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Fig. 1: We propose a novel perceptual-based framework for colorimetrical consistency within a multi-projection display. Using a colorimeter, we
establish highly accurate color representations and use them, together with projector overlap information, to generate smoothly spatially varying
gamut mappings. We present several approaches to maximize contrast while preserving the target appearance as accurate as possible.

Abstract—This paper introduces a novel photometric compensation technique for inter-projector luminance and chrominance variations.
Although it sounds as a classical technical issue, to the best of our knowledge there is no existing solution to alleviate the spatial
non-uniformity among strongly heterogeneous projectors at perceptually acceptable quality. Primary goal of our method is increasing
the perceived seamlessness of the projection system by automatically generating an improved and consistent visual quality. It builds
upon the existing research of multi-projection systems, but instead of working with perceptually non-uniform color spaces such as
CIEXYZ, the overall computation is carried out using the RLab [10, pp. 243-254] color appearance model which models the color
processing in an adaptive, perceptual manner. Besides, we propose an adaptive color gamut acquisition, spatially varying gamut
mapping, and optimization framework for edge blending. The paper describes the overall workflow and detailed algorithm of each
component, followed by an evaluation validating the proposed method. The experimental results both qualitatively and quantitatively
show the proposed method significant improved the visual quality of projected results of a multi-projection display with projectors with
severely heterogeneous color processing.

Index Terms—Projector-camera systems, colorimetric calibration, 3D stereoscopic and multi-user entertainment

1 INTRODUCTION

Recent projection mapping attractions use a multitude of projectors
to immerse guests in an unprecedented quality. It is not uncommon
to have several dozens of devices being superimposed, geometrically
registered, and blended together to form a single, consistent image
or video screen. High-resolution display walls for information visu-
alization or advertisement as well as modern projection-based virtual
reality (VR) systems also tend towards getting scaled in resolution and
size, requiring a huge number of projectors being precisely registered.
In all these situations, not only a perfect geometrical alignment, but
also an accurate consistent colorimetric calibration and adaptation is
required to ensure a perceived seamlessness of the overall projection.
Especially, consider that devices with varying peak brightnesses as well
as color processing pipelines are used. Such configurations lead to an
uneven color distribution, especially since each projector inherently has
some slight variations in color rendering, even in a homogeneous setup.
This effect is potentially even stronger if different projection image
generators, such as liquid crystal displays (LCD), liquid crystal on
silicon (LCoS), and digital light processing (DLP) engines are mixed,
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eventually also with varying light sources such as HID/Xenon light
bulbs, LEDs, or lasers. Mixing devices is often times preferable, for
example, to limit deployment costs of large installations.

The photometric compensation for inter-projector luminance and
chrominance variations was widely researched, and the majority of the
works were carried out almost a decade ago [14]. Although it seems
that most of the important technical issues have been already solved
and the research field is matured, we found that previous technologies
unfortunately do not work well in lately increasing multi-projection
configurations mentioned above, where devices with significantly dif-
ferent color processing components are mixed. An interesting quality
evaluation of different color transformation models is given in [11]
which clearly shows that non-linear color transformations are required
to achieve the maximum quality. To the best of our knowledge, there
is no method so far that can alleviate the color non-uniformity at a
perceptually acceptable quality among such heterogeneous projectors.

To solve this emerging technical issue, we propose a novel photo-
metric correction technology. Our method has four major technical
contributions upon the existing research of multi-projection systems, by
which we can achieve perceptually seamless projection even with het-
erogeneous devices. First, the overall computation is carried out using
an optimization in the RLab color appearance model which considers
the overall adaptation luminance and thus models the color processing
in an adaptive, perceptual manner, while previous technologies worked
in perceptually non-uniform color spaces such as sRGB and CIEXYZ.
The RLab color space is considered to be a good compromise between
the simpler but significantly less accurate CIELAB [10, pp. 199-210]
color space and CIECAM02 [10, pp. 287-301] model which is more ad-
vanced but much more computationally complex. Second, we propose



an adaptive color gamut acquisition to accurately estimate the range
of displayable colors per device by considering a projector’s internal
color processing that contains non-linearities as well as potential white
boosting or other inter-color modulations (e.g., DLP projectors). The
adaptive sampling method automatically decides the sampling points in
the RGB color cube to generate an optimized tradeoff between accuracy
and acquisition time. Third, considering that overlapping areas are in
many cases located around the center of a multi-projection display or
at other locations where people frequently look, we propose a spatially
varying gamut mapping that utilizes the areas to provide smooth gamut
extensions generating color saturations and/or luminance boostings
outside of what a single projector can generate. Finally, while previous
technologies conduct the color adaptation and edge blending separately,
we combine these two processes into an optimization framework in
which the alpha values of the blending maps are utilized as a guide to
estimate the optimal color contribution for each overlapping device.
The method can be scaled to an infinite number of projectors. For
speedup and media server integration, the processing can be split up
into 3D lookup tables (LUTs) and blending map weights which is a
data format currently directly supported by some media server and pro-
jectors. This simplifies integration and reduces costs. We conduct an
evaluation using a setup consisting of strongly heterogeneous projectors
to validate the effectiveness of the proposed method.

