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Abstract
This paper presents a system for soft human-robot handshaking, using a soft robot hand in conjunction with
a lightweight and impedance-controlled robot arm. Using this system, we study how different factors influence
the perceived naturalness, and give the robot different personality traits. Capitalizing on recent findings regarding
handshake grasp force regulation, and on studies of the impedance control of the human arm, we investigate the role
of arm stiffness as well as the kinaesthetic synchronization of human and robot arm motions during the handshake.
The system is implemented using a lightweight anthropomorphic arm, with a Pisa/IIT Softhand wearing a sensorized
silicone glove as the end-effector. The robotic arm is impedance-controlled, and its stiffness changes according to
different laws under investigation. An internal observer is employed to synchronize the human and robot arm motions.
Thus, we simulate both active and passive behaviour of the robotic arm during the interaction.
Using the system, studies are conducted where 20 participants are asked to interact with the robot, and then rate the
perceived quality of the interaction using Likert scales. Our results show that the control of the robotic arm kinaesthetic
behaviour does have effect in the interaction with the robot, in term of its perceived personality traits, responsiveness
and human-likeness. Our results pave the way towards robotic systems that are capable of performing human-robot
interactions in a more human-like manner, and with personality.
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1 INTRODUCTION
Humans are soft, and inherently exploit softness when
interacting with their environment and with each other. This
softness appears in the muscles and tendons, which are
naturally elastic and backdrivable, as well as in the skin,
where the subcutaneous tissue causes fingers to conform
to objects that are being grasped. As we progress towards
robotic systems which are capable of convincing and human-
like interactions with the environment and with humans,
it will become increasingly important for these systems to
exploit softness in this same way, particularly if they are
designed for physical Human-Robot Interaction (pHRI).

Handshaking (Fig. 1) is an interesting interaction to study
in this regard: while seemingly simple, handshakes combine
cutaneous elements, of hand-hand contact, with kinaesthetic
elements, of the consensus arm motion. Handshakes are
common greeting interactions throughout the world (Dolcos
et al. 2012), and have strong social connotations, which
means that humans have a clear prior expectation of what
a handshake should feel like.

Human-robot handshaking has received some attention in
the literature, but, to date, the majority of studies focused on
specific aspects of the interaction.

The kinaesthetic aspect of handshaking has been studied
by Giannopoulos et al. (2011), where a haptic device with a
metal rod as an end effector was used to simulate handshakes
in order to enhance the physicality of an immersive virtual
environment. The same authors also investigated the use

Figure 1. The human/robot handshake between an
anthropomorphic impedance controlled manipulator, equipped
with a sensorized Pisa/IIT SoftHand, and a human.

of Hidden Markov Models to estimate consensus motions
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Figure 2. a) The experimental setup with both the
anthropomorphic arm and the gloved SoftHand. b) The original
SoftHand version (on the left) confronted with the more compact
version (on the right) we employed in the setup to enhance the
handshake ergonomics. c) The custom-made silicon glove used
in this study, with its embedded sensorization highlighted.

(Wang et al. 2009). Moreover, Avraham et al. (2012) and
Papageorgiou and Doulgeri (2015) present examples of
different motion models for consensus handshaking. Related
to this line of research, Jindai et al. (2015) focus on a
robot simulating also the approaching motions before the
handshake, i.e. before the hands make contact.

Another important aspect to understand in this regard is
the arm impedance. It is known that human arm stiffness
is modulated depending on the task (Ajoudani et al. 2012).
Some works have studied how to mimic the impedance
regulation of humans in robotic systems, e.g. Bhattacharjee
and Niemeyer (2015), but to date this has not been
considered in the context of handshake tasks.

Conversely, works focusing on the cutaneous elements of
the interactions include Orefice et al. (2018) and Knoop et al.
(2017), where the feasibility of soft robotic hand use is also
exploited. Vigni et al. (2019) highlight the importance of
analysing interaction forces between human and robot hand,
and study the use of closed-loop feedback hand control.

While such targeted studies are informative stepping
stones, it is only with a complete interactive system
that one can begin to study how the interaction as a
whole is perceived, and move towards robotic systems
capable of conveying expressions and emotions through
their behaviour. There exist only a few recent examples
of complete systems for handshaking, e.g. by Tsalamlal
et al. (2015), where the relative importance of haptic and
visual cues is studied. Recently, Arns et al. (2017) presented
a fast and reactive system for human-robot handshaking,
adopting a custom robot hand. Avelino et al. (2018b) also
implement a handshaking system on an anthropomorphic
robot, and investigate the effect of handshake gripping
strength. However, in these applications the robot is either
passive w.r.t. the interaction, or it employs control laws
which are insensitive to the subject unique and simultaneous
kinaesthetic/haptic features.

In this study, we investigate different handshake strategies,
aiming to relate the robotic arm stiffness, its synchronization
with the human, and their overlapping role during the
handshake. To this end, we develop a complete system
for handshaking that combines a soft hand, an impedance-
controlled arm and a sensorized silicon glove, shown in
Fig. 2. It exploits both kinaesthetic softness, through an
impedance-controlled arm and an underactuated hand, and
cutaneous softness, through a soft silicone glove. This is
implemented on a FRANKA robot arm, and uses a Pisa/IIT
SoftHand with a custom-made silicone glove, which is
sensorized to allow the detection of human grasping force
similarly to Vigni et al. (2019). The system incorporates
an Extended Kalman Filter (EKF) in order to learn the
parameters of a human shaking motion and mimic it, for a
consensus behaviour. The hand is controlled in a closed-loop
manner depending on the applied force.

