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Abstract—Soft robots have applications in safe human-robot
interactions, manipulation of fragile objects, and locomotion in
challenging and unstructured environments. In this paper, we
present a computational method for augmenting soft robots with
proprioceptive sensing capabilities. Our method automatically
computes a minimal stretch-receptive sensor network to user-
provided soft robotic designs, which is optimized to perform
well under a set of user-specified deformation-force pairs. The
sensorized robots are able to reconstruct their full deformation
state, under interaction forces. We cast our sensor design as a sub-
selection problem, selecting a minimal set of sensors from a large
set of fabricable ones which minimizes the error when sensing
specified deformation-force pairs. Unique to our approach is the
use of an analytical gradient of our reconstruction performance
measure with respect to selection variables. We demonstrate our
technique on a bending bar and gripper example, illustrating
more complex designs with a simulated tentacle.

I. INTRODUCTION

The field of soft robotics has grown rapidly in recent
years, with a large body of work focusing on the devel-
opment of fundamental technologies for sensorizing1,2,3,4,5,6,
actuating7,8,9,10,11, and fabricating12,13,14,15 soft robots. These
technologies are enabling functional materials and fully-
functional robots16,17,18,19 that show potential in applications
including deep-sea exploration20, search-and-rescue21,22, sur-
gical robotics23, grasping24, and prosthetics and wearable
devices25,26,27. The use of soft materials makes these robots
inherently safe. By exploiting morphological computation28,
simpler control strategies are sufficient to reliably grasp and
manipulate deformable objects of varying shape, size, and
stiffness, or to locomote in unpredictable terrains, trapped with
obstacles.

Thus far, many design tasks are carried out manually by
skilled researchers. However, as the field matures further, and
the tackled problems increase in complexity, it will become
increasingly important to leverage computational tools in order
to automate or guide challenging design tasks.

To enable the design of autonomous soft robotic systems,
sensory information is key. Looking to nature, sensory nerve
fibers wound around our muscle fibers like springs, serve as
stretch receptors 29. Their primary role is to detect length
changes of muscles, allowing us to sense the posture our body
is in. Augmenting soft robots with comparable proprioceptive
sensing capabilities is desirable but challenging.

A large body of previous work has focused on the fabrica-
tion of soft robots with embedded channels filled with con-
ductive liquid, signaling resistance changes when deformed.
Several special-purpose sensors and sensorized soft robots
or robotic components exist30. However, they are manually
designed.

The manual sensorization of complex soft robot designs
is a hopeless endeavor. Resistance is an integrated quantity.
Hence, we cannot tell where along a sensor channel a robot
stretches (positive signal change) or compresses (negative
signal change). Deciding how many sensors one would need
to reliably reconstruct the many degrees of freedom of a
deforming soft robot and where to best place such sensors are
two non-trivial questions. Further complicating matters, soft
robots deform due to actuation and unknown interactions.

To navigate this unintuitive design space, we propose a com-
putational technique that automates the placement and sizing
of a stretch-receptive sensor network, adding proprioceptive
capabilities to soft robotic designs of arbitrary shape and size.
The resulting soft robots are capable of sensing both, their
internal deformation state and external interactions.

Provided with a soft robot design and expected interactions,
we first simulate the behavior of the soft robot under specified
interactions, serving us as input. We rely on hyperelastic
material models and a finite element (FE) discretization to
simulate the nonlinear behavior of the silicones or urethanes
that soft robots are commonly made of. Our ultimate goal
is to add a sensory network that minimizes the difference
between deformations under unknown interactions and their
reconstructions from sensor signals.

To avoid a discrete optimization problem, we first initialize
a large set of fabricable sensors, casting the sensor design
as a sub-selection problem. Starting with a single sensor,
we incrementally add the sensor we expect to increase the
reconstruction performance the most. To do so, we compute an
analytical gradient with respect to binary inclusion variables
that indicate which sensors are part of the selected set. To
evaluate this gradient, we propose to mathematically nest our
simulation, sensing, and design problems into one optimization
formulation. Accounting for the incompressibility of the con-
ductive liquid when modeling our sensors, we can accurately
predict readings in simulations.

We validate our approach on a fabricated bar undergoing
bending, which is the predominating deformation mode in
soft robotics. To demonstrate the effectiveness of our sub-
selection strategy on industrial use cases, we add propriocep-
tive capabilities to a pneumatically-actuated gripper, sensing
the deformation state under unknown contact forces from
manipulation of a cylinder. With a simulated tentacle example,
we illustrate applications on bioinspired designs.

II. RELATED WORK

Sensing methods for soft robots is an active area of research,
and we refer to a recent review30 for an overview of sensing



Training posesGeometry

Input

Optimized

sensor set
Good target-matching

performance

Output

Generate large set of

fabricable sensors

Initialization

Evaluate current

reconstruction 

performance

Add sensor, from initial

set, leading to greatest 

performance improvement

Design

Reconstruction after

adding 1st sensor

Interaction

Physical bar

deformation
Reconstructed

deformation

Fig. 1. Automated Sensor Design. A soft robot design together with expected interactions are specified as input (Input). From a large initial set of sensors
(Initialization), a minimal subset is selected (Output), minimizing the difference between deformations under expected interactions and their reconstruction
from simulated sensor signals (Design). A soft robot with embedded sensors is fabricated as a result, and we compare real interactions with deformations
reconstructed from real sensor signals (Interaction).

