradient at distances sufficiently far from x, i.e.
greater than n, is zero. This behaviour preserves the in-
trinsic robustness of matching edge images (see Figure 2).
Suppose the current parameters p warp an edge at x� =
W(x;p) in T to location x in I. If x is further than n pix-
els from the true location x� of the corresponding edge in
I, then the non-zero image differences from this misalign-
ment will not contribute to ∆p, as the gradients (and there-
fore the steepest descents) at x and x� will be zero (see
Figure 3). Equivalently, ∆p is only computed from non-
zero differences and gradients which are sufficiently close
to corresponding edges in I. So, we choose n to be large
and refer to this as a long range gradient. For example, Fig-
ure 1 was achieved using n = 8, which corresponds to a
physical window size of 0.85m.

5. Results
The Gauss-Newton image alignment algorithm assumes

the warp W(·) is approximately linear for small parameter
changes. Lens distorted projection reduces the quality of
this assumption. Therefore, we augment the standard for-
wards additive algorithm with a line search phase: if an es-
timated parameter update ∆p increases the alignment error,
we reduce ∆p by half and re-iterate. As before, the algo-
rithm converges when �∆p� is sufficiently small, or if the
maximum number of iterations is exceeded.

We compare long range gradients to standard image-
based calibration using field hockey pitch markings, and to
traditional feature-based methods using a checkerboard.

Field Hockey Images of field hockey pitch markings are
difficult to parametrize geometrically. The ‘circle lines’ are
constructed from two quarter circles, joined by a straight
line segment spanning the width of the goal. The resulting
curve is not a conic section. Figure 8 shows a selection of
results for a variety of pitches, camera positions and light-
ing conditions. Our gradient-based method provides signif-
icant improvement over the initial ground to image homo-
graphies which ignore lens distortion. However, the camera
and lens model lacks sufficient complexity to attain pixel
perfect alignment. A first order model of pitch curvature
may be required for further improvement [23].

The size of the window used for computing long range
gradients plays a role in the quality and speed of the opti-
mization process. The overhead view of the pitch markings
was rendered at 1 pixel = 0.05m, making one pixel slightly
smaller than the width of most pitch markings. The average
performance of several of long range gradients were eval-



uated using seven different field hockey images (see Fig-
ure 4). The results illustrate that there is clearly an optimal
window size: if n is too small the optimizer is unable to
reach parameters far from the initialization; if n is too large,
the optimizer cannot make small refinements to p.

Image pyramids are often used to minimize the necessity
of an optimal window size. Figure 5 illustrates how a pyra-
mid using 3×3 Sobel gradients was generally able to match
the precision of a single long range gradient (although after
many more iterations). However, like a pyramid, a sequence
of contracting long range gradients can similarly reduce the
need for an optimal window size (see Figure 6). In our ex-
periments, contracting long range gradients generally pro-
duced the best alignment, presumably because contracting
long range gradients always use the original data (whereas
a pyramid uses down sampled versions).

In addition to minimizing the impact of non-optimal
window sizes, image pyramids also provide robustness
against poor initializations. For each of the seven cam-
era set-ups, we perturbed the image locations of the manu-
ally specified correspondences by adding Gaussian random
noise. We then optimized using a 1

8 : 14 : 12 :1 pyramid and a
{8, 4, 2, 1} contracting long range gradient sequence. We
considered the optimization to have converged if the RMS
error was within 10% of the unperturbed solution. Figure 7
illustrates how contracting long range gradients are much
more robust to poor initializations.

Checkerboard We used the MATLAB camera calibra-
tion toolbox [3] to generate a reference calibration using
twenty images of a 9 × 7 checkerboard. We restricted the
intrinsic camera model to estimate only focal length f and
a single radial distortion parameter κ2. For the given test
image we computed the camera extrinsic parameters.