We implement 3 different controls with varying
impedance behaviour and 2 controls for the arm motion,
then we combine them for a total of 6 control strategies on
the arm behaviour. Using our system, we conduct a user
study where participants are first asked to interact with the
different controllers and rate them using Likert scales in
terms of i) quality of the handshake, ii) human-likeness
of the handshake, iii) responsiveness of the robot, iv) the
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Strategy Stiffness Synchronization

C1 KMAX Active
C2 KMAX Inactive
C3 KMIN Active
C4 KMIN Inactive
C5 KV AR Active
C6 KV AR Inactive

Table 1. Implemented Control Strategies for the Robotic Arm
Behaviour

perceived leader of the interaction, and v) the perceived
personality (introvert/extrovert) of the robot. In a second part
of the experiment, subjects are asked to rank the controllers
in a forced-choice manner. Our preliminary results of the
first part of the experiment show that the different controllers
exhibit variations in the perceived personality of the robot,
on its human-likeness and its responsiveness. From these
results, we posit that the developed system is well suited
for investigating human perception of robot behaviours,
and that it could also play a role in defining how robots
can mimic/exhibit social interaction skills in order to
communicate emotions to people.

2 EXPERIMENT DESIGN

In this paper, we implement different handshake strategies,
controlling and modulating the robotic arm stiffness and its
active/synchronized behaviour during the handshake.

The synchronization of the human/robot handshake
motion is obtained by an internal observer that generates
a cartesian pose reference for the robot. The robotic arm
can switch between 2 modes of operation: i) passive
motion, provided by the impedance control; and ii) active,
synchronized motion related to the kinaesthetic features of
the human handshaking motion. A detailed discussion of the
reconstruction of the human reference motions is provided in
Secs. 3.3, 3.4 and 3.5.

To exploit the effect of the arm stiffness modulation on
the whole interaction, we implement 3 different control
strategies for the stiffness of the robot impedance control,
setting it to: i) a constant high stiffnessKMAX ; ii) a constant
low stiffness KMIN ; and iii) a variable stiffness KV AR,
related to the handshake grasp force exerted by the human
on the robotic hand. We develop this set of controllers with
varying impedance behaviour to investigate the quantitative
relation between the human arm adaptable stiffness and
the handshake interaction, which has thus far received little
study. More details on the robotic arm stiffness modulation
are provided in Sec. 3.6.

In summary, we define and use here 6 control strategies for
the arm behaviour, which arise from the intersection between
3 stiffness control laws (constant high stiffness KMAX ,
constant low stiffness KMIN , variable stiffness KV AR)
and 2 different kinaesthetic control laws (synchronization
enabled→ active mode, synchronization disabled→ passive
mode). The arm strategies, labelled from C1 to C6, are listed
in Table 1. For all the experiments, we use the same hand
closure control strategy.

3 MATERIALS AND METHODS

3.1 Robotic Arm and Hand
Here, and in the following section, we present the hardware
setup used to obtain the results presented in this work.

The robotic arm used in this paper is a lightweight 7-
DoF FRANKA Emika manipulator∗. It is controlled in a
ROS-based framework with impedance control. Thus, the
robot reacts as a mass-spring-damper system to the human
stimuli at its end-effector, where the spring stiffness (i.e. the
impedance control cartesian stiffness matrix) is set with a
dedicated ROS node in order to execute the stiffness control
strategies.

A right Pisa/IIT SoftHand (Catalano et al. 2014) is used
as the robot end-effector, to be grasped and shaken by the
human hand. The adaptability of the hand joints to various
types of grasps make it well suited for this scenario, and it
has also previously been used in handshakes studies (Vigni
et al. 2019). We note that in this work, we used a version
of the SoftHand with a reduced and more compact factor
form (especially regarding the palm) w.r.t. the original one,
in order to enhance the handshake ergonomics. Fig. 2b shows
the difference in factor form between the first version of the
SoftHand (left) and the version employed in this work (right).
The hand is controlled by another ROS node connected to the
general framework.

3.2 Sensorized Glove
As the Pisa/IIT SoftHand is not sensorized in itself (Catalano
et al. 2014), we designed a custom-made silicon glove in
order to detect the handshake contact forces with a human
hand, to be used in the control laws of the hand. Our glove,
shown in Fig. 2c, capitalizes on recent studies on human-
robot handshaking (Knoop et al. 2017; Vigni et al. 2019).
Its functionality is twofold: on the one hand, it integrates
the sensor in its silicone matrix and, as a consequence, i)
it is a non-invasive add-on to the device, and ii) it provides
mechanical protection for the sensors. On the other hand, the
glove provides cutaneous softness, which is beneficial from
the point of view of the handshake quality.

The cutaneous softness addresses an issue raised in Knoop
et al. (2017), where it was found that the hard plastic fingers
of the SoftHand lead to localized pressure peaks in the
handshaking grasp, which can cause discomfort even at low
grasping forces. This result was a further motivation for us to
employ a soft silicone glove.

To detect the human-robot handshake forces, two FSR
(Force Sensitive Resistor) pressure sensor arrays are placed
inside channels molded into the glove, at expected hand
contact locations as found by Knoop et al. (2017).
Specifically, two sensors are placed on the glove back,
corresponding to the hand metacarpal zone, near the thumb
articulation. Three further sensors are placed on the lateral
surface of the glove, corresponding to the lateral side of the
ulnar palm zone. The placement of the FSR sensors on the
robotic hand is shown in Fig. 3b. It can be seen from Fig.
3a that the sensors match the 100% handshake contact zones

∗https://www.franka.de/
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Figure 3. a) Placement of the FSR sensors, indicated in red
circles, w.r.t. the 100% handshake contact zones for the hand
dorsal part identified in Knoop et al. (2017). b) Placement of the
FSR sensors in the robotic hand (a simplified CAD with the form
factor of the SoftHand is shown). The influence areas of the
sensor on the hand metacarpal zone and on the lateral side of
the ulnar palm zone are highlighted with a yellow glow, to be
compared with a).

for the hand dorsal part identified in Knoop et al. (2017). No
sensors are placed on the fingers or the palm.

A chamber on the glove dorsal zone houses an electronic
board, which records and processes the readings from the

FSR sensors, along with a custom analog RC circuit which
performs a first low-pass filtering of the pressure sensor data.
More details about the electronics and control of the system
are provided in Della Santina et al. (2017).