aspects. Recent reviews of soft fluidic actuators31 and of soft
grippers19 have highlighted the importance of sensing and
proprioception for soft robots.

a) Sensor design: There are few examples of automated
systems for designing sensor layouts for proprioceptive soft
objects. Culha et al. 4 present one approach, where sensors are
routed along a surface by considering the strain field of target
deformations. However, they do not attempt to reconstruct the
deformed object shape from the sensor readings. Wall et al. 5

propose an approach for sensorizing a soft robotic finger, by
building a prototype with a redundant set of sensors and then
selecting a subset of these. However, the need for physical
prototypes in the design process limits the scalability of this
approach. Bächer et al. 32 presented a method for assisting a
user with sensorizing soft objects, but this requires the user in
the loop and is not fully automated.

b) Soft Robot Sensors: Again referring to a recent re-
view30 for details, a number of different approaches have
been taken for sensorizing soft robots. The use of liquid metal
strain sensors for soft robot devices was proposed by Park
et al. 33 , and there has been much work in this area including
integration into actuated soft robots for proprioception34,35,36,6.

It has been shown that embedded 3D printing can be used to
produce such liquid metal sensors37. Building on work using
embedded 3D printing for fabrication of soft robots18, it was
recently shown that liquid metal sensors and fluidic actuation
can be combined in order to print a soft sensorized actuator38.
Such approaches could enable robots with significantly higher
numbers of sensors than would be feasible with manual
fabrication methods, for which an automated design approach
becomes increasingly important.

Alternatives to liquid metal for strain sensing include
ionic liquids39 and conductive polymers32,4. Moreover, capac-
itive2,40 and inductive41 methods for soft strain sensing exist.
We note that our approach taken here is not specific to the
type of strain sensor used, and could be readily applied to
these sensor paradigms.

Aside from strain sensors, different sensing modalities in-
cluding pressure sensing42, electric field tomography43 and
acoustic sensing44 have been researched. However, these
methods would seem to provide insufficient sensory infor-
mation for performing full pose reconstructions. Vision-based
approaches45,46 can provide detailed pose information, but rely
on an unoccluded view of the deformed object to be tracked
and therefore do not provide a solution that generalizes to

arbitrary shapes. Looking at proprioception of actuators, Helps
and Rossiter 47 propose to use a conductive working fluid to
enable proprioceptive fluidic actuators, but again the method
as presented does not provide sufficient information to enable
full robot state reconstruction.

c) Fabrication-Oriented Design: In the computer graph-
ics community, there has recently been substantial interest in
the development of either fully automated or semi-automated
design tools, leveraging simulation and optimization in order
to facilitate different design tasks. Closely related to our
work are techniques that solve for a set of optimal design
parameters, constraining physical systems to equilibria during
optimizations. Applications include the design of mechani-
cal48, deformable49, and inflatable50 characters, compliant51

and cable-driven52 mechanisms, or flexible rod meshes53.
While we focus on sensing instead of cable-driven actuation,
we share with some works the goal of selecting a sparse
subset from a larger set49,51. However, in contrast to previous
work, we formulate the sub-selection problem by nesting
a simulation, a sensor reconstruction, and a sensor design
problem, allowing us to compute an analytical gradient with
respect to selection variables. Intuitively, our design problem
measures the performance of the reconstruction problem under
changes to selection variables. Our design methodology is
therefore generally applicable, and has applications beyond
sensing.

III. OVERVIEW OF SENSOR DESIGN

As we illustrate in Fig. 1 on a proprioceptive bar example,
we start our processing with a soft robot design and a set of
simulated interactions (Input; Sec. IV). We then use the strain
field from simulated interactions to initialize a large set of
manufacturable sensors that are sensitive to input interactions
(Initialization; Sec. VIII). To sense unknown interactions, we
seek the interaction forces that correspond to a deformation
that minimizes the difference between measured and simulated
sensor readings (Sensing; Sec. V). To identify the best set
of sensors from the initial set, we then incrementally select
sensors that maximize the reconstruction performance of our
sensing (Design; Sec. VI). After optimization, we fabricate
our proprioceptive soft robots (Output; Sec. IX). We discuss
our sensor model in Sec. VII and demonstrate our method in
Sec. X.

Our computational approach to sensor sub-selection nests
three optimization problems (Fig. 2). An outer design problem
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Fig. 2. Nesting of Optimization Problems. Optimality of each simulation
subproblem is formulated as a constraint for its corresponding sensing sub-
problem, and optimality of the sensing subproblems for all input interactions
are expressed as constraints for the design problem.

aims to choose sensors that minimize the error when recon-
structing the robot’s deformation. In turn, to reconstruct defor-
mations, a middle sensing problem aims to compute interaction
forces that lead to deformations that minimize the error with
respect to sensor signals. Finally, an inner simulation problem
computes deformations resulting from interaction forces.

To formalize this nesting, we make use of first-order op-
timality constraints: For each expected interaction, the inner
simulation subproblem consists of computing the robot de-
formation that minimizes energy subject to interaction forces.
Then, its corresponding sensing subproblem consists of com-
puting the interaction forces that minimize sensing error,
with optimality of the simulation subproblem expressed as a
constraint. Finally, the outer design problem consists of the
computation of binary sensor selection variables that minimize
the overall reconstruction error for the set of input interactions,
with optimality of all sensing subproblems expressed as con-
straints. In practice, we use the gradient of the design objective
as a heuristic to incrementally select sensors.

