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Abstract— Motion capture is a good source of data for
programming humanoid robots because it contains the natural
styles and synergies of human behaviors. However, it is difficult
to directly use captured motion data because the kinematics and
dynamics of humanoid robots differ significantly from those
of humans. In our previous work, we developed a controller
that allows a robot to maintain balance while tracking a
given reference motion that does not include contact state
changes. The controller consists of a balance controller based
on a simplified robot model and a tracking controller that
performs local joint feedback and an optimization process to

obtain the joint torques to simultaneously realize balancing and
tracking. In this paper, we improve the controller to address
the issues related to root position/orientation estimation, model
uncertainties, and the difference between expected and actual
contact forces. We implement the controller on a full-body,
force-controlled humanoid robot. Experimental results demon-
strate that the controller can successfully make the robot track
captured human motion sequences.

I. INTRODUCTION

Motion capture is a good source of data for programming

humanoid robots because it contains the natural styles and

synergies of human behaviors. However, it is difficult to

directly use captured motion data because the kinematics and

dynamics of humanoid robots differ significantly from those

of humans.

In our previous work [1], we developed a controller that

allows a robot to maintain balance while tracking a given

reference motion, assuming that the contact state does not

change during the motion. We have verified in simulation

that the controller can successfully make a humanoid robot

model track human motion capture data while maintaining

balance.

Compared to existing controllers with similar objectives

developed in robotics [2], [3] and graphics [4]–[7], our

controller has several advantages:

• It does not explicitly use the lower body for balancing,

and therefore is able to utilize reference trajectories for

all joints.

• It does not require offline preprocessing such as seg-

mentation or extensive optimization.

• The parameters are not trajectory-specific, meaning

that the same controller can potentially be applied to

different reference motions.
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Fig. 1. A humanoid robot controlled using human motion data.

This paper reports the results of hardware implementation

of the controller presented in [1]. We implement the con-

troller on a full-body, force-controlled humanoid robot to

verify the performance, as shown in Fig. 1. We describe our

solutions to the problems in hardware implementation such

as root position/orientation estimation, model uncertainties,

and difference between expected and actual contact forces.

Experimental results demonstrate that the controller can track

human motion capture data while maintaining balance.

After introducing related work in the next section, we

briefly summarize the controller originally presented in [1]

in Section III. Section IV then describes the issues that arise

in hardware implementation of the controller. We present the

experimental setup and results in Section V, and conclude

the paper with discussions on our contribution and future

work in Section VI.

II. RELATED WORK

In contrast to humanoid control literature that focuses on

balance recovery after external forces are applied [8], [9],

our goal is to maintain balance while the robot is performing

unstructured and potentially noisy movements. Using human

motion capture data for controlling humanoid models have

been actively investigated in the robotics and graphics fields.

In robotics, Nakaoka et al. [2] developed a method to

convert captured dancing motions to physically feasible hu-

manoid robot motions by dividing a motion into a sequence

of motion primitives and adjusting their parameters consid-

ering the physical constraints of the robot. Their method

requires an offline process to identify the required primitives

and then define a set of parameters for each primitive. Ott et

al. [3] developed a system that allows realtime imitation of

captured human motion by biped humanoid robots. However,
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Fig. 2. Overview of the controller.

imitation is only possible for the upper body because the legs

are used exclusively for balancing.

In graphics, a number of algorithms have been proposed

for synthesizing motions of virtual characters based on

human motion capture data and physical simulation. Sok

et al. [4] proposed a method for modifying human motions

so that a proportional-derivative (PD) controller can track

the entire motion without falling down. Da Silva et al. [5]

developed a method for designing a controller that realizes

interactive locomotion of virtual characters. They also pro-

posed to combine a model predictive controller with simple

PD servos to obtain the optimal joint trajectories while

responding to disturbances [6]. Muico et al. [7] proposed a

controller that accounts for differences in the desired and ac-

tual contact states. Their system relies on existing algorithms

to map a motion capture sequence into a physically feasible

motion for the character. Although these approaches can

track known motion capture sequences, they require either

an extensive optimization process or a dedicated controller

for each captured motion sequence.