The glove fabrication is further described in Appendix A.

3.3 Human-Robot Interaction Modelling
Two (robotic or human) arms performing a handshake can
be modelled as a constrained dynamic problem, where two
serial manipulators are joined by a compliant constraint at
their end-effectors (i.e. hands). Let us assume that we have no
information about one of the manipulators, which represents
the human side of the interaction (i.e. no sensor is to be
placed on the human). In this case, its arm dynamics can be
neglected and reduced to an external torque applied at the
robotic manipulator end-effector. The robot dynamic system
can be modelled as

B(q)q̈ + C(q, q̇)q̇ + G(q) = τm − JT (q)hext, (1)

where B, C and G are, respectively, the inertia, Coriolis
and gravity matrices of the manipulator, J is the Jacobian
matrix, and q and τm are the vectors of joint coordinates
and torques. We assume that the constraint between the two
arms, i.e. the interaction wrench at the end-effector hext, is
generated by a viscoelastic model so that hext = K(pee −
ph) + F(ξee − ξh), where pee and ph are the poses of the
robotic end-effector and of the hand, ξee and ξh are the
corresponding velocities, and K and F are two positive-
definite and symmetrical matrices which take into account,
respectively, the elastic and damping action of the constraint
(Siciliano et al. 2010).

For our case, we can simplify the model by restricting
the dynamical system of (1) to a 1 DoF case, where the
handshake motion occurs only along the vertical direction, as
already done in previous studies on handshake kinaesthetics
(Papageorgiou and Doulgeri 2015). Moreover, we can model
the entire robotic manipulator as a mass-spring-damper
system through the use of impedance control. Thus, (1)
simplifies to a second order system as

 q̇1 = q2;
mRq̇2 = CH(q2 − żH) +KH(q1 − zH)+
+CR(q2 − żR) +KR(q1 − zR),

(2)

where the manipulator has a total mass mR, concentrated
at its end-effector, and CR and KR are, respectively, its
stiffness and viscous damping coefficients. The mass mR

is also connected to a spring and a damper with elastic and
viscous damping coefficients KH and CH , representing the
compliant handshake coupling. Thus, it can be seen that
q1 = zEE and q2 = żEE are the position and velocity of the
robot end-effector. They depend on both i) zH and żH , the
position and velocity of the handshake transmitted by the
human to the end-effector, and on ii) zR and żR, the same
quantities relative to the end-effector motion imparted by
the manipulator impedance control. This simplified model is
shown in Fig. 4. The numerical values of KR, KH , CR and
CH are chosen in accordance with the literature on human
arm cartesian impedance (Dolan et al. 1993; Artemiadis et al.
2010; Tsuji et al. 1995).
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Figure 4. Human-robot handshake, modelled as a
mass-spring-damper system connected with a compliant
constraint to an external object which exhibits a sinusoidal
motion. The numerical values of KR, KH , CR and CH are
chosen in accordance with the literature on the human arm
cartesian impedance.

3.4 Reconstruction of the Human Reference
Motions

When trying to assess the state of the handshake, referring
to (2), zR and żR can be reconstructed from the readings
of the robot joints through direct kinematics, but zH and
żH cannot be measured. We employed an Extended Kalman
Filter (EKF) to observe the system, as it is desirable to have
a human-robot handshaking framework that does not require
the human to wear additional sensors or instrumentation.
Moreover, we require that in order to simulate an active
behaviour for a handshake, the robot should synchronize to
the human partner.

To obtain this goal, i.e. i) synchronize to the human
signature motion and ii) simulate an active/leading behaviour
by anticipating it, we designed the EKF to observe the
intention of the human, and to command an appropriate
control reference for the arm. We describe here the state-
space modelling of the system to be observed by the EKF,
while we describe the definition of the control reference

for human-robot synchronization in Sec. 3.5. As the system
cannot measure the intention of the human side, it is assumed
here to be a sinusoidal wave of unknown time-varying
amplitude and frequency. Thus, the handshake motion terms
zH and żH arise from a sinusoidal function with variable
amplitude A(t) and offset O(t), namely h(t), i.e.

h(t) = A(t) sin(ωt+ φ) +O(t).
(3)

This function is obtained by the dynamics of a single
DoF harmonic oscillator along the vertical direction, i.e.
z̈H = −ω2zH , which is modelled in state-space as


α̇1 = α2α4;
α̇2 = −α1α4;
α̇3 = 0;
α̇4 = 0;

where:

α1 = zH ;
α2 = ˙zH/ω;
α3 = O;
α4 = ω.

(4)

As seen from (4), α3 and α4 are constant states represent-
ing the sinusoidal offset and frequency, respectively. They
are adjoined to the system so to be estimated via the output
equation

y(t) = α1 + α3 = z(t) +O(t). (5)

Considering that z(t) = A(t) sin(ωt+ φ), from (5) one
can resolve the expression of h(t). Moreover, the sinusoid
amplitude can be estimated from A(t) =

√
α2
1 + α2

2.
Bringing together (4) and (2), the entire system becomes
a constrained dynamic problem, where the mass mR

is connected to a slider with a sinusoidal motion
through the handshake compliant coupling. Its complete
state vector is defined as x = [ α | q ]T , where α =
[ α1 , α2 , α3 , α4 ]T are the handshake motion constraint
states and q = [ q1 , q2 ]T represents the physical system
states.

A preliminary observability analysis on the system
verified the feasibility of the estimation process from only
end-effector position measurements. The same analysis
proved the filter low parametric sensitivity, i.e. its robustness
to inaccurate physical parameters in the EKF prediction
part. The system model is discretized with a Forward Euler
approach. Thus, setting a time step equal to ∆t, the complete
dynamics at time k become

α1,k+1 = α1,k + ∆tα2,kα4,k;
α2,k+1 = α2,k −∆tα1,kα4,k;
α3,k+1 = α3,k;
α4,k+1 = α4,k;
q1,k+1 = q1,k + ∆tq2,k;
q2,k+1 = q2,k + [CH(q2,k − żH,k) +KH(q1,k − zH,k)+
+CR(q2,k − żR,k) +KR(q1,k − zR,k)]/mR.