We devote the next three sections to describe each optimiza-
tion problem in detail, as well as the mathematical nesting of
the three problems.

IV. SIMULATING ROBOT DEFORMATIONS

The behavior of soft robots made of a single or several soft
silicones or urethanes is well-captured by standard hyperelastic
material models54.

Discretizing the volume into finite elements e, we integrate
the material-dependent strain energy density Ψ over the ele-
mental rest volumes Ωe, defining our elastic potential

E(x) =
∑
e

∫
Ωe

Ψ(F(X,x, X̄)) dX̄, (1)

where the deformation gradient F is a function of the position
X̄ ∈ R3 within undeformed elements, and the undeformed
X ∈ R3n and deformed x ∈ R3n configurations, restricted
to the nodes influencing element e (see Appendix for more
details).

Holding a sufficient set of degrees of freedom fixed, we
simulate our soft robots by minimizing the total potential
energy

fsim(x) = E(x)−fT (x−X)−
∑
i

pi (Vi(x)− Vi(X)) , (2)

obtained by subtracting the work performed by interaction
forces f and the pressurized chambers with volumes Vi and
corresponding gauge pressure pi.

At the static equilibrium, elastic and external forces are in
balance, and the gradient

gsim(x) =
∂E(x)

∂x
− fT −

∑
i

pi
∂Vi(x)

∂x
(3)

is zero. Minimizing with a standard Newton, we use the
Hessian or tangent stiffness

Hsim(x) =
∂2E(x)

∂x2
−
∑
i

pi
∂2Vi(x)

∂x2
(4)

to compute search directions. Note that fibre-reinforced robots
could also be supported, by extending the simulation objective
or adding inextensibility constraints (see, e.g.,55).

V. ESTIMATING STATES FROM SENSOR READINGS

Our ultimate goal is the automated placement and sizing of
a network of sensors to reliably and accurately reconstruct the
equilibrium state of a solid. However, before we discuss how
we automate the design of sensor networks, we introduce how
we reconstruct the state from sensor readings.

If we embed stretch receptive sensors in our soft robots, then
actuate and interact with them, the sensors deform and their
signals change. Integrating the resistivity along each sensor
channel, we can compute sensor signals sj for a simulated
deformation x as we describe in more detail in Sec. VII.
We aim at reconstructing the deformed configuration x̄ and
interaction forces f̄ from the corresponding sensor readings
s̄j . We formulate a sensing objective as the difference between
simulated sj and measured readings s̄j

fsense(f) =
1

2

∑
j

(sj(x(f))− s̄j)2
+wsense

1

2
‖f‖2. (5)

To bound the forces, we add the L2-regularizer to our sensing
objective, weighted with a small scale factor wsense.

To reconstruct (x̄, f̄), we therefore ask the sensing objective
to be minimized, with a first-order optimality constraint on our
simulation objective:

min
f
fsense(f) s.t. gsim(f ,x(f)) = 0. (6)

The first-order optimality constraint is important because we
are looking for interaction forces f that lead to an equilibrium
x whose sensor readings can explain the measured readings
in a least-squares sense.

To minimize the objective, we implicitly enforce the first-
order optimality constraint, simulating to static equilibrium
whenever we evaluate our sensing objective fsense or its



gradient. We can then compute the analytical sensing gradient
with the help of the implicit function theorem

gsense(f) =
∂fsense(x)

∂x
H−1

sim(x)+wsense f
T , (7)

pointing the interested reader to the appendix for a complete
derivation.

We use a first-order, momentum-based scheme56,57 for min-
imization, referring the unfamiliar reader to Goh’s excellent
introductory text58.

VI. DESIGNING PROPRIOCEPTIVE SOFT ROBOTS

As input to our design optimization, the user specifies a 3D
model together with a set of example deformation-force pairs
(x̄, f̄). To create these pairs, the user applies a set of expected
interaction forces using our simulator.

For a small number of sensors, the reconstruction prob-
lem (6) is ill-posed, i.e., many combinations of external forces
produce deformations where simulated sensor readings match
measured ones. While the accuracy of reconstruction can
be improved by increasing the number of sensors to the
hundreds, fabrication becomes infeasible. Instead, we wish
to find a small, fabricable number of sensors that produces
good reconstructions. Choosing such sensors is complex, due
to the integrated nature of sensor readings; therefore, we resort
to computational methods. We first use the user-specified
deformation-force pairs to initialize a large set of fabricable
sensors (see Sec. VIII), and then select a small number of
sensors that produces the desired reconstruction accuracy.

We aim at selecting the minimal subset of sensors that leads
to a good reconstruction performance for all example defor-
mations. To this end, we reformulate our sensing objective (5),
multiplying each sensor’s error with a binary selection variable
wj ∈ {0, 1}

fsense(f) =
1

2

∑
j

wj (sj(x(f))− s̄j)2
+wsense

1

2
‖f‖2. (8)

We formulate our design objective by summing the recon-
struction error of each example deformation k

fdesign(w) =
1

2

∑
k

‖xk(fk(w))− x̄k‖2 . (9)

Interestingly, if we interpret the binary variables as continuous
weights, we can formulate a continuous design optimization

min
w

fdesign(w) s.t. gsense(w,xk(fk(w))) = 0 ∀k. (10)

The first-order optimality constraint on the sensing gradient (7)
ensures that the deformation-force pairs (xk, fk) produce op-
timal sensor readings for a given a set of weights.

