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Abstract— Imitation of the upper body motions of human
demonstrators or animation characters to human-shaped robots
is studied in this paper. We present a pipeline for motion
retargeting by transferring the joints of interest (JOI) of
source motions to the target humanoid robot. To this end,
we deploy an optimization-based motion retargeting method
utilizing link length modifications of the source skeleton and a
task (Cartesian) space fine-tuning of JOI motion descriptors.
To evaluate the effectiveness of the proposed pipeline, we
use two different 3-D motion datasets from three human
demonstrators and an Ogre animation character, Bork, and
successfully transfer the motions to four different humanoid
robots: DARwIn-OP, COmpliant HuMANoid Platform (CO-
MAN), THORMANG, and Atlas. Furthermore, COMAN and
THORMANG are actually controlled to show that the proposed
method can be deployed to physical robots.

I. INTRODUCTION

Since the first animatronic human figure of Abraham
Lincoln made its famous sit-to-stand motion in 1964, the
Walt Disney company has been developing a number of
human-shaped animatronics for Disney parks. Nowadays,
humanoid robots are common in many of amusement parks,
as well as in smaller scale attractions, such as museums
and theme restaurants. Robotics researchers and artists in
the entertainment field have been collaborating together to
implement realistic shapes and natural motions of notable
people in history or characters in movies and animations.
Advancement in measurements and graphics technologies,
including a motion capture (MoCap) system, have con-
tributed much to the motion generation for the entertainment
humanoid robots. Still, however, a natural motion generation
for a humanoid robot requires a number of tedious and time-
consuming manual processes. In this regards, we need easier
and automated methods to handle a large number motion
databases for robots with different morphologies [1].

In this paper, we propose an efficient pipeline to generate
expressive movements of a humanoid robot using 3-D mo-
tion data acquired from human demonstrators or animation
characters. While there are a number of different methods
for generating motions for a humanoid robot, we cast this
problem as a motion retargeting problem where the goal is
to find a mapping between the source motion data and a
target robot hardware. This motion retargeting often requires
a considerable amount of domain knowledge regarding the
robot hardware as well as and a manual design of retarget-
ing processes. For example, a real-time motion retargeting
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method in [2] manually designed a mapping between the
joint angles of a source human skeleton acquired from a
Xsens MoCap system and the target iCub humanoid robot.

Here, we mainly focus on simple and straightforward
deployment of upper-body motions to human-like robots to
minimize the tedious manual design processes. To this end,
we present a global optimization-based motion retargeting
method that can be applied with the minimal domain infor-
mation on both motion data and the kinematic structure of
a robot. The only manual process is to specify the joints of
interest (JOI) of both the source MoCap skeleton and the
target humanoid robot. As a result, we successfully transfer
36 different motions collecte from human demonstrator and
an animation character to four humanoid robots whose sizes
and morphologies vary significantly.

The main contribution of this paper is twofold. First,
we present an effective parametrization of motion transfer
considering both the kinematic structure of 3-D motion
data and the task-space fine-tuning. Then we present a cost
function for assessing the quality of the retargeting which
allows us to use a global optimization method that considers
the similarities between the source and target motions as
well as physical constraints of a humanoid robot such as
maximum joint limits and workspaces of joints, e.g., hands
and elbows.

The structure of this paper is organized as follows: In Sec-
tion II, we summarize existing motion retargeting methods
in both robotics and computer graphics domains. A brief
introduction to a global optimization method that we use
for motion retargeting is shown in Section III. The proposed
optimization-based motion retargeting method and results are
illustrated in Section IV and Section V, respectively.

II. RELATED WORK

A motion retargeting problem was originally presented in
the computer graphics field where the problem was to simply
transfer the motions of one character to the another with the
identical kinematic structure but different link lengths while
preserving the qualities of the original motion [3]. However,
following studies [4]–[6] considered transferring motions to
fairly different kinematic structures. [4] presented style-based
inverse kinematics (IKs) using a Gaussian process latent
variable model (GPLVM) [7] that can provide the most likely
positions given algebraic constraints such as target points.
Later work from [5] proposed a method to animate characters
whose topologies are significantly different from humans
such as a lamp or a penguin also using a GPLVM. The
main idea was to optimize a shared latent space between



human and character motion spaces. However, this method
requires enough motions of both source MoCap data and
the target animation characters which is hard to achieve
when using real robot hardwares. Convenient and flexible
generation of motions of humanoids was studied in [8] by
presenting an interactive inverse kinematics technique called
pin and drag. It allows animators to generate a natural motion
of a humanoid by simply dragging a link.