(6)
After the update of the state vector, xk+1 is used to

evaluate online the state Jacobian of the EKF.

3.5 Human-Robot Synchronization
After convergence, from the status of the EKF it is possible to
reconstruct the features of the sinusoidal wave that represents
the handshaking motion exerted by the human on the robot
end-effector. The terms zH and żH in the expression for
q2,k+1 in (6) are computed as
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Figure 5. Scheme of the implemented control/estimation
architecture. The pressure measurements that carry the
cutaneous information about the human-imparted handshake
are obtained by means of a sensorized glove, worn by the robot
end-effector/hand.

{
żH,k = α2,kα4,k;
zH,k = α1,k + α3,k.

(7)

From (7), one can note that the expression for zH,k is the
same as (5), and from (4) that α2,kα4,k = (żH,k/ωk)ωk =
żH,k.

The information is used to synchronize the human/robot
handshake, mapping the human subject kinaesthetic
behaviour to the robot motion. To accomplish this, we
generate a cartesian pose reference for the robot as follows:

To be consistent with the 1-DoF modelling of the
human/robot handshake motion, the cartesian pose reference
at time k, namely uP,k, is set as

uP,k = [ x0, y0, ẑk, | Q0 ]T , (8)

where x0, y0 are the initial linear coordinates of the end-
effector along x and y, while Q0 is the unitary quaternion
representing its initial orientation. They are required to
remain constant during the handshake motion. ẑk is set as

ẑk = α1,k + α3,k + Tantα2,kα4,k = zH,k + TantżH,k,
(9)

where the final term is a constant time anticipation.
The robotic arm active behaviour we wish to reproduce

is obtained by setting the term Tant in the definition of the
control input ẑk. Moreover, this time anticipation allows for
compensation of the intrinsic control system delay.

A schematic of the complete control/estimation procedure
is shown in Fig. 5.

3.6 Arm Stiffness Control Strategies
In contrast to the handshake kinaesthetic aspect, we can
obtain cutaneous information from the human side of the
interaction. This is achieved with pressure sensors, placed on
the robotic hand, which detect the handshake forces exerted
by the human onto the robot. Here we relate this cutaneous
information to both the stiffness of the manipulator and the
closure of the robotic hand (see Sec. 3.2).

As shown recently (Aldrich and Skelton 2006; Baltaxe-
Admony et al. 2016; Lessard et al. 2016) the human arm
musculoskeletal system can be considered as a tensegrity

structure. Such structures are comprised of compression
elements, which in the human arm are the bones, and tension
elements that connect the former in suspension, like the arm
muscles and fascia do. The resulting structure is flexible and
compliant to external mechanical disturbances. If one wishes
to obtain a certain stiffness at the endpoint of a tensegrity
structure, a corresponding modulation of the stiffness across
all tension elements in the structure is required. Following
this, and according to the findings of Ajoudani et al. (2012),
we hypothesize that there could be a coupling between
the hand grasping force (i.e. end-effector stiffness) and the
impedance of the arm as a whole.

In order to investigate this, we implement different control
laws for the arm stiffness. In particular, the controlled
stiffness of the robot KR can be set in three different
ways via its impedance control: i) to a constant maximum
stiffness KMAX = 600N/m; ii) to a constant minimum
stiffness KMIN = 100N/m; and iii) to a variable stiffness,
related to the cutaneous human feedback via the pressure
measurements, with a law similar to that presented in (11):

KV AR = KMIN + (KMAX −KMIN )WK

∑n
i=1 pi

npmax
,

(10)
where WK is a tuned constant-weight coefficient relating

the cartesian stiffness value to the pressure measurements,
pi is the ith filtered pressure measurement value, n is
the number of measurements and pmax is the pressure
sensor saturation. As discussed in Sec. 3.3, the numerical
values of KMIN and KMAX are chosen in accordance with
reasonable values for the human arm cartesian impedance
found in literature. These quantities are used for the linear
part of the arm impedance control cartesian stiffness matrix.
The angular part of the matrix is populated with the same
values, damped by a constant tuned weight.

We note that the arm impedance control also allows
for reducing the impact of the simplifying assumption
made by modelling the handshake as a 1-DoF interaction.
Indeed, during a handshake, humans also exhibit movements
along different directions alongside the main motion
axis. Although minor, such movements are nonetheless
important for the perceived naturalness of the interaction. By
employing an impedance controller for the arm, the robotic
end-effector can be commanded to never behave rigidly in
any linear/angular direction, even when following an 1-DoF
reference trajectory.

3.7 Hand Closure Control Law
As in Vigni et al. (2019), a proportional control law is
used to regulate the hand closure from the pressure sensor
measurements. Specifically, the handshake control law is
defined as

Fh = FC + FP = WChMAX +WPhMAX

∑n
i=1 pi

npmax
,

(11)
where Fh is the total force exerted by the hand, FC is a

modelled internal force and FP is a force proportional to
the human action. WC and WP are tuned constant-weight
coefficients which relate respectively the maximum allowed
hand closure hMAX (set for interaction comfort purposes)
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and the pressure measurements with the handshake force.
Variables pi, n and pmax are defined as in (10). For our
robotic hand, the force Fh it exerts is proportional to its
motor position, as the SoftHand employs only one actuator to
activate its grasping mechanism (Catalano et al. 2014). The
position of the motor is in turn related to the hand closure H ,
so that

H = KT θm = f(Fh), (12)

where θm is the motor position expressed in rad/s andKT is
the conversion constant between rad/s and motor ticks. We
mapped Fh to the hand closure via a function f(•) similar to
the one from Vigni et al. (2019), as they also used a Pisa/IIT
SoftHand.