In summary, our main contributions are:

• An efficient and adaptive color gamut acquisition to generate an
accurate color prediction model

• Operating in the perceptual uniform RLab color space
• A spatially varying color gamut mapping operation generating

smoothly varying optimized input target images
• A novel color uniformity optimization method enabling a high-

quality projector blending even when using complex non-linear
color processing engines

2 RELATED WORK

A typical workflow for accommodating the inter-projector variations is
luminance and chrominance matching followed by edge blending [14].
This section introduces prior technologies on these issues and discusses
our contributions.

2.1 Luminance and Chrominance Matching
Luminance matching reduces the spacial variation of luminance range
across all the projectors of a multi-projection display to achieve bright-
ness seamlessness. A common method finds a conservative luminance
range that can be achieved over the whole projection area, and maps the
luminance of each projected pixel within the range by multiplying spa-
tially varying attenuation factors [16,17]. While this is simple and easy
to be implemented, it restricts the overall contrast and peak luminance
of the multi-projection display to the most limited ones. To enhance
the contrast, researchers proposed a spatially varying luminance range
guided by the human contrast sensitivity function [13, 18]. The lumi-
nance matching approach works well only when color gamuts are the
same or similar across the projectors. However, in general, the color
gamuts significantly vary among projectors of different models. Con-
sequently, color blotches are visible when a multi-projection display
consists of heterogeneous device configuration.

Chrominance matching alleviates the color non-uniformity across
projectors. A simple solution is to match the color gamut of each
device to a common, conservative gamut that is displayable by all
the projectors [15, 31, 36]. This yields a limited dynamic range and
color gamut. A more sophisticated method spatially morphs the color
gamuts of two adjacent projectors over the overlap region to retain as
much of the display color gamut and dynamic range as possible [26].
Because these prior works assume additive color transformations (i.e.,
color channel independence), the color gamuts of display devices are
estimated by measuring the response curve of each channel separately,
and consequently, the devices are easily linearized. However, such
ideal additive gamuts were not guaranteed when a multi-projection
display consists of digital light processing (DLP) projectors which

use more than three color components on the output side (RGB plus
white or CMY, for example) to boost the brightness and to provide
more saturated colors. The non-linearities cannot be just represented
by RGB response curves to adjust the input image before processing.
A typical solution to deal with non-additive devices is to sub-sample
the individual color cubes and interpolate the measurements either
linearly [33] or non-linearly [27] to acquire all transformations to the 3D
color gamut. The previous works sampled a color cube uniformly (e.g.,
total of k3 measurements by k samples per channel). There is a trade-off
regarding the determination of k (i.e., large k provides better image
quality while leading a unfeasibly long measurement time), which was
determined manually in the previous works [27,33]. Furthermore, to
the best of our knowledge, all of the previous technologies worked in
perceptually non-uniform color spaces (e.g., sRGB and CIEXYZ).

In this paper, we apply a chrominance matching approach rather than
luminance matching to deal with a multi-projection display consisting
of devices even with significantly different color gamuts each other.
Our approach is not limited to devices which can be linearized easily,
but can also work with projectors having non-additive color transforma-
tions. We propose an adaptive sampling of individual 3D color cubes,
which automatically determines sampling points such that the color
transformations to the whole color gamut are accurately acquired after
a non-linear interpolation is applied to the sampled measurements. It
offers an requirements-specific and optimal trade-off between desired
accuracy and measurement time, and also guarantees that the errors
are below a desired threshold everywhere in the available color range.
Rather than morphing two color gamuts of adjacent projectors, we pro-
pose to enhance the luminance and color saturation in the overlapping
region, assuming that it locates at the central part of the display and con-
sequently is relatively salient. By this, we provide users with multiple
options of color gamuts (i.e., conservative and spatially varying ones)
for different application scenarios. Working in a device independent
color space which considers the color appearance of the human visual
system significantly improves the perceived quality. Therefore, we
propose to use RLab color space, which offers a much more accurate
perceptual color appearance modeling than sRGB and CIEXYZ.

In contrast to simpler color appearance models such as the CIELAB
or CIELUV color spaces, RLab is able to better predict strongly sat-
urated colors by applying a white stimulus adaptation step which is
devoid in the former two mentioned color spaces. It is also able to
overcome other, well known problems of the CIELAB color space
which is the fact that constant hue lines within this space are actually
curved, in particular in the blue-magenta region. This can lead to prob-
lems when applying color gamut mapping operations. Furthermore,
the RLab color appearance model offers additional parameters to adapt
more accurately to the observer’s viewing conditions by offering an
option to adjust the amount of white stimulus adaptation, as well as
to account for different intensities of the surrounding stimulus, e.g.,
adapting to the amount of ambient illumination.