The design gradient can be expressed analytically as

gdesign(w) =
∑
k

(xk − x̄k)
T
H−1

sim(xk)
dfk(w)

dw
, (11)

where the Jacobian of interaction forces with respect to the
weights is obtained by applying the implicit function theorem
to the optimality constraint on the sensing gradient (7)

dfk(w)

dw
= −H−1

sense(w,xk)
∂gsense(w,xk)

∂w
, (12)

referring the reader to the appendix for further details on the
derivation.

We first experimented with solving the design optimiza-
tion (10) using continuous optimization methods. We added
a sparsity regularizer49 to our design objective (9), penalizing
the inclusion of sensors in the selected set, while effectively
approximating the solution to the discrete optimization prob-
lem. However, for sensors where the error between simulated
sj and target readings s̄j is zero, the corresponding weight
wj can take on arbitrary values without changing our sensing
objective. The lack of meaning of non-zero weights causes
numerical problems during optimization. If the sensor error is
zero, the sparsity regularizer pushes all weights uniformly to
zero. However, we observe that zero or very small weights
cause a sudden increase in our design and sensing objectives,
suggesting that there is a discontinuity.

To circumvent this discontinuity, we decided to use a
heuristic approach instead of solving problem (10), where
we utilize the continuous design gradient (11) to guide an
incremental selection of sensors: In each iteration, we set the
weights of all selected sensors (from previous iterations) to
1, and weights of all other sensors to 0. We then solve the
sensing problem (6) for all example deformations to first-
order optimality. When completed, we evaluate the design
gradient (11), and select the yet unselected sensor with largest
(negative) gradient as we expect this sensor to reduce our
design objective (9) the most.

Initialization of the selection requires special treatment as
the Hessian of the sum of differences between simulated and
measured readings is zero if no sensors are selected. We
start by randomly choosing a subset of 10 sensors. We then
solve 10 instances of the sensing problem (6), for each sensor
independently with its weight set to 1 (and all other weights to
zero). We initialize the selection with the sensor that performs
best.

Intuitively, we can expect our design problem to have
several solutions if only one sensor is selected. However, the
more sensors we select, the more we constrain the defor-
mation space, minimizing the differences between simulated
and specified poses. While we observe the error to increase
occasionally between subsequent steps at the very beginning of
our selection process, the error monotonically decreases after
a sufficiently large subset is selected.

VII. MODELING STRETCH RECEPTIVE SENSORS

To sensorize our soft robots, we use silicone tubes of radius
r, filled with Eutectic Gallium-Indium (EGaIn)34. At rest, we
can compute the resistance of a sensor with Pouillet’s law
R0 = ρ l

A where l is the rest length of the sensor, A = πr2

its cross-sectional area, and ρ the tabulated resistivity of the
alloy.

If the surrounding silicone or urethane deforms, the sensor
changes its length to l+ ∆l and its radius to r + ∆r. Due to
these changes, the resistance along the filled tube will change,
resulting in a sensor reading

s = R−R0 =
ρ

π

(
l + ∆l

(r + ∆r)2
− l

r2

)
. (13)



To estimate sensor readings from simulated deformations,
we miss a constitutive law that relates the change of length
to the change of the cross-sectional radius. A common as-
sumption is that the axial and transversal strain are related by
Poisson’s ratio33. However, Poisson’s ratio models a linearized
volume preservation, leading to significant error in predictions
of sensor readings.

Motivated by the observation that the volume of the alloy
does not change, we enforce volume preservation directly59,
setting V = (l + ∆l)π(r + ∆r)2 equal to the volume at rest
V0 = lπr2. The resulting sensor model

s = R0

((
1 +

∆l

l

)2

− 1

)
(14)

predicts measured sensor readings accurately.
In practice, we compute both the rest and deformed length

of each sensor by sampling points along the sensor, summing
up the lengths of the resulting segments. To determine the
undeformed and deformed coordinates of sample points in 3D,
we interpolate the nodal degrees of freedom with Lagrange
shape functions (see our appendix for details).

VIII. INITIALIZING FABRICABLE SENSORS

Before applying our sensor selection algorithm described in
Sec. VI, we route a large set of candidate sensors through the
robot. In all our examples, we found that 200 was a sufficient
number of candidate sensors, which traversed the object in
sufficiently diverse ways. In the routing of each sensor, we
combine three criteria: (i) the routing must account for fabri-
cation constraints; (ii) it must include some randomness; and
(iii) to the extent possible, each sensor should follow the strain
field of one of the user-specified deformation-force examples,
as this will maximize sensitivity of this sensor with respect to
the given deformation. To facilitate fabrication as described in
Sec. IX, we place sensors at an offset from the outer surface of
the robot, and we group all inlets and outlets on a small patch
of the surface. The curvature of sensors is bounded, and they
are perpendicular to the outer surface at inlets and outlets, to
allow for clean and noise-free connections.