3.8 Experimental Procedure
As described in Sec. 2, we defined and implemented 6
control strategies for the arm behaviour, arising from the
intersection between 3 stiffness control laws (KR = KMIN ,
KR = KMAX , KR = KV AR) and 2 different kinaesthetic
control laws (EKF feedback enabled → active mode, EKF
feedback disabled → passive mode). The arm strategies,
denoted by C1–C6, are summarized with their features in
Table 1.

In three of them, the EKF observer trajectory feedback is
sent to the robot controller, switching from the robot passive
motion provided by the impedance control to an active,
synchronized motion. This feedback is activated after a time
of ' 2s from the detected handshake contact by the pressure
sensors, so as to ensure the convergence of the filter to the
unknown sinusoidal movement imparted by the human. The
detected handshake pressure measurement is also required to
to exceed a prescribed threshold to activate the EKF timer.

During the experiment, the robotic arm was positioned on
a fixed base so that its end-effector, i.e. the gloved hand, was
in a comfortable position for performing the handshake. The
control strategy for the hand closure was always set to (11).
A total of 20 participants were recruited for this study (14
male, age 24–31). Participants had no reported neurological
or physical injury that might affect their haptic perceptions.
They were briefed about the study, and asked to sign a written
consent form.

To obtain stronger results, the experiment was divided into
two parts.

3.8.1 Experimental Procedure — Part 1 In the first part,
a randomized sequence of the 6 handshake control strategies
described in Sec. 3.6 was presented to each participant. Every
control strategy appeared in the sequence three times, for a
total of 18 handshakes per subject. After each handshake, the
subject was asked to rate the interaction on five Likert-scale
questions, which were already used in (Vigni et al. 2019).
Specifically, the first two questions rate the quality and the
human-likeness of the handshake itself, the subsequent two
rate the responsiveness of the robotic arm and if it leads
or not the interaction, and the last one rates the perceived
personality of the robot. The questions, listed in Table 2,
make use of a modified 7-point Likert scale as in Vigni et al.
(2019).

3.8.2 Experimental Procedure — Part 2 In the second
part, two sets of three consecutive handshakes were

Question Scale (1 to 7)

Q1
Please rate the quality

of the handshake

very poor

to
very good

Q2
Please rate the human-likeness

of the handshake

very robot-like

to
very human-like

Q3
Please rate the responsiveness

of the robot

not responsive at all

to
very responsive

Q4
Who was the leader

of the handshake interaction?

I was the leader

to
the robot was the leader

Q5
Please rate the perceived
personality of the robot

shy, hesitant, introvert

to
confident, secure, extrovert

Table 2. Likert-Scale Proposed Questionary for the Experiment
First Part

presented to the subject. In the first set the three control
strategies using the EKF feedback were randomly presented,
and in the second set the remaining three without the
synchronization effect. The subject was asked to indicate,
after each set of three, which out of the the three handshakes
in the set they preferred, making this a 3-Alternative Forced-
Choice (3AFC) experimental design.

3.8.3 Experimental Procedure Protocol Each subject
performed in total 24 handshakes (18 in the first part plus 6 in
the second part) with the robot. The participants were told to
approach the robotic hand and to choose manually a position
P0 they deemed to be comfortable to perform the handshake
(the robotic arm was put in gravity compensation mode).
This initial position was saved by the program and presented
again to the subject for every subsequent interaction. Then
the control was activated and the handshake was executed.
We note that in this study each subject was instructed to
perform the= handshakes in the way and with the duration
they considered to be the most natural, although a maximum
time limit of 30s was set for each handshake. Moreover,
subjects were free to repeat the handshakes as many times
as desired, within this time limit. In this way, we intended
to simulate a realistic scenario in which every person could
interact with the robot with their unique behaviour.

For each handshake, the data from the robotic arm/hand
were recorded for further analysis: end-effector movements;
estimated states of the observer; glove pressure sensor
values; the robotic hand actuator reference; and position.

4 RESULTS

Fig. 6 shows an example of some of the ROS recorded data
for one handshake from the first part of the experiment.
The control strategy visualized here is C5, so both the
effects of the synchronization and of the stiffness modulation
are visible. Fig. 6a shows the robot end-effector pose and
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Figure 6. Sample of recorded data (7 seconds) for a handshake interaction during the experiment first part. The strategy employed
here is C5 (synchronization enabled, variable stiffness). The various phases of the human interaction with the robot are highlighted
with different colors. Figure a) shows the values along the Z coordinate of the robot end-effector pose and the control input to the
end-effector. Figures b) and c) show the values of the pressure measurement and of the linear stiffness of the impedance control.
Figure d) focuses on the SoftHand and visualizes its reference and actual motor angles. In figures e) and f) two estimated states
from the EKF (handshake amplitude and frequency) are shown.

Response on Handshake
p-value Source Quality Human− Likeness Responsiveness Leader Personality

Synchronization 0.233 0.267 0.001 0.514 0.370
Stiffness 0.679 0.976 0.881 0.079 0.258
Subject 0 0 0 0 0

Sync./Stiffness 0.221 0.179 0.691 0.192 0.100
Sync./Subject 0.153 0.002 0 0.114 0.005

Stiffness/Subject 0.689 0.475 0.545 0.066 0.595
Table 3. N-way ANOVA Test Results. The significant p-values are highlighted in red. p-values of zero indicate p < 10−4.

the control input to the end-effector, expressed in the end-
effector frame Z-coordinate along which the handshake
occurs. Figs. 6b and 6c show the pressure measurement
value and the current value of the linear stiffness in the
impedance control stiffness matrix. Fig. 6d visualizes the
SoftHand reference and actual motor angles. Finally, Figs. 6e
and 6f present two handshake motion estimated states from

the EKF, i.e. the handshake amplitude and frequency. The
phase shift of the controller reference can be appreciated in
Fig. 6a, where the end-effector current motion, imparted by
the human, is shown in red, while the arm control reference,
given by the EKF, is shown in blue.