2.2 Edge Blending

Edge blending smoothly connects adjacent projections in the overlap-
ping region where unnatural seams are prominent due to imperfec-
tions of luminance or chrominance matching and geometric registra-
tion [12, 22–25, 35, 37]. A weight (i.e., attenuation factor) is multiplied
with an input color to divide it among overlapping projectors. A widely-
adopted method determines spatially varying 2D weight map (blending
map) based on the distance from the edge such that the weight value
is 0 on the edge. There is room for improvement in the simple edge
blending approach. For example, consider a situation where an assigned
color is not accurately displayable by the first overlapping projector
due to limited color gamut and dynamic range of the device or artifacts
caused by luminance and chrominance matchings, and the second pro-
jector has a potential to compensate for it. Because current methods
separately compute the projection color for each projector, they cannot
use the second projector to compensate the error caused by the first
projector.

Light transport-based techniques solve this issue by optimizing pro-
jection colors such that the difference between a target image and



Fig. 2: The core steps of the used color reproduction workflow: Acquiring highly accurate geometric and colorimetric information about the
system allows to apply smooth spatially varying gamut mappings. The color optimization incorporating the overlapping information encoded in
the blending weight maps to ensure a high-quality result.

estimated projection result is minimized [1–3, 7, 29, 34]. However,
these previous methods apply sRGB or CIEXYZ color space and only
consider additive color transformations, because the computation of the
estimated projection result are represented as matrix multiplications of
a light transport matrix with a projection image. Furthermore, assuming
the projectors of the same model are used, most of these methods do
not explicitly apply any luminance and chrominance matchings.

In this paper, we propose a novel optimization framework that works
in RLab color space and deals with non-additive color transformations
to achieve perceptually smooth transition in overlapping regions even
when different types of projectors including DLP are connected. More
specifically, our proposed method uses blending map weights just
to guide the amount of different projector contributions to find the
optimal color which will, when summed up with all the other projector
contributions at each individual pixel, leads to the desired one. All
the existing methods using the blending maps directly assign blend
values between the different projectors. On the other hand, using the
blending maps only as a guidance for amount of color contribution of
each individual projector at a given point, but optimizing the colors
independent of the blending maps makes the method independent of
any unknowns with respect to the non-linear per-color and color mixing
behavior of the projectors.

3 OVERVIEW

This section overviews the main color reproduction workflow and
prerequisite processes.

3.1 Color Reproduction Workflow
We give a high-level overview of the standard color reproduction work-
flow commonly used in the color community and how it is applied to
generate a consistent multi-projection display. It consists of three main
components: Estimation of a color prediction model (CPM), gamut
mapping, and projection color optimization. Figure 2 illustrates the
color reproduction workflow. First the RGB colors of the input image
are gamut mapped to a device independent color space. The mapping
can either be uniform per projector or spatially varying to account
for keystoning, vignetting, and similar effects. These mapped colors
represent the target colors that can be reproduced without significant
artifacts by the multi-projector system. This gamut mapping operation
is guided by a CPM which is used to estimate the volume and shape of
the achievable color gamuts. The optimization function relying on the
derived CPM is used to deduce what each projector needs to project in
order to perceive the colors that are as close as possible to the desired
mapped target colors.

Our method is divided into several components. Most of them
need to be carried out only once during an initial calibration step: A
high quality, but also efficient and adaptive per-projector color gamut
acquisition, as well as the target color gamut definition only need
to be carried out once. During content generation, gamut mapping
and projector color generation has to be carried out. The latter either
consists of a simple lookup operation or, if maximum image quality
should be the goal and processing time is not a significant limitation, a
constrained non-linear optimization process for generating an optimal
color reproduction is applied.

We will discuss each of the individual components of this workflow
in detail, starting with the adaptive color gamut acquisition required
to estimate the CPM (Section 4), gamut mapping (Section 5), and the
color optimization strategies for projection image generation (Section
6).

3.2 Prerequisites

To generate a colorimetrically consistent and seamless multi-projection
display, several pre-processing steps need to be carried out for system
calibration. Since these steps are standard operations, we will only
shortly summarize them in the following.

The orientations of the overlapping projectors which should generate
a consistent image with respect to the projection surface are usually
estimated using a camera. This estimation is carried out, e.g. by
projecting predefined patterns, so-called structured light, capturing
them and extracting camera-to-projector pixel correspondences. These
correspondences then allow to warp an input image such that it is
consistently distributed and displayed by all devices.