We start by computing an offset surface using a distance
field. Then, for each input deformation-force example, we
sample the tangent strain on the offset surface, and compute
the eigenvector corresponding to the largest eigenvalue to
define a guidance field. Using this guidance field, we route a
number of random sensors for each deformation-force exam-
ple. For each sensor, we randomly sample an inlet, an outlet,
and an intermediate point somewhere on the offset surface
(see Fig. 3). By randomly sampling these points, we ensure
that the design optimization considers several possible sensors
per input deformation example; the rest of the sensor routing
process is deterministic. We route each half path of a sen-
sor separately, smoothly connecting them at the intermediate
point. Intuitively, we expect peak strains to appear close to the
surface of our robot, further motivating the routing of sensors
on an offset surface. In the remainder, we discuss the routing
between any two points.

Strain field

Harmonic guidance field

Combined vector field + routed sensor

Fig. 3. To initialize a fabricable sensor on an offset surface in the robot, we
first compute a harmonic guidance field by specifying start and end points
(top). We also compute the strain field, given a target deformation (center).
The sensor routing is then computed, taking both fields into account (bottom).

Given two end points of a sensor path, we compute a
harmonic field on the offset surface, solving a Poisson equation
with Dirichlet boundary conditions 0 and 1 at the end points60.
Following the gradient of the harmonic field, it is possible to
trace a path between the two points (compare with Fig. 3).
However, while we wish to connect the two points, we also
want to align the path with the guidance field61. To do so,
at every point along the path, we define an angle around the
gradient of the harmonic field. If the guidance field falls within
this angle, we extend the path along the guidance field. If it
does not, we extend the path along the edge of the angle closest
to the guidance field. Near the end points, we narrow the angle
to ensure that they are reached by the path. Occasionally, the
path falls into a local minimum. Then, we take that point as
an end point, recompute the harmonic field between this point
and the target point, and restart the path generation. Once a
sensor’s path is complete, we apply a smoothing step to bound
the sensor’s curvature.

IX. FABRICATION

We fabricate our robots using a two-step injection molding
process, enabling us to accurately embed the sensors inside
the silicone. Our strain sensors are made using silicone tubing
(inner diameter 0.3 mm, outer diameter 0.7 mm), similarly to
Wall et al. 5 . However, unlike them we require the sensors to
be routed through the soft body.

The fabrication process is illustrated in Fig. 4 with a
schematic cross-section view of a gripper design (see Sec. X).
In the first molding step grooves are added in the silicone
where the sensors will be placed (a). We generate the grooves
in the mold automatically, and the mold is then 3D-printed.
This means that the mold design complexity is independent of
the sensor routing. The fabricability of a given sensor design
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Fig. 4. Gripper fabrication. Top row shows fabrication sequence, using a two-
step injection molding process. In the first molding step (a) we add grooves
along which the sensors will be placed. Silicone tubes are then routed along
the grooves (b), after which a second molding step (c) fills the grooves and
embeds the sensors inside the silicone (d). Bottom shows Gripper before
second molding step, with silicone tubes placed into the grooves (e), and
the finished Gripper (f).

is guaranteed as the initialization process generates sensors
which follow the surface of the robot.

The sample is then removed from the mold, and the silicone
tube is routed along the grooves and fixed in place with
SilPoxy (Smooth-On, Inc) (b). In a second molding step, this
is placed inside a closed mold (c) and silicone is injected to fill
the grooves. We note that crossing sensors is not a problem:
as the sensors are thin, one sensor can be routed over another
with negligible impact on performance.

Fig. 4 (e) shows the gripper design before the second
molding step, with the silicone tubes routed along the grooves
(i.e. Fig. 4 (b)), and Fig. 4 (f) shows the finished Gripper.

We used MoldMax 14 NV silicone (Smooth-On), as this
has a relatively low viscosity that facilitates injection molding.
Moreover, the silicone is tin-curing and is therefore less prone
to cure inhibition. Molds were 3D-printed using an Objet Con-
nex 350. Other than standard silicone molding equipment, the
injection molding requires a pneumatic cartridge gun, which
can be readily obtained at a low cost. Compared to gravity-
assisted pouring, the injection molding greatly facilitates void-
free molding of geometries such as long and thin features.

After completing the molding steps, we inject eGaIn into
the silicone tubes and insert 30 AWG wires into the tube ends
to make the electrical connection.

A. Electronics

To obtain the sensor resistance, we pass a constant current
through the sensors and measure the voltage drop. After a pre-
amplification stage, the voltage is recorded with an Arduino.
We use 4-terminal sensing for improved performance, with
two current-carrying and two voltage-sensing wires for each
strain sensor.

B. Calibration

Although the expected sensor responses could be computed
using the tabulated resistivity, silicone tube diameter, and
sensor length, performance can be significantly improved

with a calibration step. As discussed previously (Sec. VII),
the sensor model requires a single parameter R0 to relate
resistance change to strain ∆l

l (compare with Eq. 14). We note
that variations in the rest resistance R0 are likely due to slight
variations in the cross-sectional area of the silicone tube.

We also need to account for the resistance of the connecting
wires (Rcon)—this has the effect of adding a constant offset to
the resistance we measure. We performed a calibration exper-
iment, where a bar with a single straight sensor running along
its length was deformed into a known pose. By measuring the
resistance in the rest pose and deformed pose, and comparing
to the simulated results, we could solve for both R0 and Rcon.

It is reasonable to assume that Rcon is consistent across
different sensors, as the same sensor termination method is
used. For a given sensor, we therefore estimate R0 from the
measured resistance in the undeformed configuration Rmeas as
R0 = Rmeas −Rcon.