III. BALANCE AND TRACKING CONTROLLERS

In this section, we briefly summarize the balance and

tracking controllers. These algorithms were presented in

detail in [1]. Figure 2 shows the block diagram of the

complete controller.

A. Balance Controller

The balance controller takes a reference center of mass

(COM) position as input and calculates the desired center

of pressure (COP) position using a state-feedback controller

designed for a simplified robot model by, for example, linear

quadratic regulator or pole assignment.

In our implementation, we use the 3-dimensional 2-joint

inverted pendulum with a mobile base shown in Fig. 3 as the

simplified robot model. In this model, the entire robot body

is represented by a point mass located at the COM of the

robot, and the position of the mobile base (x y)T represents

the COP. The relative position of the COM with respect to

the COP is represented by the two joint angles θ1 and θ2.

The state vector x of the model consists of eight variables:

x, y, θ1, θ2 and their velocities.

The balance controller essentially handles the joint move-

ments as a disturbance and outputs a COP position that

can maintain balance under disturbances, although it cannot

guarantee global stability due to the difference between the
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l

Fig. 3. Inverted pendulum model for the balance controller.

simplified and whole-body robot models, as well as the

limited contact area of the feet.

B. Tracking Controller

The tracking controller first calculates the desired joint and

trunk accelerations, ˆ̈q, using the same feedback and feedfor-

ward scheme as in the resolved acceleration control [10]:

ˆ̈q = q̈ref + kd(q̇ref − q̇) + kp(qref − q) (1)

where q is the current joint position, qref is the reference

joint position, and kp and kd are constant position and

velocity gains that may be different for each joint. In general,

motion capture data should be filtered to obtain accurate

velocity and acceleration information due to noise. The

desired acceleration is also calculated for the six degrees of

freedom (DOF) of the trunk using the same control scheme.

We denote the vector comprising the desired accelerations

of all DOF by ˆ̈q.

The desired accelerations are further modified to ˆ̈q
′

= ˆ̈q+
∆q̈ so that the accelerations of the contact links become zero.

The modification ∆q̈ is obtained by solving the following

equation:

Jc(ˆ̈q + ∆q̈) + J̇cq̇ = 0 (2)

where Jc is the Jacobian matrix of the positions and orien-

tations of the contact links with respect to the generalized

coordinates. In our implementation, we use the pseudoinverse

of Jc to minimize the difference from the original ˆ̈q.

The tracking controller then solves an optimization prob-

lem to obtain the joint torques that minimizes a cost function

comprising the COP and joint acceleration errors.

The unknowns of the optimization are the joint torques

τJ and contact forces f c including the friction, subject to

the whole-body equation of motion of the robot

M(q)q̈ + c(q, q̇) + g(q) = SτJ + JT
c (q)fc (3)

where M is the inertia matrix, c denotes the gravity, Coriolis

and centrifugal forces, and S is the matrix that maps the joint

torques to the generalized forces.

The cost function to be minimized is

Z = Zb + Zq (4)
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where the two terms of the right-hand side represent the

errors in COP (Zb) and the desired accelerations (Zq).

The term Zb addresses the error between the desired and

actual COP positions by evaluating the moment around the

desired COP, which is zero if the COP exactly matches the

desired. Using the desired COP position rb = (rbx rby 0)
T

given by the balance controller, Zb is computed by

Zb =
1

2
fT

c P T W bPf c (5)

where P is the matrix that maps fc to the moment around

the desired COP, and W b is a user-defined positive-definite

weight matrix. We compute P by first obtaining a matrix

T that converts the individual contact forces to total contact

force and moment around the world origin by

T =
(

T 1 T 2 . . . T NC

)

(6)

and

T i =

(

13×3 03×3

[ri×] 13×3

)

(7)

where ri is the position of the i-th contact link and [a×] is

the cross product matrix of a 3-dimensional vector a. The

total force and moment are then converted to the moment

around COP by multiplying the following matrix:

C =

(

0 0 rby 1 0 0
0 0 −rbx 0 1 0

)

(8)

which leads to P = CT .

The term Zq denotes the error from the desired joint

accelerations, i.e.,

Zq =
1

2
(ˆ̈q

′

− q̈)T W q(ˆ̈q
′

− q̈) (9)

where W q is a user-defined, positive-definite weight matrix.