After geometric registration, projector overlaps can be computed
and stored as 2D data structures, defining for each projector pixel,
which pixels from all other projectors are illuminating the same surface
point. With this knowledge, per-pixel blending weights maps can be
calculated to smoothly fade out the contributions from one projector
the further it moves into an area of overlapping projections. The result
is stored as 2D α-maps defining a color multiplier (within the range
of 0.0-1.0) for each pixel. Usually, a distance transform is applied to
estimate this factor [24]. To further smooth this maps we applied an
additional non-linear diffusion step using successive over-relaxation
(SOR) [30]. This approach is similar to the one proposed by Gelb et
al. [12] using multiplicative distances, but can be applied in arbitrarily
complex geometry in which their method fails.

4 ADAPTIVE COLOR GAMUT ACQUISITION

To accurately estimate the range of displayable colors per device, their
color spaces have to be accurately and comprehensively measured. Es-
pecially if the projector’s internal color processing is by far not linear
but contains non-linearities as well as potential white boosting or other
inter-color modulations, it is necessary to not only sample the extremes
and the color channels independently, but instead to analyze the full
RGB color cube. It is, of course, prohibitive to measure each possible
color and thus an efficient sub-sampling scheme needs to be established
to precisely acquire the whole color range within a reasonable time
frame. We assume that no information about the internal color process-
ing is given and thus propose an adaptive sampling method to generate
an optimized tradeoff between accuracy and acquisition time.

4.1 Principle

We measure the reflected colors in the device-independent CIEXYZ
color space. In our case sensed by using a colorimeter. This measure-
ment process can be described as:

R = Ea +
n

∑
i=1

δ (i) ·Ergb (i) · r (1)



where δ (i) is the binary function defining whether the i-th projector
is illuminating the surface at the measurement location, R are the
measured values, r is the surface reflectance, Ergb (i) the projected
input color of projector i in its native RGB color values and Ea the
amount of uncontrollable environmental illumination. All values except
Ergb (i) are represented in CIEXYZ additive device-independent color-
space. The values for R are measured independently for each projector
i.

To ensure that the overall RGB color cube, i.e. the whole range of
colors the projector can reproduce, is sampled sufficiently accurate, we
apply a recursive refinement scheme which further samples the cube
until all measurements can be reconstructed within a desired accuracy.
We use the ∆E∗00 [10, p. 83] error metric in CIE Lab color space to
assess the accuracy.

The adaptive measurement is carried out using a combination of
octree-based and random sampling. In the first step, the eight extreme
values of the color cube are sampled. Since we can assume that the
behavior inside is most likely non-linear, we also sample additional 19
values to have all RGB colors sampled threefold (all 33 permutations
of 0%, 50%, and 100% per channel). To further introduce unbiased
measurements, we add 16 random samples using Poisson disk sampling
[5] and add 16 additional samples in the darkest 10% areas. Having
carried out these measurements, we generate the first CPM based on
a polyharmonic spline [8], generating a smoothly interpolating and
extrapolating mapping which passes through all the measured samples:

R(i) = f
(
Ergb (i)

)
(2)

This non-linear scattered data mapping was realized using the thin-
plate-spline (TPS) function defined as follows:

f (Ergb) =
N−1

∑
i=0

ω
∗
i ϕ(‖Ergb−q∗i ‖)+ω

∗
N+

ω
∗
N+1Er +ω

∗
N+2Eg +ω

∗
N+3Eb

(3)

where [q∗0...q
∗
N−1]∈Q∗ are the set of all N projected RGB input samples

captured so far and ω∗i are the N +4 TPS weighting coefficients per
input color channel, ‖·‖ the distance in Euclidean space, and ϕ is
chosen to be the TPS radial basis function (RBF):

ϕ(d) =
{

0, d = 0
d2 logd, otherwise (4)

Details about how to compute the weights ω∗i of the TPS mapping
function can be found in [8].

From that point on, an adaptive refinement is carried out by subdivid-
ing the color cube recursively by iterating through it in an octree-based
breadth-first manner and (after initializing it by setting each node to
“not ready” state) repeating the following steps:

1. If parent node is flagged as “ready”, go to (5), otherwise sample,
i.e. capture, the RGB value of the center of the current octree
entry.

2. Compute an interpolated CIEXYZ result with the RGB value
used for sampling in (1) by applying equation 3.

3. Compare the resulting value from (2) to the one measured in (1).
The comparison is calculated using the ∆E00 error metric.

4. If the difference is below a given threshold t, usually around 1.5-2,
the according octree node is flagged as “ready”.

5. Proceed to the next node and go back to (1).

We iterate through the octree in a breadth first manner until the inter-
polation error of all samples is below t, i.e. all nodes are flagged as
“ready”. Alternatively a predefined maximum number of samples can
be set as a stopping criterion if time is a critical factor. Having finished
the sampling for an individual projector, we store its whitepoint W p

xyz
as well as the measured RGB-to-CIEXYZ correspondence samples.
Furthermore, the environmental illumination is measured once as well
by turning off all projectors. In the following these values are used

to estimate the CPM used to define the available color gamuts and to
carry out the optimal color transformations needed for generating a
high-quality seamless multi-projection display.