The various phases of the human interaction with the robot
are highlighted with different colors. In phase 1, the subject
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Figure 7. Statistical analysis on the totality of the Likert responses. The first row of subfigures shows the mean response of every
strategy for each Likert question. Black bars show the standard deviation. The second row of subfigures presents the histograms of
the response data distribution for the same question on the first row. The control strategies are labelled from C1 to C6 as in Tab.1.
The mean, mode and median values for each strategy are shown. A unitary sample with the number of units (u.) it represent on the
histogram is also shown for each subfigure.

is still approaching the robot hand. In phase 2 they makes
contact with the hand, as can be seen from the pressure plot,
and the hand begins to close. At the same time, the arm
stiffness is increased accordingly. The subject then executes a
sinusoidal handshaking motion. After 2s of detected contact,
the EKF feedback is enabled, which is highlighted in phase
2f . Next, an active human-robot handshake occurs for a
few seconds, before being interrupted by phase 3 when the
subject releases the SoftHand.

The consolidated response data distributions for every
strategy and each question are shown with horizontal
histograms in the second row of Fig. 7. To analyse
the responses from the handshake experiments, we first
computed the participant mean response for each control
strategy as shown in the first row of Fig. 7.

We found that questions Q1 and Q2 (pertaining
respectively to the quality and human-likeness) were
positively rated for every strategy. For Q1, the mean
responses for each strategy (from C1 to C6) were
respectively: 4.55, 4.70, 4.70, 4.28, 4.72 and 4.50. The same
quantities for Q2 were: 4.43, 4.55, 4.73, 4.27, 4.57 and 4.48.
For Q3 (i.e. for the responsiveness of the handshake) the
mean responses were slightly lower: 4.18, 3.72, 4.18, 3.58,
4.02 and 3.72. For Q4, pertaining to the initiative of the
robot, the mean response for each strategy was respectively:
2.73, 2.85, 2.70, 2.23, 2.80 and 2.87. The same quantities
for Q5 (perceived personality of the robot) were: 3.98, 4.03,
4.00, 3.42, 3.80 and 3.93.

Given the shape of the distributions in Fig. 7 (second
row), which hints a non unimodal behaviour across different
subjects, we considered a 2 × 3 × nS (nS being the number
of subjects) factor experiment design to separate the effects
of the 2 strategies on arm motion and of the 3 strategies
on arm stiffness from the individual subject tendencies.
Specifically, we used a N-way ANOVA test, in order to study
the interaction between every experiment feature. For each

question, the collected data for each subject was arranged in
an ANOVA-style matrix as:

Synchronization Enabled {
Synchronization Disabled {

[
D1,j,k D3,j,k D5,j,k︸ ︷︷ ︸
KMAX

D2,j,k ︸ ︷︷ ︸
KMIN

D4,j,k ︸ ︷︷ ︸
KV AR

D6,j,k

]

where Di,j,k represents the response data collected for the
ith control strategy, the jth question and the kth subject.

First, we checked the three ANOVA prerequisites for
the data (for each question), i.e. i) independence of
cases, ii) normal distribution of the residuals, and iii)
homogeneity of variances. While condition i) is satisfied by
the randomization of the control strategy presentation order
we defined before the experimentation, we carried specific
tests to investigate ii) and iii).

Regarding condition ii), we employed the Lilliefors test to
check the normality of the residual distribution. Apart from
the Personality question data, the other data populations do
not satisfy the hypothesis of normality, which points towards
strong expectations of the subjects regarding the respective
interaction aspects. However, considering the large number
of data points and the high robustness of the ANOVA test in
this regard (see e.g. Carifio and Perla (2007) and Glass et al.
(1972)) we deem the ANOVA results valid nonetheless.

For condition iii), we used the Brown-Forsythe test to
verify the homogeneity of variances. This condition is more
critical w.r.t the previous one, as the Fisher test (on which
ANOVA is based) is less robust to its violations (see again
Carifio and Perla (2007)). In this case, the hypothesis of non-
homogeneity was rejected for each question, with respective
p-values of 0.3359, 0.6630, 0.9428, 0.9128 and 0.5728.

Another confirmation of the large variability of subject
behaviours (which arises in part because we asked every
subject to interact with the robot in the way they preferred)
can be seen from Fig. 8 in terms of mean number of
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Figure 8. Figure shows, for each subject during the experimentation part 1 tasks, a) the mean value of handshake performed, and
b) the mean value of the total handshake duration. The number of the subject is shown in red.

handshakes and mean duration of handshake per condition
per subject (the corresponding subject number is highlighted
in red). In Fig. 9, we show the mean values of the grasping
pressure excerted by the human for each strategy, along with
the mean of the standard deviation of the same readings.

The results for the N-way ANOVA test are summarized in
Table 3, where the significant p-values are highlighted in red.
p-values of zero indicate p < 10−4. The table rows indicate
the p-value source, which assesses the significance of the
effect of i) the synchronization, ii) the stiffness control law,
iii) the current subject, iv) the interaction between the effects
of synchronization and stiffness, v) the interaction between
the effect of synchronization and the current subject, and vi)
the interaction between the effect of stiffness and the current
subject. The table columns represent the handshake aspects
considered in the Likert questions.

From the N-way ANOVA test, it can be firstly seen from
the third row of Tab. 3 that the subject individuality does
have a strong effect on every question, as expected from
the previous discussion. The synchronization appears to be
highly significant in terms of responsiveness of the robot
(third column), both on its own and in interaction with
the subject. A less marked effect of the synchronization
feature is also present in terms of the human-likeness of
the handshake (second column). We can observe that the
interaction between the synchronization and the subject is
also significant in terms of the robot perceived personality.
Finally, no significant effects are found in terms of quality
of the handshake (first column) and on the perceived leader
of the interaction (fourth column), apart from the subject
individuality. In general, no significant effect of the stiffness
was found.

Finally, we conducted post-hoc tests using Tukey’s
Honestly Significant Difference Procedure. In the only
significant result not related to the subjectivity effects, i.e.
the feedback feature in the “Responsiveness” question, the
test revealed that the responses arising from the active
motion data group were closer to the upper end of the
scale (corresponding to a robot perceived as more active)
compared to the passive motion data group, as shown in
Fig. 10a.

