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ABSTRACT
Personalization in human-robot interaction (HRI) has been shown
to have powerful effects on both users’ perception of robots and
objective interaction outcomes. Calling a human user by their name,
an important signal to communicate understanding the user and
memorizing information about them, remains an ongoing challenge
in HRI research as typical text-to-speech algorithms struggle cor-
rectly pronouncing the numerous names that exist even just in the
English language. This paper presents a pipeline for fusing text and
audio features to extract and reuse user information like names
with the correct pronunciation. We discuss technical guidelines for
implementation and remaining challenges.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; Natural language interfaces; Sound-based input / output; •
Computing methodologies→ Natural language processing.
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1 INTRODUCTION
Social human-robot interaction has great potential to improve peo-
ple’s lives through applications in healthcare [8], education [4], and
entertainment [30], among others. Personalization is a key driver
for success in these scenarios; personalized content leads to im-
proved learning gains [5] and improved health outcomes [17], while
social personalization, like entrainment, can improve perceptions
of robots [15] or build rapport [19].
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Calling users by their own (or a chosen) name is a simple tech-
nique for personalization that is common in today’s chatbot technol-
ogy [1]. When it comes to social Human-Robot Interaction (HRI),
incorporating a user’s name has also been suggested as a tech-
nique to create a socially engaged character [20]. However, making
references to people’s names or other personal information like
their home town comes with a greater risk of making a social error
[28] because modern text-to-speech (TTS) technology still strug-
gles with the correct pronunciation of many named entities. Fig. 1
shows such a use case.

Recent developments in the fields of Natural Language Process-
ing (NLP) and speech processing offer off-the-shelf models for tasks
like Named-Entity Recognition (NER) [18], phoneme recognition
[32], and speech synthesis [14]. These technologies provide oppor-
tunities for designers and technologists to personalize interactions

Figure 1: Minimal conversation to demonstrate the effect of
name extraction and reuse in social human-robot dialogue.
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with robots and artificial agents, like customizing the phonemes,
that is the pronunciation, the TTS applies to individual words.

In this paper, we show how a robot can reuse commonly avail-
able features from its audio input streams to extract the information
necessary for its TTS to correctly reuse the pronunciation of per-
sonal information like names or places. We describe how all the
necessary algorithms can be packaged into a single module that
can operate in conversational real-time and that can be plugged
into common robot control frameworks like the Robot Operating
System (ROS) as well as into custom pipelines. Our focus is on
providing flexibility to support numerous signals of interest, or dif-
ferent approaches to extracting the relevant parts of the speech and
give detailed guidance on the implementation options. We conclude
the paper by discussing remaining challenges for extracting and
reusing pronunciation information from user speech for personal
information in general and names in particular.

2 RELATEDWORK
Many aspects of personalization and adaptation have been studied
in human-robot interaction, e.g., [15, 19, 22]. Generally, these stud-
ies have identified positive effects in the outcomes of interaction
task goals or perceptions of the robots. In this work, we focus on
meta-information within a conversation with a robot or artificial
agent. Rather than personalizing the content, we are interested in
modifying the way the agent speaks to improve the naturalness
and perception by users.

There are many techniques by which the meta-information in
an interaction might be personalized by a robot. One example is
through entrainment, the phenomenon by which utterances of
speakers in a conversation become increasingly similar to each
other. Between people, higher levels of entrainment have been
shown to improvemutual likeability [23] and perceived competence
[27]. However, it is unclear how much control people have over this
entrainment process [7]. Within HRI scenarios, researchers have
found that humans will entrain to robots in the lexical content they
use [12], and that people will also exhibit synchrony in movement
[11]. These phenomena can be explicitly controlled for and encour-
aged in the case of artificial agents to enhance personalization.

In [13], the authors identify people with the goal of personalizing
interactions, but the names given to users are predetermined. In this
work, we seek to learn the name directly from a person, and pro-
nounce it correctly. We present this in the context of a pipeline that
can be applied to fusing audio and textual features for the purposes
of robot reuse, which could find many personalization applications
in HRI conversations, e.g., through speech entrainment.

A fundamental building block for using content like names for
such personalization is Named Entity Recognition (NER). This en-
ables information extraction from text input, both identifying the
type and text associated with different information units, such as
names, dates, or locations [21]. Recent progress in neural networks
and text embeddings has led to great improvement in the perfor-
mance of NER in many languages [36], resulting in several robust
off-the-shelf models being available that have high accuracy in
extracting information like people’s names.