4.2 Accounting for Intra-Projector Variations
Since a colorimeter is used as measurement device, the sampling is
carried out in device independent colors which ensures highly accurate
results. However, the sampling is limited to a specific small region and
thus the potentially significant intra-projector variations [6] are not
considered. To account for them efficiently, we propose to additionally
sample different projection areas, but only for it’s peak luminance by
projecting white. This measured sample then is used to remap the whole
color cube of the full measurement which has been carried out in the
projection center. This is reasonable since the spatial variations mainly
occur in the luminance values, but are almost negligible with respect
to its chromimance since they are mainly caused by lens vignetting
and other imperfections of the optical path, but the projector’s color
processing is spatially uniform. Having sampled the spatially varying
peak luminance, a smooth per-pixel adjustment map is generated to de-
termine a per-pixel color gamut by interpolating between the measured
ones.

5 COLOR GAMUT MAPPING

Having sampled each projectors’ input RGB color cube as well as
the environmental illumination provides us with all the information
needed to compute an accurate CPM. With this, the maximum available
color gamuts for generating a perceptually uniform and consistent color
reproduction can be estimated. In this step, the input RGB values of
the images to display are mapped to a device independent working
color space. We chose to use the RLab color space [9] [10, pp. 243-
254] which is an extension of the CIELAB space that enables more
accurate color appearance predictions since it considers chromatic
adaptation, the displaying media, as well as relative luminance and
surround stimulus adaptation.

Having transformed the input colors into this target space, they need
to be mapped into a range which can be accurately reproduced by the
projectors. This mapping depends on various factors, such as the user’s
intent, i.e. the desired visual effect that should be achieved, but also
several other factors influence the gamut mapping strategy, such as the
input RGB values, which and how many projectors are projecting it,
whether a spatially varying or a uniform gamut mapping is desired and
if intra-projector variations should be considered (cf. Sec.4.2). We
will discuss gamut mapping strategies considering these factors in the
following.

5.1 Estimation of the Available Color Gamuts
Since the mapping is carried out in RLab space, an overall approxima-
tion of the color gamut needs to be defined for each projector within
this space. Obviously, each device defines its own, unique, gamut, i.e.,
the volume describing all the colors that the projector can reproduce.
In the simplest case, we ignore any intra-projector variations and define
one gamut per projector by using the data acquired as described in
section 4.

For the overall multiprojection system, we define one unique
CIEXYZ color as target white point. This is manually chosen de-
pending on the user’s intend, for example, by measuring the reflected
white of the projector which appears to be neutral when projecting
full RGB white. Using the mapping function as defined in Equation 2,
we predict the CIEXYZ values for a regularly spaced set of samples
of the RGB color cube and convert those predicted values into their
RLab color representation. Finally, after having transformed all colors
into the RLab space, their concave hull is computed, e.g. by using the
method described by Moreira et al. [19] to define the color gamut for
each individual projector by a 3D polygon.

Next, the combined gamuts of different projectors are estimated: If
an area is illuminated by more than one device, brighter colors can
be generated than using only a single projector. However, also the
black level is added in this area which again reduces the achievable
contrast. These gamuts are computed for all combinations of different



Fig. 3: Illustration of the spatially varying gamut mapping in a four-projector setup. The overlapping regions are detected and smooth gamut
transition maps are generated. They are used to maximize contrast by spatially mapping the input colors to different dedicated color gamuts.
Figure (a) shows the proposed four-projector setup, (b) is the region where projectors are overlapping, (c) and (d) are distance transform functions
used to establish smooth mapping between different gamuts and (e) is the final gradient map guiding the gamut mapping process. In (e) the red
color represents mapping to the individual projector gamuts, yellow represents mapping to the gamut defined for the edge of the overlapping area
and green represents mapping to the gamut defined for inside of the overlapping area. A comparison is shown in the sample result images on the
right hand side: (f) shows a uniform, convervative mapping, while in (g) the spatially varying approach is applied. The two selected L* values
show the luminance differences which are achieved in this example using this method.

overlaps. These areas are automatically computed during the geometri-
cal calibration described in Section 3.2. For each overlapping projector
combinations, we apply Equation 1 for a sub-sampled set of RGB input
values, using the individual CPMs estimated as described in Section
4. The resulting XYZ values are converted into the RLab color space
using the same white point as before and again the concave hull is
computed. In addition to these gamuts, we also compute the overall
common gamut which defines the conservative range of colors which
can be reproduced by all devices. Therefore the intersection volume of
all previously calculated gamuts (including both projector gamuts and
multi-projector gamuts) is computed.

At this point we have an exact definition of the colors which can be
reproduced for any position on the illuminated surface. If intra-projector
variations should be considered as well, this definition changes for each
pixel area. As stated beforehand, this can be computed by measuring
the gamut at multiple locations per projector and interpolating between
the measurements.