Using Eq.(3), the cost function is converted to a quadratic

form with an analytical solution. Our previous paper [1] also

discusses how to choose the weights for the cost function and

deal with joint angle and torque limits.

IV. HARDWARE IMPLEMENTATION

In order to implement the controller on hardware systems,

we have to address several issues that do not arise in

simulation. More specifically, we describe practical solutions

to three issues that have great impact on the controller perfor-

mance. First, we have to estimate the position and orientation

of the root from available sensor data because there is no

fixed reference frame on the robot. The second issue is the

significant uncertainties in the model parameters and external

disturbances. Although the controller is designed to tolerate a

limited amount of uncertainty, the actual error may be larger

than the stability margin. Lastly, the contact force distribution

obtained from the optimization may not match the actual

one. The discrepancy in the expected and actual contact

forces can lead to significant tracking error that cannot be

compensated for by the feedback controller, because the joint

torques depend on the contact forces.

A. Root Position/Orientation Estimation

In our implementation, we estimate the root position and

orientation from internal joint angle sensor data. We compute

the root position and orientation that minimize the total

squared distance between reference and actual contact points

using an algorithm equivalent to Arun et al. [11].

Let us denote the position of the i-th contact point com-

puted from the reference motion by p̂i, which is obtained

by performing the standard forward kinematics computation.

Because we know the joint angles, we can compute the

contact point positions relative to the root link coordinate,

pr
i . Their positions in the global frame, pi, are represented

by the root position r and orientation R as pi = Rpr
i + r.

In our implementation, we use four corners of each foot as

the contact points.

We first obtain the center of the contact points, p̄r =
∑

pr
i /nc and ¯̂p =

∑

p̂i/nc, and compute p′r
i = pr

i − p̄r

and p̂
′

i = p̂i −
¯̂p for all contact points. We then perform

principal component analysis (PCA) on p′r
i and p̂

′

i and obtain

the three principal axes, sr
k and ŝk (k = 1, 2, 3) respectively.

We determine r and R so that the center of the contact points

match, i.e.,

¯̂p = Rp̄r + r (10)

and the principal axes match

ŝk = Rsr
k (k = 1, 2, 3). (11)

We can obtain r and R by

R =
(

ŝ1 ŝ2 ŝ3

) (

sr
1

sr
2

sr
3

)T
(12)

r = ¯̂p − Rp̄r. (13)

B. Model Uncertainties

There are many possible sources of modeling errors,

including uncertain link inertial parameters and unknown

external forces from the communication wires and hydraulic

hoses. While link inertial parameters are mostly constant and

can be identified by an identification process (e.g., [12]),

external forces are unknown and cannot be determined in

advance.

In this paper, we first approximate the effects of model

uncertainties by scaling the inertia matrix by a scaling factor

chosen based on the total mass of the robot. Although this

method is not as precise as formal parameter identification

algorithms, we found that it works reasonably well in our

experiments.

We also correct the COM position by adding a constant

COM offset to the COM position obtained from the robot

model. The offset is obtained by assuming that the robot is

initially stationary and therefore the COM is above the initial

COP, and that the model’s COM height is correct.

We estimate the effect of unknown external forces using

sensory information at the initial state. We measure the initial

joint angles q
0
, joint torques τ 0

J and contact forces f0

c .

Assuming that the robot is initially stationary, i.e., q̈ = 0
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and q̇ = 0, we can estimate the contribution of external

forces by

h = Sτ 0

J + JT
c (q

0
)f0

c − g(q
0
). (14)

At every control cycle, we add h to the left-hand side of the

equation of motion (3).

C. Contact Force Distribution

When both feet are in contact with the ground, the contact

forces at the feet become indeterminate, i.e., there are an

infinite number of contact forces that result in the same

motion. The optimization algorithm described in the previous

section chooses one distribution based on a particular choice

of cost function, but it may not match the actual distribution.