Regarding the Subjectivity feature and its interaction with
Synchronization, the Tukey test confirmed the variability
between each subject. Most subject data groups were
found to have a marginal mean significantly different from

many others. An example of this can be seen for the
“Responsiveness” question in Fig. 10b.

The results from the second part of the experiment are
presented in Fig. 11. When directly asked to perform a
choice between three handshakes, the responses follow the
same trend as for the strategies with and without use of
the observer, although the differences are more pronounced
in the first case. The majority of the subjects choose the
strategies employing a low, constant stiffness (i.e. the 45%
for both C3 and C4) while the variable stiffness was the least
chosen (respectively by the 20% for C5 and the 25% for C6).

5 DISCUSSION

The results presented in the previous Section show that
the use of synchronization and also the arm stiffness
regulation does have effect on the human-robot handshake.
These results were obtained under relatively unconstrained
conditions, where participants were free to interact with
the robot as they preferred: participants were instructed to
perform a handshake in the way and with the duration they
considered to be the most natural and appropriate. Moreover,
each subject was free to repeat the handshakes as many times
as desired, within a time limit. This is echoed by the strong
significance of the subject individuality for each Likert
question response, and shown in Figs. 8. Additional evidence
of such behaviour is shown in Fig. 9, which allow us to see
how every subject applies approximately the same signature
grasp force across all strategies. The high variability in the
grasp forces is confirmed by the pressure sensing (mean)
standard deviation, although this could also have arisen from
the periodic oscillations of the handshaking motion.

Regarding the other features of the experiment, the effect
of the feedback seems to dominate the effect of stiffness.
Although no significant values are found for the effect of
the stiffness in experiment 1, experiment 2 shows stiffness
to also have an impact. The lack of significant effects of
the impedance strategies on the perceived personality and
initiative of the robot would seem to be consistent with (and
complementary to) the results from the same questions in
Vigni et al. (2019), as i) the subjects considered this aspect
to only pertain to the closure of the hand rather than also the
arm movement, and ii) the hand closure feedback law was
indeed always the same.
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Figure 9. Figure shows, for each subject and each strategy during the experiment part 1 tasks, the mean value of the pressure
sensing they activate during the handshakes, along with the mean of the standard deviation on the same readings. The control
strategies are labelled from C1 to C6 as in Tab.1.

In our study, the traits addressed in Q1 and Q2 have been,
in general, positively rated by the participants: from Fig.7 it
can be seen that for this questions the mean values are almost
always above the Likert scale median value. Thus, the hand
closure was in general perceived as comfortable, of good
quality and acceptably human-like. This is in contrast with
a previous handshaking study with the SoftHand (Knoop
et al. 2017) where its performed handshake was perceived
as uncomfortable. The improvement in performance can be
attributed to the use of the soft silicon glove, based on
the motivations on its design reported in Section 3.2. An
additional factor could be the incorporation of the control
law proposed by Vigni et al. (2019).

Regarding the silicone glove itself, informal post-
experiment interviews indicated that, in general, the gloved
hand is not perceived as uncomfortably bulky to grasp,
even if looks less ergonomic compared to the bare hand.
Moreover, the glove is highly compliant as it is made from
a soft silicone. Also, the subjects liked the sensation of
the gloved hand envelope. Still, an interesting direction
for future work would be to optimize the glove design
regarding the quantity of used silicone, as in this first work
we prioritized the mechanical protection of the embedded
sensors.

For question Q3, about responsiveness, it can be noted
that the mean responses for the strategies employing the
EKF feedback to simulate an active behaviour of the robot
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(a)

(b)

Figure 10. Figure shows an example of the carried post-hoc
testing results, for a) the feedback feature and b) the subjectivity
feature. Both features refer to the “Responsiveness” question. In
a), “sync. = 1” refers to the active motion data group, and “sync.
= 2” to the passive motion data group.

Figure 11. Results of forced-choice three-way comparisons
from experiment part 2. The control strategies are labelled from
C1 to C6 as in Tab.1.

are higher than the same quantities for the strategies which
do not use it. The responsiveness and, in a minor way,
the human-likeness of the handshake and the perceived
personality of the robot appear to be related to the effect
of the motion feedback. The responsiveness, in particular,
is shown to be directly and intuitively related to the
active/passive behaviour of the robotic arm.

For question Q4, regarding the leadership of the
interaction, responses are towards the lower end of the Likert

scale, so participants felt that they were the leaders during
the handshake. This could be explained by considering that
the human was always in charge of the handshake initiation
(via making contact with the robot hand), while the robot
was static in the initial position P0, which would likely have
contributed to the perception of the interaction leader. This
perception could be changed e.g. by performing an approach
motion of the arm before requesting the handshake from
the subject, as in Jindai et al. (2015). We also hypothesize
that the term Tant plays a role on both the “leadership”
and the “responsiveness” aspects of the handshake. Thus,
in future works it would be interesting to investigate the
direct relationship between different values of Tant and the
perception of the subject. Finally, enabling visual and/or
auditory stimuli from the system in the experiment would
likely help to simulate the intention of the robot to lead
the interaction. This would be consistent with the studies
reported further on in this Section.

A significant difference is observed in questionQ3, related
to the synchronization effect. This latter point is in contrast
with the responses of the same questions in Vigni et al.
(2019), so it appears that this trait is more related to the
movement of the arm rather than to the way the hand closes.

Comparing the results from experiments 1 and 2, it can
be observed that the results reveal different aspects of how
the experiments were perceived: in experiment 2 we asked
for the overall quality to be rated, whereas in experiment 1
the questions targeted more specific qualities. Thus, while
experiment 2 provides a clearer indication of which strategy
should be selected for optimum performance, the forced-
choice ratings give no indications about the reasoning behind
the preferred ratings. Moreover, as experiment 2 placed
the active and passive strategies in separate blocks, one
would naturally expect that participants would make clearer
distinctions between the different stiffness conditions within
each block, compared to experiment 1.