Spoken entity extraction adds another layer of complexity to
NER due to issues arising from natural speaking styles and errors

in speech recognition. As a result there have been recent attempts
at joint optimization for end-to-end (E2E) spoken entity extraction
using seq2seq architectures. These models often jointly optimize
for accuracy of entity extraction [3, 9, 29, 35]. For instance, the
authors in [25, 26] develop an E2E model towards spoken name
capture, where users say their name and spell it out. One of the
main challenges for their model is to be robust to Automatic Speech
Recognition (ASR) errors, given the challenges of fine-tuning ASR
models specifically for such tasks.

3 PROBLEM STATEMENT - CORRECT
PRONUNCIATION OF USER INFORMATION

Names present a prominent case of users providing personal infor-
mation in a social dialogue with the robot having the opportunity
to reuse this information and personalize the interaction to signal
understanding. However, a great variety of names exist, causing
difficulties for ASR systems to reliably transcribe them, especially
in cases with minimal context (like hearing just the name without
framing language like “My name is [name]”). Even with a correct
transcription, many names can be homographs – the word(s) are
spelled the same but have different pronunciations – which means
that when a robot attempts to repeat the name, ambiguity remains.

An example conversation is shown in Fig. 1. The robot first asks
the user for their name, they respond, then the robot either does or
does not reply with their name. Not using the name can be seen as
insufficient social skills, or be attributed to a misunderstanding [28].
Reusing the name immediately makes the conversation feel more
personal. However, the name “Caroline” has at least two possible
pronunciations, represented as /ḱæ.r@."laIn/ or /ḱæ.r@."lIn/ using
the International Phonetic Alphabet (IPA), i.e., whether the sound
at the end is ‘lin’ or ‘line’. The ASR transcript that would typically
be used in a dialogue system does not encode this information,
so when the string would be used in response, the default TTS
pronunciation would be applied, which may be incorrect (Fig. 1 (b)).
While likely a good approximation, to truly personalize, having
this be fully accurate is desirable for the user to not feel some level
of disconnect and potentially even being mocked by the robot.

While the user’s name is a common and obvious use case for
ensuring a robot uses the same pronunciation as offered by the user,
this can be extended to other information like where the user is
from, or references to artifacts from their personal life, like toys or
places with specific names.

4 IMPLEMENTATION
A schematic of our implementation can be seen in Fig. 2. At a high-
level, the audio input, i.e., a user speech utterance, is processed
through both speech-to-text and an NLP component to identify
the named-entity of interest, and an audio feature extractor to re-
ceive the phonemes. The results are then further processed and
re-aligned before being passed for storage and inclusion in an out-
put generation step. In the following, we introduce the individual
components in more detail.

4.1 Component Overview
Audio Input. For extracting and using a name, the input is as-

sumed to contain a single channel of audio with an utterance from
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Figure 2: Processing diagram of the pipeline proposed in this paper for extracting and reusing information captured from user
speech. The text-to-speech component is not part of our pipeline and only demonstrates the reuse within dialogue.

a user that includes a reference to an entity we would like to store
the correct pronunciation for. Going forward, as an example, we
will assume this entity to be the user’s name. The incoming audio
is fed to both an ASR component and to an audio feature extractor.

Speech-to-text (ASR). In our approach, models accepting contin-
uous streams are run for both phoneme recognition and ASR. We
require the ASR result to contain word-level timestamps, which
is a commonly available feature in off-the-shelf models. The ASR
transcription with the aligned timing information is then fed to a
language processing component.

NLP. Within the NLP component, a Named-Entity Recognition
Flair model is running [24], but any NER could be used. The ASR
transcription is passed through the NER to identify names. For each
name detected, the string of the token found, its token index (i.e., its
position within the utterance), and the character start/end indices
will be returned. This then needs realigning to the ASR result, as the
ASR result contains the timing from the audio stream. In practice,
the tokenization used by ASR and NER are often different. In the
example given in Fig. 1, the ASR would return the user speech with
the following indices:

Hi, I’m Caroline
0 1 2

The NER, however, tokenizes the text as follows:

Hi , I’m Caroline
0 1 2 3

Hence, in this example, the NER will return the index of the
recognized name, Caroline, as 3, which is an index that does not
exist in the original ASR tokenization. A loop over the ASR words
helps to find the matching string and index (in this case 2) and then
extract correct word-level timestamps based on this index. The text
string along with the word-level timestamps is handed off to the
fusion component.