X. RESULTS

We demonstrate our pipeline on two fabricated examples
(Bar, Gripper) and one simulated example (Tentacle). For
simulations of the MoldMax 14 NV silicone, we use a Neo-
Hookean material with Poisson’s ratio and Young’s modulus
set to 0.4 and 200 kPa, respectively. We estimated these values
using a heuristic formula, documented in the “British Standard
903, Methods of vulcanised rubber” Part 19 (1950) and Part
A7 (1957). Comparing simulated to physical deformations,
we observe good prediction accuracy for our Shore 14 A
durometer silicone. We rely on linear tetrahedral elements to
keep the computational complexity within bounds, and use a
custom FE implementation for solid simulation as we need to
take derivatives of simulations for sensing and design.

A. Bending Bar

The predominant deformation mode in soft robotics is bend-
ing. To test how well we can reconstruct large-strain bending
deformations, we augmented a 30 mm x 30 mm x 200 mm
bar with proprioceptive capabilities (as introduced previously
in Fig. 1): the bar is fixed at one end, and interactions are
applied at the other end. We generated a set of 8 deformation-
interaction pairs (Input, Training poses), and optimized for
a set of sensors to match these input deformations (Output).
With our sub-selection, we reduced the initial set of 200
(Initialization) to 5 sensors (Output, Optimized sensor set).
All in- and outlets are routed through the fixed end. From
only 5 integrated values, we can reconstruct the degrees of
freedom (DoFs) of a 1’256 element mesh and corresponding
interaction forces to a surprisingly good accuracy.

Fig. 5 left shows the reconstruction error for increasing
numbers of sensors. Overall, adding more sensors results in a
lower error. To evaluate the efficacy of our selection algorithm,
we also performed 10 experiments where we selected sensors
at random from the same set of initial sensors. The plot shows
the mean reconstruction error across the random experiments,
and also the maximum and minimum error (in m). We can
see that our optimized result is a significant improvement over
random, with a more consistent trend.
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Fig. 6. Bending poses for bar validation experiment. Renders (left) and
physical setup (right). The length of the bar is 200 mm.

We fabricated the bar with 5 sensors, as a trade-off between
accuracy and fabrication complexity. If higher accuracy would
be required, then more sensors could be added.

It is important to note that the computational cost of eval-
uating one set of random sensors is significant, as it requires
a large set of reconstructions. Thus, a brute-force approach
of randomly sampling sets of sensors would in general not
perform well. Our evaluation of the gradient of the sensor
weights enables a substantially more efficient approach to the
problem.

As a validation experiment, we deform the physical bar into
4 known poses (bends in the 4 directions) as shown in Fig. 6.
We perform reconstructions using the measured sensor values,
and evaluate the error as the distance to the known deformed
pose. Across 3 repeats of the 4 poses we obtain a mean
reconstruction error of 3.05 mm (RMSE), standard deviation
across trials 1.71 mm. Comparing this to the expected error
in the ideal case (no sensor noise or fabrication tolerances)
from Fig. 5 left, we can see that the error introduced in the
fabrication pipeline is similar in magnitude to the numerical
error introduced by the optimization.

To evaluate the extrapolation performance of our method,
we generate a set of 71 test deformations by applying bending
forces to the tip of the bar in a set of different directions.
Fig. 7 visualizes the reconstruction error for the set of test
poses, and also shows the reconstruction error for the 8 training
poses. It can be seen that the reconstruction performance varies
smoothly in the space of sampled forces, and that recon-
struction performance for the training and test deformations
is similar. This illustrates that our method extrapolates well.

We also perform an interaction experiment where we inter-
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Fig. 7. Extrapolation performance. We apply a set of forces in the y-
and z-directions (Fy , Fz) to generate a set of test deformations. Left, the
set of reconstructed poses have been overlaid the test deformations. Right,
we show the RMSE of the reconstructed deformation for each pose, with
test deformations shown as filled circles. We also include the reconstruction
performance for the 8 training deformations (filled squares). It can be seen
that the performance varies smoothly and the method extrapolates well.

Fig. 8. Frames from bar interaction sequence. The full sequence is included
in the supporting video.

act with the bar and reconstruct the deformation sequence.
The full sequence is shown in the supporting video, and
selected frames are shown in Fig. 8. It can be seen that the
reconstruction performs well, and that the sensor response is
fast. We note that for this example the reconstructions are
done offline; a real-time demo would be possible but would
significantly lower precision.

B. Pneumatic Gripper

Our single-material pneumatic gripper (see Fig. 9) has an
air chamber of complex, asymmetric shape, causing it to
bend in a particular direction when inflated. Among others,
proprioceptive grippers have applications in grasping, not only
detecting that an object has been picked up but also inferring
the shape of the grasped object.

As input, we considered the gripper inflated to a fixed
pressure, in-contact with a cylinder placed at 4 different
locations along its length (Fig. 9 top left). Due to the shape
complexity of the internal chamber, a total of 3’766 tetrahedral
elements were necessary to avoid low-quality elements. The
dimensions of the gripper are 40 mm x 32 mm x 120 mm.

We generated an initial set of 200 fabricable sensors, then
ran our design optimization. Fig. 5 right shows the decrease
in reconstruction error as the number of sensors increases. A
strong monotonic decrease can be seen initially, which levels
off between 9 and 10 sensors. As a trade-off between accuracy
and complexity, we fabricated the gripper with 6 sensors. The
initial set of sensors, and the optimized set can be seen in
Fig. 9 bottom left. The physical gripper can also be seen in
Fig. 4.