It is interesting to note that, as shown by the results
from the second part of the experiment, the participants
seem to prefer a low, constant stiffness when forced to
choose between different handshakes, both with an active or
passive robot behaviour. It would therefore appear from these
aggregated results that, in general, participants would prefer
to interact with a robot that is perceived as less dominant.
This effect is not visible in the results from the first phase
of the experiment, which could be explained by the caution
that most people may approach a full robotic arm handshake
with, and by the consequent desire to be in control of the
interaction. This is also consistent with a study conducted
in Tsalamlal et al. (2015), where it was shown that the
use of haptic stimuli in a human-robot handshake maps
mostly to the Dominance and Arousal emotional dimensions.
It would be interesting to investigate the same experiment
while adding also visual/facial stimuli, as they appear to
dampen the haptic Dominance valence. In general, subjects
will focus on different aspects of a handshake when asked
different kinds of questions and under different experimental
designs, as indicated by experiments 1 and 2 here. It is
noteworthy that the control of the arm stiffness results in
a change of the perceived initiative of the robot which is
more pronounced than the other traits. Although our results
in experiment 1 are not significant, experiment 2 shows
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Figure 12. The main parts of the glove mould: a) back outer
mould, b) circuitry core mould, c) hand core mould, d)
palm-thumb outer mould.

stronger trends. We believe this to be an interesting result
that warrants further study, also considering the responses
to the same questions given in Vigni et al. (2019). It is worth
noting that the perceived attitude/personality of a social robot
is one of the most important features in its acceptance and in
establishing an emotional bond with humans (Bhattacharjee
and Niemeyer 2015); see, for example, the recent study in
Avelino et al. (2018a), where the human willingness to help
a robot whether it first introduces itself with or without a
handshake has been evaluated.

Building on these last considerations and on the overall
results obtained in this study, we argue that the developed
system represents a step forward w.r.t. the pHRI state of
the art, and could also have interesting applications in the
field of social robotics. The framework presented here would
appear well-suited for investigating the human perception
of different robot behaviours, specifically pertaining to how
robots can mimic or exhibit social interaction skills and
communicate their emotions.

6 CONCLUSIONS
In this paper we have investigated the perceived naturalness
of motion and personality traits associated to a soft human-
robot handshake.

The investigations have been implemented on a full
lightweight anthropomorphic arm, mounting a Pisa/IIT
Softhand wearing a sensorized silicone glove as end-
effector. The use of the custom-made silicone glove resulted
in improved comfort and human-likeness of the robotic
handshake compared to a previous handshaking study using
the SoftHand. Several human-robot handshake experiments
were performed by 20 participants, who rated the quality of
the perceived interaction using Likert scales.

Our results show that the different controllers exhibit
variations in the perceived personality qualities of the
robot i.e. introvert/extrovert, and on its responsiveness. In

particular, the responsiveness, the human-likeness of the
handshake and the perceived personality of the robot would
seem to be more related to the way the arm moves rather
than how the robotic hand closes. In a second experiment,
the arm stiffness was found to have an effect on the
overall handshaking quality, with clear trends in the preferred
stiffness. The strong dependency of the results on the
subjectivity of the participants is to be expected given the
unconstrained nature of the experiments. Studies 1 and 2,
taken together, highlight the importance of using different
experimental designs for isolating and evaluating different
effects. The system developed here would lend itself to
multiple such studies in the field of pHRI, and also in social
robotics.

Another interesting future research direction would be
to perform the same experimentation employing different
soft robotic hands, in order to investigate how their design
influences the overall experience.
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A Silicone Glove Fabrication
We choose Ecoflex 00-30† for the silicone glove, as it is soft
and durable, and easy to use.

The silicone glove body is fabricated in a moulding
process. Inner (c) and outer (a-d) moulds were designed to
mimic the form factor of the Pisa/IIT SoftHand, along with
several additional components to allow for the placement of
those electronic parts inside the glove (b) that are not to be
dipped in the silicone. The complete mould is composed of
multiple 3D printed parts that can be disassembled by screws,
to facilitate the extraction process while still obtaining a
single part glove. The complete computer-aided design of the
mould parts is shown in Fig. 12.

The glove fabrication process is shown in Fig. 13. In
particular, in Fig. 13a some components of the disassembled
inner mould are shown. An o-ring can also be seen, which is
used to obtain a watertight chamber for the electronic board
inside the glove, in the dorsal hand zone. In Fig. 13b we
show how additional electronics components are arranged
in the assembled inner mould before the main cast. These

†https://www.smooth-on.com/products/ecoflex-00-30/
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Figure 13. Glove fabrication process. a) Inner mould disassembled components. b) Placement of electronics integrated with the
silicone. c) Pouring of the silicone inside the complete mould. d) Extracted glove ready to be connected to the manipulator.

sensors (Inertial Measurements Units, IMUs) are not used in
this study, but they could be employed in other experiments
(e.g. similar to those presented in Bianchi et al. (2018)).
Their connectors reach the watertight chamber for the
electronic board. They are shown here to highlight that
the silicone glove can be readily equipped with various,
maybe complementary, sensors for multiple tasks, by directly
casting them in the silicone. We decided here to not do this
with the FSR sensors and to place them in channels directly
obtained in the circuitry inner mould, as the silicone could
infiltrate the gaps between their resistive layers and alter
performance.

After the arrangement of the inner electronics, the
complete mould is assembled. Then, silicone is poured in
the mould placed in a vertical configuration (Fig. 13c).
After the prescribed time for polymerization, the back
outer mould is removed first. The components of the inner
mould parts are then carefully unscrewed and removed, to
facilitate the extraction process and to avoid damage to the
integrate electronics. Once the glove has been extracted, the
FSR sensor arrays are placed manually inside the obtained
channels to reach the locations highlighted in Fig. 3, with
their analogue circuit connected to the electronic board. A
complete glove, worn by the SoftHand connected to a flange
(which is the interface with the manipulator end-effector) is
shown in Fig. 13d.
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