DeepMimic was presented in [9] by formulating a motion
imitation problem as a reinforcement learning problem where
motion retargeting problems are also handled. The main idea
is to use the motion similarity between the source and target
motions as a reward signal to train an imitating policy of
a target platform. However, it requires a manual mapping
between the source and target characters where our proposed
method can be used for this purpose.

The motion retargeting has also been widely studied in
robotics as imitating human demonstrations is unarguably
the most natural and non-disruptive form of acquiring robot
skills [10]. It can roughly be categorized into two groups: a
joint space formulation and a task (Cartesian) space formu-
lations based on the information transferred to the robot.

The joint space retargeting methods transfer the source
motions by designing the mapping between joint angles of
a source MoCap skeleton and a target robot hardware. [1],
[11] studied the retargeting problem by finding the mapping
between the joints angles of the source MoCap skeleton
and the target robot considering hardware constraints such
as handling singularities near gimbal lock and maximum
joint velocity using a Sarcos humanoid robot. The MoCap
motions are constrained manually to match the degree of
freedom (DOF) of the Sarcos and computed by solving IK
on individual limbs. [12], [13] further extends the retargeting
to whole body control by simultaneously keeping the balance
and tracking MoCap data. Recently, Penco et al. presented
a real-time motion retargeting method [2] by designing a
manual mapping between the joint angles of a Xsens mocap
system and the iCub humanoid robot.

On the other hand, the task space formulations utilizes
the reference targets in the task space, e.g., hands and
elbows. A marker-less retargeting approach was presented
in [14] using the Honda humanoid robot, ASIMO. The
Cartesian positions of waist, shoulders, elbows, wrists, and
head obtained from a depth image are used to control the
humanoid by solving IK. It is further extended in [15], [16]
to whole body humanoid control. Sit-to-Stand Task using
a humanoid robot is studied in [17]. A kinodynamically
consistent retargeting method with a set of task points was
proposed in [18] which incorporates a dynamically consistent
redundancy resolution approach to minimize costly joint
motions. Motion retargeting with a multi-contact scenario
was studied in [19] with a QP formulation.

Recently, some approaches [10], [20], [21] proposed an
optimization-based motion retarget methods. Stochastic Op-
timization of the Embodiment Mapping (ISOEMP) was
proposed in [10] which employs learning-based motion
retargeting by optimizing both shape and location of the

reference trajectories minimizing a certain cost. While the
overall concept of using an optimization method for motion
retargeting is similar to ours, ISOEMP focused on motion
skills such as transferring a golf swing motion to a 7 DoF
robot arm whereas we focus on more expressive motions
with both hands such as salute or yawn. Moreover, ISOEMP
only considers transferring a single target trajectory in a task
space using an affine transformation. Wang et al. optimized
a parametrized skeleton [20] for motion retargeting similar
to ours. However, it only focused on a single instance from a
depth image using Microsoft Kinect V2 rather than a motion
trajectory in a task space. Recent work in [21] simultaneously
optimized the geometric mapping between the human model
and a robot from the key points in a task space where
balancing is also considered using the ZMP constraints.
Generating character-like walking motions had been studied
in [22] using trajectory optimization.

Measuring the quality of motion retargeting was studied
in [23] where a measure for human-like motions was pre-
sented using spatiotemporal correspondence. While we do
not incorporate such measures, it can further be used to
combine with the optimization by simply augmenting the
measure to the cost function. The notion of style is proposed
in [24] where it is defined as a person-specific differences
in motions. Okamoto et al. introduced a framework that
can generate motions while reflecting specific styles in a
ring toss task. While [24] manually designed the motion
style features, automatic extraction and stylization of person-
specific styles in motion retargeting is a valuable research
direction in human-robot interactions (HRIs).

III. PRELIMINARIES

In this section, we present a gradient-free optimization
method that is used for the proposed motion retargeting
method: coordinate descent Bayesian optimization which
gracefully mixes both global and local optimization methods.

A. Coordinate Descent Bayesian Optimization

Bayesian optimization (BO) is a global optimization
method that does not require computing the gradient of
a cost function [25]. Due to its gradient-free nature, it
has been widely used not only for tuning hyperparameters
of classifiers [25] but also for robotics domains such as
gait optimization [26]. Recently, [27] combined Bayesian
optimization with stochastic coordinate descent and proposed
coordinate descent Bayesian optimization (CDBO) to opti-
mize the navigation policy for a track race. In this paper, we
also use CDBO for optimizing the motion transfer mapping
in that we observe that CDBO is more sample-efficient than
naive BO in high-dimensional spaces with respect to fine-
tuning the details.