5.2 Input Color Gamut Mapping

With the knowledge about the displayable range of colors, we can now
map any input image to the displayable target gamut. Therefore, the
input images’ native color representation, usually defined as sRGB,
Adobe RGB, etc., is transformed to the target output gamut which
reproduces the desired input colors as close as possible. The applied
gamut mapping operation is defined as follows. First, the input colors
are converted to RLab color space in which the gamut mapping method
described by Morovic and Luo [21] is applied. It divides the operation
into three parts: (1) gamut preprocessing, (2) lightness mapping and (3)
chroma mapping. During gamut preprocessing input gamut is adjusted
to better fit to the target. Therefore, the white points and hues could be
adjusted to better match each other [20, pp. 203-205]. Since this can
have a significant impact on the image appearance, it has to be applied
carefully.

After the white point alignment, the input lightness is mapped to
the range (L∗) of the target gamut in a linear manner. Finally, during
the chroma mapping, the actual gamut mapping operation is carried
out ensuring that the input colors are all mapped into the range of the
target gamut. Figure 4 visualizes this process. First, the white and
black points of the target gamut are defined. Then, two focal points are
specified on the axis between them. They divide the space into three
parts. In the area between both focal points, the chroma is mapped
along the lines of constant lightness, i.e., lines which are parallel to the
C∗ axis. Outside of this range, –chroma is mapped along lines starting
from the focal point going to the value to map. More details about this
operation can be found in [21] [20, pp. 203-240].

C*

L*

Gsrc

Gdest

identity
mapping

soft
compresion

I

II

0 100

100

Fig. 4: Schematic visualization of the chroma mapping step during the
gamut mapping operation for a lightness adapted source Gsrc and target
gamut Gdest in RLab space (Please refer to Sec.5.2 for details).

5.3 Spatially Varying Gamut Mapping

As stated in Section 5.1, several gamuts can be defined, depending
on whether a single or multiple projectors illuminate the surface area.
Since on the one hand the overall contrast and brightness of the projec-
tion should be maximized while on the other hand the overall image
should appear spatially close to uniform or at least consistent without
clipping artifacts, different mappings can be carried out. The simplest
solution would be to not apply any gamut mapping, accepting poten-
tial clipping artifacts if the color cannot be reproduced (without g.m.).
Another approach would be to map the whole content into the conser-
vative gamut which ensures that all input colors can be reproduced by
eventually significantly sacrificing peak luminance and overall contrast
(conser. g.m.).

Applying a spatially varying color gamut mapping is a solution in
balancing a trade-off in image modification and contrast maximization.
Obviously, this is a method which has to be carried out carefully to
ensure that the image modifications are minimal and smoothly applied
to avoid the generation of unwanted image alterations. We propose a
method that, by using distance transform, smoothly blends between
three different gamut regions: the individual projector gamuts, gamuts
being defined for the edges where projectors overlap and gamuts for
inside the overlapping areas (sp. var. g.m.). In our setup, for spatially-
varying gamut mapping, we used the common-conservative gamut for
the edges of the overlapping area and all projectors overlapping color
gamut for inside the overlapping area, however user can define other
gamuts depending on the desired observable appearance. Figure 3



schematically illustrated the mapping process.
Having carried out that step, the image is ready for being transformed

back into the original per-projector RGB representations and can be
used as input for the final projection image generation which will be
described next.

6 PROJECTION IMAGE GENERATION

With the acquired data, an accurate target color gamut can be estimated
and the input image can be mapped into it, as described previously.
This can be either globally fixed or spatially. However, in any case, it
has to be estimated what each projector needs to project to generate
an as-accurate-as-possible color appearance to the desired one. In the
following we will present the overall optimization workflow and discuss
several realizations.

6.1 Classical Post-Processed Blending
As summarized in the related work section, most of the previous work
applied projector color generation and blending as two separate steps.
We implemented this approach as follows. Assuming that the content is
already gamut mapped, the projector-individual CPMs are utilized and
the projector colors are optimized for the current projector by applying:

rgbopt
i = arg min

rgbi

(∆E00(RLabtrg,RLab(rgbi))) (5)

where rgbopt
i is the optimal projection values that should be projected

by the i-th projector, ∆E00 is the error metric quantifying the difference
between two colors in RLab color space, RLabtrg is the target color that
we want to observe, and RLab(rgbi) is the colors that can be reproduced
by the i-th projector.

The blending weights are then incorporated by estimating the de-
vice’s response curves of the individual color channels using the mea-
sured XYZ values:

rgb∗i = Gi(rgbi) (6)

and its inverse:
rgbi = G−1

i (rgb∗i ) (7)

where rgb∗i is the linearized color values of the i-th projector and Gi is
the function describing the response curve of the i-th projector (i.e., a
gamma function in the ideal case). G−1

i is the inverse function of Gi.
Using the functions, the corrected, blending-weight adjusted projec-

tion images can be generated by:

rgboptα
i = G−1

i (αi ·Gi(rgbopt
i )) (8)

This approach has its benefits since it is simple to apply it and can also
be realized straightforward for real-time and interactive applications by
pre-computing the 3D color transformation and storing them as LUTs.