To test the gripper, we performed two inflation sequences:
one free inflation and one where the motion is blocked by
a cylinder. We recorded the pressure and the sensor mea-
surements, and performed the reconstructions. The contact
information with the cylinder was not provided to our re-
construction algorithm. As outlined in Sec. V, we estimate
contact forces of unknown magnitude and direction on the
complete surface of the gripper. Fig. 9 right shows the physical
and reconstructed frames, and we can see that there is good
agreement between the physical deformations and the recon-
structed results. Note that we can infer the proprioceptive state
of the gripper from sensor readings and the measured chamber
pressure only. Even though the cylinder is not present in
simulations, we can reconstruct the deformation under contact
forces that differ from the input interactions. We refer to the
accompanying video for additional views of the initial and
fabricated sensors, and for the gripper inflation sequences.

C. Simulated Tentacle

To illustrate applications in bioinspired robotics, we opti-
mized a thin and long tentacle design of dimensions 29 mm
x 23 mm x 298 mm. Our sensor design algorithm received
as input an initial set of 200 sensors and only 4 example
poses (Fig. 10 top), and the optimization resulted in a 14-
sensor design. The optimized result succeeds to reconstruct
complex contact scenarios with high accuracy, with a mean
reconstruction error of 7.05 mm (RMSE) for the input poses.
The deformation model of the tentacle was discretized with a
total of 778 elements.

Note that the contacts with the cylinders were explicitly
modeled only for the generation of the input examples. During
evaluation, the cylinders were not explicitly present, and
the reconstruction algorithm estimated contact forces on the
complete surface of the tentacle. For this thin and long robot
design, we can expect the error to accumulate along the length
of the tentacle. Nevertheless, the error at the tentacle tip
is notably low (see Fig. 10 bottom): we show comparisons
of reconstructed deformations to the simulated ground truth,
visualized using a heat map. We note that all input and
evaluation interactions are spatial. They do not lie in a planar
subspace. We refer to the video for the full sequences and for
a 360 degree view.

D. Optimization Timings

In Tab. I, we report timings for an average minimization
iteration for our simulation and sensing objectives, and the
average time it takes to evaluate the analytical gradient of our
design objective to decide which sensor to add next. Note that
reported timings for a design iteration include the time taken
to minimize the sensing and simulation objectives to first-order
optimality.

XI. CONCLUSION

We have devised a method that aids the roboticist with the
automated sizing of a stretch receptive sensor network, capable
of reconstructing the proprioceptive state of soft robots. By

TABLE I
For each model, we report the time complexity of an average iteration when

minimizing fsim (avg. iter. sim), fsense (avg. iter. sense), and fdesign (avg.
iter. design).

Model avg. iter. sim avg. iter. sense avg. iter. design
Bar 15 ms 250 ms 2 h 40 min
Gripper 100 ms 1200 ms 12 h 20 min
Tentacle 15 ms 800 ms 4 h 13 min

introducing a set of selection variables in our sensing objective,
we couple the design and sensing problems with a first-order
optimality constraint. Intuitively, our design problem measures
the performance of our sensing problem under changes to
selection variables. Initializing a large set of fabricable sensors,
we then use the analytical gradient of our design problem
to select a small subset of sensors that results in a good
reconstruction performance.

When casting our automated design as a sub-selection prob-
lem, we do not make any assumptions on the sensor paradigm.
As long as a sensor leads to a reading s̄, and this reading
can be simulated by evaluating a sufficiently smooth function
s(x(f)) at deformations (x, f), our sub-selection heuristic
could be used to solve the underlying sensor design problem.
There is often a duality between sensing and actuation (e.g.,
when using electro-active polymers). Hence, our formulation
is applicable to actuation design, i.e., placing and sizing a
discrete set of actuators. Moreover, our method interfaces with
general elastic potentials, making it applicable to shells and
rods, besides solids. Exciting future applications include the
automated sensorization of cloth or wearables.

There are several remaining challenges. While our method
interfaces with an arbitrary interaction behavior, it is difficult
to model real-world interaction forces accurately62. Refining
our modeling and design to interface with an unknown inter-
action behavior is an exciting avenue of future work. Similarly
to Schumacher et al.63, uncertainties in interactions could be
parameterized, and the worst-case reconstruction error used
when calculating gradients for sensor selection.

As our design problem is nonlinear and nonconvex, we
cannot give guarantees to find a global optimum. However,
as we demonstrate with our three examples, choosing from
an initial set of 200 sensors is sufficient to generate robot
designs whose proprioceptive state can be reconstructed to
high accuracy from only a very few integrated sensor readings.

To compute analytical gradients with respect to selection
variables, we cast our design problem as a continuous opti-
mization problem. However, the inherently discrete nature of
our design problem prevented us from using this continuous
relaxation of our problem directly. An interesting direction of
future work is the formulation of a coupled problem where
non-zero weights are given a meaning.