Let us first briefly explain the underlying BO method. The
goal of BO is to find the minimum of a cost function f(θ)
on a compact set Θ where the core philosophy is to model
f(θ) using previous observations with a Gaussian process
(GP) prior. BO is effective when f(·) is not differentiable



Fig. 1: Overall pipeline of the proposed motion retarget optimization method.

with respect to θ and the evaluation of f(θ) is expensive
to perform such as training and evaluating a model [25]. In
this paper, evaluating the cost f(θ) corresponds to computing
the cost of motion retarget which is accompanied by running
multiple forward kinematics (FKs) of the kinematic model
of a robot. More details are explained in Section IV.

In particular, we use Bayesian optimization with expected
improvement criteria (BO-EIC) where BO-EIC has shown
to outperform well-known GP upper confidence bounds
(GP-UCB) on some tasks [25]. More importantly, unlike
GP-UCB, it does not require tuning the exploration and
exploration tradeoffs. BO-EIC uses the following acquisition
function:

a(θ) = σ(θ) (γ(θ)Φ(γ(θ) +N (γ(θ); 0, 1))) (1)

where
γ(θ) =

f(θbest)− µ(θ)

σ(θ)
, (2)

Φ(·) is the normal cumulative distribution function, θbest is
the current best value, and µ(θ) and σ2(θ) are predictive
mean and variance of a GP (interested reader are referred
to [28]). We use the following ARD Mateŕn 5/2 kernel
function:

KM51(θ,θ′) =
(

1 +
√

5r2(θ,θ′)
)

exp
{
−
√

5r2(θ,θ′)
}
(3)

where r2(θ,θ′) =
∑D

d=1(θd − θ′
d)2/l2d which results in

twice-differentiable sample functions, an assumption cor-
responds to quasi-Newton methods, but not unrealistically
smooth, such as the widely-used squared exponential kernel.

IV. PROPOSED METHOD

In this section, we present an efficient motion retargeting
pipeline based on optimizing the mapping between the source
3-D motion data and the target humanoid robot. The pro-
posed method consists of four steps: preparation of motion
retargeting, optimizing the motion transfer, computing joint
trajectories using iterative IK, and post-processing the joint
trajectories. The overall process of the proposed method is
shown in Figure 1.

A. Motion Retarget Descriptions

The main motivation of this paper is the necessity of an
efficient generation of expressive high-quality robot move-
ments from motion datasets. The cornerstone of our motion
retargeting method is to define the motion retargeting by

(a)

(b)

Fig. 2: (a) Link length modification parameterizations of
human and animation character skeletons. (b) Two-staged
transfer of the motion data: link length modification followed
by task space modification.

transferring the joints of interest (JOI) of a source motion
skeleton to the target robot hardware. We would like to
emphasize that, apart from parsing source motions and robot
morphologies, the only manual process of our method is to
define the JOI of both source skeleton and target robot which
greatly removes tedious manual processes.

In this work, we define JOI as both hands, elbows, and
head for both skeletons and robots inspired by marionette
puppeteering. We further show that the whole upper body
motions including torso and waist movements can success-
fully be transferred to the target robot hardware with current
JOI configurations in the experiment section.

We assume that we are given a sequence of joints position
of a skeleton in the task (Cartesian) space. Given a sequence
of joint positions and the topology of the skeleton, we first
initialize the kinematic chain of the skeleton with a rigid-
body assumption, i.e., compute the Euler angles between
joints. The main reason for this is that we will transfer the



positions of JOI by modifying the link length of the source
skeleton (see Section IV-B for details).

As one cannot fully determine the Euler angles (roll, pitch,
and yaw) between two joint positions in the task space, we
compute roll and pitch angles between two consecutive joints
to remove the ambiguity. Let R and v be the rotation matrix
of a local coordinate and a relative vector from a parent to a
child, then a roll angle φ and a pitch angle θ are computed
as follows:

v′ = RTv

v′ = v′/‖v′‖2
φ = arcsin (−v′(2)) , θ = atan2 (v′(1), v′(3)) (4)

Furthermore, we also compute the joint workspaces of
the robot. Here, we compute the Cartesian workspaces of
both hands and elbows as shown in Figure 4. Note that this
process of computing the workspaces of JOI can be done
automatically once the kinematic structure of the robot is
successfully parsed from the robot descriptions such as from
the unified robot description format (URDF).