However, it has disadvantages as well since some assumptions are
made which might be infeasible in real-world installations: Some
projectors, especially low-end DLP devices tend to have strong color
and intensity dependent internal color processing which makes it hard
to successfully estimate the response curves accurately. Furthermore,
black-levels are also not directly considered. To account for the black
levels, the blending function (Equation 8) needs to be modified to:

rgboptα
i = L−1

i (αi ·Li(rgbopt
i )−

n

∑
j

β jL j(bl))+Li(bl) (9)

Where Li is a function mapping input RGB values to linearized
CIEXYZ Y values, L−1

i is the inverse function, β is equal to 1 if
the n-th projector illuminates this point, 0 otherwise. Ln(bl) is the
luminance value of the black level of the n-th projector.

However, even when accounting for the black levels, the complex
color modulations of the projectors are degrading the overall accuracy
as we will show in Section 7. Furthermore, if a subset of overlapping
projectors cannot reproduce the target color, the other projector can not
be used to compensate for this limitation with this approach since each
projector is treated independently.

6.2 Unconstrained Optimization
To overcome the limitations of the classical post-processed blending
approach, the optimization method can directly consider the contribu-
tions of all projectors by minimizing the color difference between the
target gamut mapped color and a color which can be reproduced by the
combination of all devices:{

rgbopt
1 , ...,rgbopt

n

}
=

arg min
rgb1,...,rgbn

(
∆E00

(
RLabtrg,RLab(rgb1, ...,rgbn)

)) (10)

where
{

rgbopt
1 , ...,rgbopt

n

}
are the optimal RGB projection values that

should be projected for all n projectors illuminating the considered
region, and RLab(rgb1, ...,rgbn) are the colors that can be reproduced
by the illuminating projectors.

With this basic optimization, images with the desired color appear-
ance can be computed and projected. Since this approach requires a
per-pixel color optimization of all projector colors it is relatively slow
and thus might not be very suitable for animated or interactive content.
Furthermore, it can create noisy projections since in areas with multiple
overlapping projectors, a single color can be obtained using a multitude
of different combinations of superimposed colors. The more projectors
are overlapping the more this issue becomes pronounced.

The performance can be increased by pre-processing the mapping
operation and storing it in sub-sampled per-projector LUTs, and inter-
polating between the values. However, even when using LUTs, this
approach does not handle the noise issue, and secondly, the final in-
terpolation is carried out in projector RGB space which, due to its
non-linearities, might not well suited for interpolation.

6.3 Strategies to Overcome the Unconstrained Optimiza-
tion Issues

To overcome the issues of the unconstrained optimization while still be
able to preserve a high color reproduction accuracy, we propose two
novel approaches which can be used to generate high quality results
while overcoming the mentioned limitation at the same time.

6.3.1 Constrained Optimization Using Blend Maps
To generate an optimal result which is independent on the accuracy
or availability of any response functions, we propose a constrained
optimization to generate a noise-free, high quality result. The main idea
is to constrain the projectors’ RGB space by using the already computed
blending weight maps (cf. Section 3.2) as a guide for calculating
the smooth transition between all projectors. After having carried
out the gamut mapping as described in Section 5, for each projector
(i = 1, ...,n) at every pixel location (x,y), Equation 10 is computed to
determine the optimal projection colors, but with a constraint on the
RGB values as follows:

rgbopt
1

α1
=

rgbopt
2

α2
= ...=

rgbopt
n

αn
(11)

where α1, ...,αn are the alpha values stored in the blending maps for the
according pixel location (x,y). This constraint states that all projectors
should project similar hue values but at different intensity value. I.e. if
αi is small and close to 0, the according values of rgbopt

i should also
be small and will have only a small contribution to the observed color.
In contrast, when αi is close to 1, the according rgbopt

i has a strong
influence to the observed color. The important factor, however, is the
fact that this approach constrains the output color to a compromise
which is only able to smoothly change depending on the blending map
values and thus successfully suppresses noise. Without this constraint,
neighboring pixel intensities in overlapping areas might be composed
out of strongly varying color contributions per projector which would
immediately lead to color artifacts in the case of even slight misalign-
ments which should obviously be avoided. Another option to ensure
smoothness would be to apply a global optimization approach consid-
ering the local neighborhood using smoothness terms. This, however,



would required a more complex optimization strategy and much more
computational overhead, so we decided to focus on a constrained local
optimization.