Because the joint torques required to realize a desired motion

depend on the contact forces, a discrepancy between the

expected and actual contact forces can result in large joint

tracking errors. In simulation, this problem does not arise

because we apply the optimized torques immediately after

starting the simulation. In hardware experiments, on the other

hand, we typically start from a default controller to achieve

a balanced posture and then gradually switch to the target

controller. Even if we try to formulate the dynamics in a form

that is independent of the contact forces [13], we have to

make an assumption on the contact force distribution, which

may or may not be correct on real hardware.

We ensure that our controller’s initial contact force distri-

bution is the same as the actual distribution by 1) adding a

term to the cost function that penalizes the moment around

the initial COP at each foot, and 2) feeding back the contact

force differences to bias the optimization results towards the

actual contact force distribution.

The new term of the cost function, Zp, represents the dif-

ference between the initial and optimized COP of individual

feet and computed by

Zp =
1

2
f

T
c P T

f W pP ffc (15)

where W p is a user-defined, positive-definite matrix, P f is

a block-diagonal matrix whose diagonal blocks are P fi =
CfiT i (i = 1, 2, . . . , NC) and

Cfi =

(

0 0 riy 1 0 0
0 0 −rix 0 1 0

)

(16)

where (rix riy) is the position of the initial COP of the i-th
contact link.

With the new term, we can ensure that the cost function

takes the minimum value 0 at the initial state when the

whole-body COP and individual contact link COPs match

the actual initial COPs and ˆ̈q = q̈. Therefore, the optimized

and actual force distributions also match at the initial state.

The second method is to feed back the difference between

the optimized and actual contact forces. Because force mea-

surement usually suffers from noise, we use the integrated

force difference, i.e.,

∆f = KI

∫ t

0

(fact
c (s) − f opt

c (s))ds (17)

where KI is the gain matrix, and f
act
c (t) and f

opt
c (t) are

the actual and optimized contact forces respectively. In our

experiment, we only use the elements of ∆f corresponding

to the vertical force and moments around the horizontal axes.

We then add JT
c ∆f to the left-hand side of the equation of

motion (3). If the measured vertical contact force is smaller

than the optimized force, for example, the leg would tend to

bend. The additional term increases the joint torques so that

they can realize the desired motion under the larger external

force.

D. Summary

We summarize the final controller after the modifications

we described above. The cost function corresponding to

Eq.(4) is now

Z = Zb + Zq + Zp (18)

where Zp has been introduced in Eq.(15). The equation of

motion (3) is also modified to

Mq̈ + c + g + h + JT
c ∆f = SτJ + JT

c f c (19)

where h and ∆f are given in Eqs.(14) and (17) respectively.

V. EXPERIMENTS

We implement the controller on a full-body humanoid

robot developed by Sarcos and owned by Carnegie Mellon

University. The robot has 34 joints (7 in each leg and arm, 3

in the torso, and 3 in the neck) driven by hydraulic actuators.

Each actuator is controlled by an internal force feedback loop

running at 5 KHz for force control.

Each actuator is equipped with a load cell to measure the

actual force, which is converted to the joint torque by mul-

tiplying the moment arm. Each joint has a potentiometer to

measure the joint angle. A six-axis force sensor is embedded

in each ankle joint to measure the ground contact force.

A. Controller Implementation

The kinematics and inertial parameters of the robot are ob-

tained from the CAD model, and are expected to have large

errors especially in the inertial parameters. In fact, the robot

weighs around 90 kg while the total mass obtained from the

CAD model is only 60 kg (hoses and oil are missing from

the CAD model). We therefore scale the diagonal elements

of the mass matrix by 1.3 assuming uniform distribution of

the missing mass.

We employ an inverse kinematics algorithm [14] to ob-

tain the joint angle trajectories from motion capture data

considering the joint motion ranges. We provide reference

trajectories to 26 joints out of the 34 joints, excluding the

wrist, neck roll and neck pitch joints. We add constant offsets

to the reference joint angles so that the initial reference pose

matches the actual initial pose.

Our implementation of the controller runs at 500 Hz.

Because the most computationally expensive part is the

calculation of the inertia matrix M , we update only five

rows of the inertia matrix at each control cycle to reduce the

computation time.
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Fig. 4. COP and COM positions in the x (front-aft) direction during the
balance control experiment. The drifts in the COM position after 5 seconds
are caused by the pushes. Red solid: optimized COP; green dotted: actual
COP; blue dashed: COM.