We compared the proposed image-based alignment to

Figure 6. The x-component of successively smaller long range gra-
dients (from bottom to top) computed from the geometric template
of field hockey pitch markings.
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Figure 4. The window size at which long range gradients are com-
puted clearly influences the optimization’s speed and quality. Ex-
cessively small or large window sizes lead to sub-optimal align-
ments.
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Figure 5. A long range gradient with n = 4 (solid red) gener-
ally converges to a better solution than gradients computed with
a 3 × 3 Sobel filter (solid blue). Although a 1

4 : 12 :1 pyramid
(dashed blue) using 3 × 3 Sobel gradients at each level is able
to match the performance of a single long range gradient, a se-
quence n = {4, 2, 1} of contracting long range gradients (dashed
red) generally produces the best alignment.
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Figure 7. Gaussian noise was added to each of the four image lo-
cations used to initialize the warp parameters. We assumed the
optimizer converged to the correct solution if the RMS image dif-
ference was within 10% of the unperturbed value. The average
rate of convergence over twenty trials for all of the seven camera
set-ups demonstrates how an equivalent sequence of contracting
long range gradients (red) is quite robust to poor initializations,
compared to an equivalent pyramid approach (blue).



Figure 8. Coarse manual initializations (left) were estimated using four point-correspondences. The pitch markings were detected in each
image using a colour similarity filter with additional requirements for thin white objects next to green objects. A sequence of contracting
long range gradients was used to align the overhead template to the camera’s image (right).

Focal Length Position Orientation Distortion Error
∆f �∆C� ∆ω̂ ∆�ω� ∆κ2

[pixels] [m] [rads] [rads] [ 1
f2 ] [pixels]

Reference
Calibration

1943




+0.027
−0.277
−0.291








0.865161
−0.250564
−0.0355074



 −0.155 2.45

Feature-Based −24 0.036 −0.0052 0.0030 −0.025 4.29
Image-Based −14 0.039 −0.0060 0.0035 −0.068 3.93

Table 1. Camera parameters were estimated from the inner 5 × 7 checkerboard (blue dots) using both feature-based and image-based
calibration techniques. Both algorithms produce parameter estimates which differ only slightly from the reference calibration (estimated
from multiple images). The calibrations were evaluated by comparing the projected positions of the outer checkerboard corners (red dots)
to their manually measured locations. Errors significantly larger than the reference calibration are expected, since this is an extrapolation
beyond the image region used for calibration.



standard feature-based alignment using a 7 × 5 subset of
the 9 × 7 checkerboard (see Table 1). Parameters for the
feature-based model were estimated using the same MAT-
LAB calibration toolbox. Each calibration was evaluated by
measuring the image plane distance between the projected
and detected locations of the remaining 32 corners along the
perimeter of the 9× 7 checkerboard. Since these evaluation
points lie outside the domain of points used for calibration,
the impact of incorrect parameter estimates will be signifi-
cant. As expected, both algorithms produce errors approxi-
mately 1.5× that of the reference. Both algorithms produce
reasonably similar parameters, but image-based calibration
has a slightly lower projection error of the test points.

6. Summary
Our work formulates camera calibration in terms of im-

age alignment. This is useful when point-based features are
not present in the scene. In the majority of images captured
outdoors and at sports fields, the dominant visual feature is
an edge. Aligning edges images using gradient-based opti-
mization is quite difficult, as the images and gradients are
sparse; resulting in a narrow convergence range. We address
this issue using a long range gradient. Unlike a pyramid ap-
proach, the long range gradient maintains a precise align-
ment measure, as the image and template are never down
sampled. For added robustness, multiple long range gradi-
ents may be employed in a pyramid fashion to perform a
coarse to fine alignment (when the initialization is far from
the solution).

For additional robustness, we assume square pixels and
known principal point. This is extremely beneficial when
calibrating from planes, as the projective parameters are
overdetermined. We demonstrate how the image warp W(·)
and its Jacobian can be derived from this projection model,
including lens distortion. Finally, formulating calibration in
terms of image alignment permits the use of arbitrary geo-
metric patterns for calibration.
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