Audio feature extractor. In this case, the audio feature extractor is
running awav2vec2 phoneme predictionmodel [33].We use amulti-
lingual phoneme recognition model trained on the Common-Voice
dataset [34] to be robust to name pronunciations from different
backgrounds. The wav2vec2 model produces phoneme predictions
in IPA for every 20ms window of audio. Given a time interval in
the audio corresponding to a named-entity, CTC decoding [10] can
be applied to predict the phonemes 𝑃 of the spoken form. Consider

the utterance “My name is Caroline" shown in Fig. 2. The audio
signal 𝑆 corresponding to the utterance undergoes feature extrac-
tion 𝑋 = F (𝑆) which leads to a feature sequence {𝑋1, 𝑋2, . . . , 𝑋𝑛}.
After forwarding these through the phoneme recognizer we ob-
tain phoneme posteriors {𝑌1, 𝑌2, . . . , 𝑌𝑛} for each 20ms window
shift through the audio signal. This information along with the
word-level timestamps is handed off to the fusion component.

Fusion. From the ASR result, the start and stop timestamp in the
audio stream for the word of interest can be determined. This is
then fused with the results from the phoneme stream to extract
phonemes corresponding to the spoken entity. Specifically, we con-
vert word-level timestamps (𝑇𝑠 ,𝑇𝑒 ) for the named-entity to indices
and perform a CTC decoding over the posterior sequence contained
in the interval as follows:

𝑠 = ⌊𝑇𝑠/20⌋; 𝑒 = ⌊𝑇𝑒/20⌋
𝑃 = {𝑃1, 𝑃2, . . . , 𝑃𝑘 } = 𝐶𝑇𝐶 (𝑌𝑠 , . . . , 𝑌𝑒 )

The phonetic pronunciation can now be stored, and later injected
into a synthesis call to a text-to-speech engine.

Text-to-speech (TTS). The TTS will render audio for playback
that uses the name with the pronunciation correctly extracted from
the user. Many commercial providers of text-to-speech systems,
e.g., Amazon Polly 1, Microsoft Azure 2, and Google 3, allow for
custom phonemes to be provided. While the TTS component itself
is not part of our pipeline, we are including it in this description
for completeness and to showcase how this information is applied
in a dialogue.

4.2 Incorporation into Dialogue Framework
The previous section described the general components that are
part of our proposed pipeline that receives audio as an input and
provides a word of interest with its correct pronunciation as an
output. This section will go into more detail specific to the imple-
mentation that (a) enables true alignment of the data streams, and
(b) minimizes latency when packaging this pipeline into a module
within a larger dialogue framework. These are needed for both
accuracy, and for a more natural robot behavior.

When fusing any streaming data, time-stamping and alignment is
key for accuracy. This becomes challenging if the system is formed

1https://docs.aws.amazon.com/polly/latest/dg/supportedtags.html#phoneme-tag
2https://learn.microsoft.com/en-us/azure/ai-services/speech-service/speech-
synthesis-markup-pronunciation
3https://cloud.google.com/text-to-speech/docs/ssml#phoneme

https://docs.aws.amazon.com/polly/latest/dg/supportedtags.html#phoneme-tag
https://learn.microsoft.com/en-us/azure/ai-services/speech-service/speech-synthesis-markup-pronunciation
https://learn.microsoft.com/en-us/azure/ai-services/speech-service/speech-synthesis-markup-pronunciation
https://cloud.google.com/text-to-speech/docs/ssml#phoneme
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of multiple components, or nodes, running on different computing
hardware. For robot dialogue systems that are developed using Mi-
crosoft’s Platform for Situated Intelligence (psi) [6], the alignment
of input streams from different components is already a built-in-
feature that can be used directly. While the Robot Operating System
(ROS), the framework most commonly used for operating (social)
robots, offers some synchronization through the message filter
package [31], when working with messages covering vastly differ-
ent scales (like ASR which spans multiple seconds, and phoneme
extraction which covers 20ms windows), this will break down. To
solve this, we propose attaching an ID to every audio packet that is
streamed, and include this ID (or set of IDs) in every message that
generates a result from that audio. It is then straightforward to fuse
messages downstream based on the original audio that they were
created from, even if they arrive asynchronously. The edge case
for this is if the audio packet size is smaller than any downstream
processing, or if the results span partial audio packets. The easiest
solution is to carefully select the packet sizes to reduce these issues.