APPENDIX: FEM SIMULATION

For simulations of our soft robots, we rely on Lagrange
shape functions Ni : R3 → R, defined at every node i of the
tetrahedral element mesh. By construction, Lagrange shape
functions evaluate to one at their corresponding node, and
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Fig. 10. Tentacle example (length: 298 mm). We start with a set of input
interactions (top), from which we generate a set of 200 initial sensors. We
run our optimization, and select a set of 14 sensors as this gives a good target
matching performance. We then evaluate the reconstruction performance of
the tentacle by simulating deformations into the 4 input poses, reconstructing
the deformations from the simulated sensor readings (bottom). The ground
truth deformations are shown in transparent blue, and the heat map shows
the localized reconstruction error in m. We note that the cylinders are used
for creating the target deformations, and are not included in reconstruction
simulations.

zero at every other node, uniquely defining the polynomial
coefficients of the shape functions Ne,i for every element-node
pair.

Denoting the undeformed and deformed nodes of element
e with Xe,i and xe,i, respectively, we use the shape functions
to interpolate the undeformed and deformed configurations
within elements, and define the deformation gradient for an
arbitrary point X̄

F(X̄) =

(∑
i

xe,i
∂Ne,i(X̄)

∂X̄

)(∑
i

Xe,i
∂Ne,i(X̄)

∂X̄

)−1

.

(15)

While we can substitute shape functions of arbitrary order,
we rely on linear shape functions for computational efficiency.
Because their derivatives do not depend on the position X̄, the
deformation gradient is constant for each element

Fe =
[
xe,1 − xe,4 xe,2 − xe,4 xe,3 − xe,4

]
Be (16)

Be =
[
Xe,1 −Xe,4 Xe,2 −Xe,4 Xe,3 −Xe,4

]−1

with precomputed, constant matrix Be.
To model our soft robots, we rely on a hyperelastic material

model. While our technique interfaces with arbitrary models,
we observe good prediction accuracy with a Neo-Hookean
material, parameterized with Lamé constants µ and λ, whose
strain energy density

Ψ(F) =
µ

2
(I1 − 3− 2 lnJ) +

λ

2
(ln J)2, (17)

depends on the two invariants

I1 = tr(FTF) and I3 = J2 = det(FTF). (18)

Because the deformation gradient, and hence also the strain
energy density, are constant for each element, the elastic
potential reads

E(x) =
∑
e

VeΨ(Fe) (19)



where the deformation gradient for element e only depends on
the four incident deformed nodes in the 3n-vector x. The rest
volume of an element Ve is conveniently det(Be)

−1. Note that
E is a nonlinear function of the deformed configuration due
to the use of the Green strain, and the nonlinear constitutive
model. If higher order shape functions are used, numerical
quadrature is necessary. However, while the computational
complexity of our simulations, sensing, and design would
increase with the order of the shape functions, our automated
design is generic and independent of the hyperelastic model
or the order of the shape functions used.

The uninflated and inflated volumes of pneumatic chambers
can be computed from the undeformed and deformed nodes
on the chamber surface with the help of Gauss’ theorem (see,
e.g., supplemental material for64).

APPENDIX: GRADIENTS AND HESSIANS

The sensing and design problems discussed in Secs. V and
VI, respectively, are both formulated as constrained optimiza-
tions. To compute gradients of the objective functions, we
solve the constraints and apply the implicit function theorem.
Here, we provide details about the formulation of gradients
and Hessians of the sensing and design problems.

The gradient of the sensing objective (8) can be expressed
as

gsense(f) =
∂fsense

∂f
+
∂fsense

∂x

dx
df
, (20)

where ∂fsense
∂f = wsense f

T , and

∂fsense

∂x
= (s− s̄)T diag(w)

∂s

∂x
= wT diag(s− s̄)

∂s

∂x
. (21)

By imposing first-order optimality on simulations, we can
apply the implicit function theorem to obtain

gsim(x) = 0 ⇒ ∂gsim

∂f
+ Hsim

dx
df

= 0

dx
df

= −H−1
sim
∂gsim

∂f
= H−1

sim. (22)

As a result, we obtain expression (7) for the sensing gradient.
The gradient of the design objective (9) can be expressed

as
gdesign(w) =

∂fdesign

∂w
+
∑
k

∂fdesign

∂xk

dxk

dfk

dfk
dw

, (23)

where ∂fdesign

∂w = 0 in our case, dxk

dfk
is obtained from the first-

order optimality constraint of the simulation problem as shown
in (22) above, and

∂fdesign

∂xk
= (xk − x̄k)T . (24)

By imposing first-order optimality on each sensing problem,
we can apply the implicit function theorem to obtain

gsense(fk) = 0 ⇒ ∂gsense

∂w
+ Hsense

dfk
dw

= 0

dfk
dw

= −H−1
sense

∂gsense

∂w
= −H−1

senseH
−1
sim
∂sk
∂xk

T

diag(sk − s̄k).

(25)

As a result, we obtain expression (11) for the design gradient.

The Hessian of the sensing problem can be obtained as

Hsense =
∂gsense

∂f
+
∂gsense

∂x

dx
df

= wsense I+
∂gsense

∂x
H−1

sim. (26)

To avoid tensor notation, we assemble the columns of ∂gsense
∂x

separately:

∂gsense

∂xi
= H−1

sim

(
∂

∂xi

(
∂s

∂x

)T

diag(w)(s− s̄)

+

(
∂s

∂x

)T

diag(w)
∂s

∂xi
− ∂Hsim

∂xi
gT

sense

)
. (27)
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[64] M. Bächer, E. Whiting, B. Bickel, and O. Sorkine-Hornung, “Spin-
it: Optimizing moment of inertia for spinnable objects,” ACM Trans.
Graph., vol. 33, no. 4, pp. 96:1–96:10, Jul. 2014.