B. Optimize Retargeting

Once we have the JOI of both source skeleton and target
robot, we automatically optimize the adequate transfer be-
tween two sets of JOI using the coordinate descent Bayesian
optimization (CDBO) in Section III-A. To this end, we
define two main components for the optimization. One is
the parametrization of the motion transfer and the other is
the cost function for assessing the quality of the transfer.

Let us first introduce the motion transfer parametrization.
The motion transfer of the source motions is done with two
steps: link length adjustments of the base skeleton and task
space modifications of the resulting trajectories of JOI.

Suppose that we are given a base skeleton1 and a sequence
of roll and pitch angles of the motion computed from
(4). Then, the link length modification is done with 11
parameters: global rate, hip to lower spine, lower spine to
mid spine, mid spine to neck, neck to head, neck to shoulder,
shoulder to elbow, elbow to wrist, wrist to hand, knee to foot,
and pelvis to knee as shown in Figure 2(a). Once we have the
normalized (link-length adjusted) skeleton and a sequence of
roll and pitch angles of each joint, task-space trajectories of
JOI is computed using FK.

The adjusted JOI trajectories are further fine-tuned in
the task space with six parameters: three parameters for
scaling and three parameters for translation in the Cartesian
space, respectively, where both scaling and translation are
done with respect to the shoulder position. The link length
modification and task space modification of right hand and
elbow trajectories are illustrated in Figure 2(b).

As we cast the motion retargeting problem as an opti-
mization problem, we also need a measure for assessing the
quality of the motion transfer. We carefully design the cost
function composed of four different components. Suppose

1We simply use the initial skeleton at t = 0 in the 3-D motion dataset.

(a)

(b)

Fig. 3: Two 3D motion datasets acquired from (a) a human
demonstrator performing (big point, big wave, salute, and
yawn) and (b) an animation character, Bork, performing (go
on, this big, greeting, and tada).

we are given adjusted trajectories of JOI in the task space
and the target humanoid robot at its homing position.

1) Location cost cloc: Task space position differences
between the initial position of the both right and
left adjusted shoulder positions and the corresponding
shoulder positions of the target humanoid.

2) Link length cost clink: Link length differences of both
right and left shoulder to elbow limbs and elbow to
hand limbs between the adjusted source skeleton and
the target humanoid.

3) Workspace cost cws: Maximum distance from the
task space trajectories of JOI and corresponding
workspaces.

4) Trajectory cost ctraj: The differences between the
normalized trajectories of JOI of both raw motion
data and the adjusted motion data. The normalization
is done by centering the trajectories with respect to
each axis and scale the centered trajectories so that all
trajectories lie within −1 and +1.

Each cost is further divided by the height of the target
humanoid and the weighted sum of costs are used for the
optimization:

ctotal = (wloccloc + wlinkclink + wwscws + wtrajctraj)/hrobot

where wloc = 100, wlink = 100, wws = 100, wtraj = 10, and
hrobot is the height of the robot.

C. Compute Joint Trajectories with IKs

Once the JOI trajectories in the task space are computed,
joint trajectories are computed via an iterative IK method
using an augmented Jacobian method to incorporate multiple
target joints. At each iteration, we add a simple heuristic
to recover its initial state to overcome singularities. The
resulting joint trajectories are further smoothed using a
Gaussian random path [29].

Both self-collision and joint limit constraints are handled
while solving IK. To check self-collision, we first find the
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Fig. 4: Motion retarget results using 3-D motion data from (a) a human doing a big wave motion and (b) an animation
character doing a pointing action. The trajectories of right hand, right elbow, right shoulder, left hand, left elbow, and left
shoulder are shown with red, green, purple, blue, yellow, and purple, respectively. The workspaces of both hands and elbows
are shown with corresponding colors, respectively.

Fig. 5: Joint trajectories of right shoulder roll joint of
COMAN with different maximum velocity limits. when
performing the big wave motion.

bounding cubes of links from the CAD files and compute
the collision using the GJK algorithm [30]. Suppose q be
current joint angles and dq be the angle difference from the
augmented Jacobian method. If self-collision is expected to
occur at the next time step, i.e., q+dq occurs self-collision,
we first find the revolute-joint index that does not lead to self-
collision when updating δq(i) where i is the joint index. If
multiple joints are found, we simply update the one whose
|δq(i)| is the biggest, and otherwise, do not update the angles
and proceed to the next target JOI.

To handle the joint position limits, we first find the joint
indices of q + dq that exceed the joint limits with some
small margin, and re-run IK excluding the corresponding
joints. We found this simple heuristics works remarkably
well on handing joint limit constraints compared to virtual
force based methods [14].