The specific parameters used in the experiments are as

follows:

• We use pole assignment to design the

balance controller, with closed-loop poles at

(−70,−69.5,−69.3,−69.8,−5,−4.8,−4.7,−4.9).
• The tracking controller parameters in Eq.(1) are kp = 3

(1/s2) and kd = 0.5 (1/s) for the root position feedback

and kp = 7 (1/s2) and kd = 0.2 (1/s) for the other DOF.

• The weight matrices for the cost function are diagonal

and the diagonal elements are 1, 1 and 0.001 for W b,

W q and W p respectively.

• The gain matrix KI of the contact force feedback is

diagonal and the diagonal elements are 10.

Compared to the simulation study [1], the proportional gains

are similar but we have to use significantly smaller derivative

gains, mostly because of the noise in both motion capture

data and velocity measurements, as well as the relatively

slow control cycle for a force controller.

In our experiments, the robot is initially controlled by

a local PD controller at each joint to establish a balanced

posture. Our controller then takes over by smoothly blending

the joint torque commands from the balance and tracking

controllers. The transition completes in two seconds.

B. Balance Control

We first demonstrate the performance of the balance con-

troller by pushing the robot from several different directions

and forces while using a fixed pose as the reference. As

shown in Fig. 4, the balance controller effectively commands

the COP to maintain balance and the resulting joint torques

can realize the commanded COP. Figure 5 depicts the vertical

contact force at the left foot. After the controller switching

time (2 seconds), the optimized and actual contact forces

match well throughout the trial.

C. Tracking Human Motion Capture Data

We use a motion capture sequence from a publicly avail-

able motion capture database [15] performing a nursery

theme “I’m a little teapot.” Snapshots from a trial are
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Fig. 5. Optimized (red solid) and actual (green dotted) vertical contact
forces at the left foot during the balance control experiment.
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Fig. 7. COP and COM positions in the x (front-aft) direction during the
balance control experiment. Red solid: optimized COP; green dotted: actual
COP; blue dashed: COM.

shown in Fig. 6 along with the sensor data and controller

output, reference motion, and human poses during the motion

capture session1. The relatively large difference in the left

arm pose, which is particularly obvious when the human

subject’s hand is on the hip, is due to the limited motion

range of the shoulder rotation joints. The feet in the sensor

data visualization are not in flat contact with the ground.

This is caused by the drift of the potentiometers at the ankle

joints.

Figures 7 and 8 show that balance controller works

similarly to the case without reference motion. Figures 9

and 10 show the representative reference and actual joint

angles of the left hip flexion-extension and right shoulder

flexion-extension joints. In general, while the joints in the

upper body show fairly good tracking performance, the leg

joint trajectories have large oscillations due to disturbances

from the upper body and low joint velocity feedback gains.

However, overall motion is similar to the reference.

1A corresponding movie is available at
http://www.cs.cmu.edu/˜kyamane/humanoids10/movie.mp4.
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Fig. 6. Snapshots from the hardware experiment (top row), sensor data and controller output (second row), reference motion (third row) and human
motion capture (bottom row), taken every 3 seconds. The lines in the second row are: thick red—actual total contact force; thin red—optimized total
contact force; thick white—actual foot contact force; thin white—optimized foot contact force.

VI. CONCLUSION

In this paper, we reported the results of hardware imple-

mentation of our humanoid controller for balancing while

tracking motion capture data without contact state changes.

We addressed three issues that arise in hardware experi-

ments: root position/orientation estimation from internal joint

angle sensors, model uncertainties, and difference between

expected and actual contact forces. Experimental results

demonstrate that our implementation successfully controls

a force-controlled humanoid robot so that it tracks human

motion capture data while maintaining balance.

Several issues remain as future work. The current con-

troller cannot maintain balance if the original human motion

is highly physically unrealistic for the robot. In such cases,

we would have to employ an offline optimization process

to adjust the motion to the robot’s dynamics [4]. Another

limitation is that the reference motion cannot involve contact

state changes. We intend to remove this limitation by imple-

menting our recent extension of the controller to motions

with stepping [16].
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