To minimize latency, we recommend doing as much process-
ing prior to the fusion as possible. A sequential pipeline approach
would be to buffer the audio as it is sent to the ASR, then on receipt
of the ASR result, identify the name with NER, use the ASR result
to get the timestamps, and send the relevant buffered audio for
phone extraction. However, this sequential processing incurs the
most latency. Instead, we propose continually running the phoneme
extraction in parallel to the ASR calls. As the phoneme extraction
is faster to return than ASR, the results will be available as soon as
the ASR result arrives. This parallelizes the processing and reduces
latency by about 50ms (using NVIDIA RTX 2080), at the cost of
increased compute requirements (as phoneme extraction is contin-
ually running). In our testing (using Mac M1), NER and alignment
takes approximately 15ms, which is therefore the total additional
latency added by our name extraction pipeline.

Our pipeline is not required to run in either ROS or psi; it can be
integrated into any custom framework. If components like an ASR
exist already, then reusing its output by subscribing to the messages
the existing ASR already produces minimizes the processing that
is required within our pipeline. As our proposed pipeline impacts
only a robot’s verbal interaction, it can be applied to both physical
and virtual embodiments with no adjustments necessary.

5 DISCUSSION
The previous section introduced a pipeline for extracting infor-
mation of interest from an incoming audio stream and saving the
pronunciation of this information for future use. We described
how this applies to the user name ‘extract and repeat’ use-case.
Our pipeline has been implemented in an internal prototype into
a multi-user HRI setting. We were able to successfully collect and
reuse user names during the conversation in order to address the
right person. The following discussion summarizes the remaining
challenges we experienced with this use-case.

While the solution provided in the previous section for named
entity extraction and repetition in general, and for names in partic-
ular, will work well in many cases, there are still some challenges
that are not addressed. The first of these involves speech impedi-
ments. If a user has a speech impediment like a stutter or a lisp, we

would not want to reproduce that in the robot speech as it could
be perceived as mocking. While ASR results will typically remove
phenomena like repetitions, the phoneme extraction of audio would
still contain this information. If this pronunciation is reused in the
TTS later on, it would repeat the speech impediment. Simple heuris-
tic approaches like removing repeated phones would likely result in
other names failing. Instead, more advanced techniques, like speech
disfluency prediction [16], may need to be incorporated into the
fusion to produce robust behavior. Similarly, if a user is speaking
with a different accent from the robot, reusing the mismatching
accent in the pronunciation could be perceived as mockery or as
culturally insensitive. In this case, the fusion component would re-
quire additional processing and could do a heuristic substitution to
match from the user’s input accent to the character’s target accent.

Secondly, if names are not currently detected by the NER model,
the approach will fail. This happens more often when minimal
context is provided, i.e., the user replies with just their name and no
framing language like “My name is”. However, it can also happen
with names not found in the English NER.

Thirdly, it is possible that multiple pronunciations of the same
term occur in one ASR result. For example, a user could be correct-
ing the robot by saying “It’s not Carolein, it’s Caroline” using the
wrong pronunciation first in mimicry of the robot before offering
the correct one. In this case, the NLP component needs to be ex-
tended to detect not only where an NER occurs, but also which
occasion matches the correct phonemes (in this case, the second).

Finally, the NER is reliant on the ASR transcript. This means
that the name still needs to be transcribed with enough accuracy
for it to be recognized as a name. For instance, the German name
‘Maike’ is successfully recognized as a name by the NER we use, but
is regularly mistranscribed by ASR. This can also produce an effect
where if the mistranscription is for another name, e.g., ‘Micah’,
the extraction would succeed with the correct pronunciation, but
associated with the wrong written form. Having these models work
in tandem can be a challenge, so doing the NER in a single step is
increasingly being explored in research [2]. Running multiple ASR
or NER components trained or fine-tuned on different languages
could increase the accuracy of transcriptions and recognition of
names, especially if the number of target languages is small.

6 CONCLUSION
This paper presented an approach for a robot, or other conversa-
tional agent, to extract name pronunciation information from a
user’s utterance and use it in a spoken response. The implementa-
tion is described in detail so that others in the field can reproduce
the techniques deployed. We discuss the remaining challenges with
generalizing to users speaking with different accents or using words
from different languages, and for users with speech impediments.
The implementation we proposed in this paper can easily be in-
tegrated into all common and most custom dialogue frameworks
and offers an easy way of integrating more personalization into
dialogue in social HRI.
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