D. Post-process Joint Trajectories

The resulting joint trajectory from IK may not be runnable
to a robot due to physical constraints such as joint velocity
constraints. As the smoothness of the resulting trajectory
varies based on the hyperparameters of a kernel function, we
simply increase the length parameter of a rational quadratic
kernel (RQ) until the resulting trajectory satisfies the velocity
constraints where the velocities are computed with finite-
differences. Figure 5 illustrates post-processed joint trajec-
tories of right should roll joint of COMAN with different
maximum velocity limits. when performing the big wave
motion. However, one can analytically compute the gradient
of a trajectory when using a GRP.

E. Remark

We would like to emphasize that the proposed motion
retargeting method only requires the JOI descriptions of
the source motion and the humanoid robot. The link length
modification shown in Figure 2(a) is straightforward to
compute using the JOI of the robot. Due to this simplicity,
we evaluate the performance of the proposed method on
every combination of four different humanoid robots and
two different types of motion data from both a human
demonstrator and an animation character.

V. EXPERIMENTS

To show that our method can effectively be applied to
diverse motion datasets and humanoid robots, we use 36
different motions from two 3D motion datasets, 4 motions
(big point, big wave, salute, and yawn) from three human
demonstrators and 4 motions (go on, this big, greeting,



Fig. 6: Snapshots of four different robots performing the this big motion of Bork.

and tada) from an animation character, Bork, as shown
in Figure 3 and four different humanoid robots: DARwIn-
OP, COMAN, THORMANG, and Atlas whose sizes and
morphologies vary significantly as shown in Figure 4.

A. Motion Retarget Results

The motion retargeting results of the proposed method
using a big wave motion from a human demonstrator and
a greeting motions from Bork are shown in Figure 4. The
workspaces of right hand, right elbow, left hand, and left
elbow are shown with red, greed, blue, and yellow cubes,
respectively. Note that these workspaces of a robot are com-
puted automatically once we parsed to robot descriptions.

We can see that the shoulder positions of the adjusted
skeletons match those of the corresponding humanoid robots.
Note that The adjusted skeleton of THORMANG for the
big wave motions shown in Figure 4(a) has short upper-
body length and the shoulder positions are little lower than
those of THORMANG. This is because the workspaces of
both hands of THORMANG are relatively small in height
due to the joint limit constraints and having a short upper-
body makes the resulting JOI trajectories in the task space
fitted in the corresponding JOI workspaces. The snapshots
of four humanoid robots performing the this big motion are
illustrated in Figure 6

B. Ablation Study of different Joints of Interest

Here, we show how different JOI affect the resulting
motions using COMAN with a Bork’s this big motion.
We believe COMAN is suitable for this purpose in that it
has human-like hands. In particular, we use three different
JOI configurations: 1) hand positions, 2) hand and elbow
positions, and 3) hand positions, hand rotations, and elbow
positions and the resulting motion of COMAN performing
this big motion of Bork are shown in Figure 7.

C. Using Physical Humanoid Robots

The snapshots of COMAN and THORMANG doing the
big point motion are shown in Figure 8. Since the lower
body of THORMANG in our configuration is tied with
a fixed frame, we did not care about the balancing. For
balancing COMAN, the lower body joints are controlled with
the stabilization method proposed in [31]. It is worthwhile
noting that, while we only use four JOI of both hands and
elbows, the waist movement of the human demonstrator is
successfully transferred to COMAN.

VI. CONCLUSION

In this paper, we have presented the motion retargeting
pipeline for generating expressive robot movements. To this
end, we proposed an optimization-based motion transfer
method utilizing both link length modifications of a base
skeleton and task space fine-tuning. The only manual process
is to define the joints of interest (JOI) of both source skeleton



Fig. 7: COMAN motions performing Bork’s this big motion with different joints of interest.

Fig. 8: From top to bottom rows, the big point motion performed by a human demonstrator, COMAN, and THORMANG.

and target robot which makes the whole pipeline simple and
effective.

To evaluate the effectiveness of the motion retarget
pipeline, we used two different motion datasets from three
human demonstrators and an animation character and transfer
the motions to four different humanoid robots: DARwIn-
OP, COMAN, THORMANG, and Atlas in simulated en-
vironments. We also controlled real physical COMAN and
THORMANG to show that the proposed method can actually

be deployed to physical robots.

One limitation of our work is that it relies on the manual
selection of joints of interests (JOI). We believe that the
automatic selection of JOI given the motion data and robot
descriptions might be a promising research direction. One
could apply a hypergraph matching algorithm [32] for this
purpose. Future research could also examine the optimization
of the joint trajectories with whole-body stability constraints.
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