However, when a large number of projectors are used, this constraint
optimization might start to converge slowly due to its growing dimen-
sionality and the strong constraint between the inputs. To overcome
this issue, we can incorporate the constraint directly into the function
to minimize:

rgbopt
int =

arg min
rgbint

(∆E00(RLabtrg,RLab(α1 · rgbint , ...,αn · rgbint)))
(12)

where

rgbopt
1 = α1 · rgbopt

int , . . . ,rgbopt
n = αn · rgbopt

int (13)

rgbopt
int ∈ [0,

1
max(α1, ...,αn)

] (14)

With this approach an intermediate projection value rgbopt
int is intro-

duced to calculate the final n output values rgbopt
1 , ...,rgbopt

n . Instead
of optimizing for n different projection values that fit a given constraint,
now only one constrained intermediate projection value needs to be
estimated.

Even with this approach the fact that the optimization function needs
to be applied for each pixel position (x,y) slows down the projection im-
age generation. To overcome this problem, one might pre-calculate the
results for all possible combinations of RLabtrg and α1, ...,αn values.
However, depending on how densely this space needs to be sampled,
the table might become too large since the dimension scales with the
number of projectors used.

6.3.2 Pre-Processed Blending
If real-time performance or interactivity is required, the constrained
optimization approach becomes infeasible. To enable fast processing
while still keeping the image quality at a high level, another approach
can be carried out which, instead of considering all projectors at every
location, treats each projector independently by pre-computing an opti-
mized color processing pipeline. By combining this processing with
an image adaptation using the blending map weights to distribute the
color contribution the projector should reproduce, results with similar
image quality compared to the optimization approach can be achieved.

Again it is assumed that the input projection image colors are already
gamut mapped. These RLabtrg values are then transformed back into
CIEXYZ color space (XY Ztrg) and the blending map weights are used
to separate this color into n individual components XY Z1

trg, ...,XY Zn
trg,

one for each projector:

XY Zi
trg = αi ·XY Ztrg (15)

Since the α values are all constrained to sum up to one at each spatial
position, we can define:

XY Ztrg = ∑
i

XY Zi
trg (16)

However, since each projector is containing a small amount of uncon-
trollable light contribution, this definition has to be extended to:

XY Zi
trg = αi · (XY Ztrg−

n

∑
j

β
jXY Z j

blck)+XY Zi
blck (17)

where XY Zn
blck is the CIEXYZ value of the black level for the n-th

projector and β n is 1 if the n-th projector illuminates this surface point
and 0 if not.

If each of the projectors are able to reproduce its own target color
XY Zi

trg the desired target color XY Ztrg will be generated. This en-
ables a separation of the optimization function and can be carried out
independently for each projector:

rgbopt
i = arg min

rgbi

(∆E00(RLabtrg(XY Zi
trg),RLab(rgbi))) (18)

Fig. 5: The experimental four projector setup. As it can be seen, the
projected uncalibrated white significantly differs between all devices.

This optimization function computes the RGB values to project to
obtain the XY Zi

trg. Since this is independent for each projector, the
results can be precomputed and stored as a 3D LUT to directly lookup
the projection colors. Besides fast computation, this approach has the
benefit that the pre-processed blending weights allow to still account
for any complex response curve processing such as white boosting for
any color correction that projector may apply. However, compared
to the overall optimization approach discussed in Section 6.3.1, this
approach is not able to let one projector compensate for out of gamut
errors of another projector in overlapping areas.

6.4 Summary

We proposed two novel projection image generation methods which
slightly vary in the overall image quality, but are superior to straightfor-
ward post-processed blending operations in which the color adaptation
and blending are treated as separate operations, since, practically, the
color processing of most projectors makes the response curves vary
per channel or even depending on the input color values. The problem
of generating simple, single channel response curves to linearize in-
put images is resolved by incorporating the blending weights directly
into the computation of the final projection color. In the following we
will present our experimental setup, evaluate and compare results and
discuss them.

7 EVALUATION AND DISCUSSION

We evaluated the proposed method using a heterogeneous multi-
projector configuration consisting out of four overlapping projectors.
This was chosen as the main evaluation platform since its heterogeneous
devices presents a worst-case solution for a multi-projector display but
it still is simple to allow us to focus closely on the actual image quality.
Two of them were professional, single-channel DLP projectors1. They
have been configured to generate significantly different outputs, in
terms of color, luminance as well as response curves. In addition, a
LCoS projector2 was used as well as a three-chip LCD device3. They
all were deliberately manipulated to show significantly different color
characteristics as illustrated in Figure 5, showing a full white projec-
tion4.

In the first step, the geometric calibration was carried out using
binary structured light blob patterns and a DSLR for acquisition 5. The

12x Panasonic PT-RZ770
2Sony VPL-HW40ES
3Epson EH-TW3200
4Please note that this has been carried out to make the performance of our

proposed method more visible in the figures
5Canon EOS 1200D, Samyang 14mm f/2.8 lens



Fig. 6: Left: The adaptively computed RGB input samples. As it can be seen the sampling refined the RGB cube significantly different depending
on the device. Right: The according interpolated color gamuts in RLab space for all four projectors. They are ordered as they are located
physically (cf. the configuration shown in Figure 5): The two lower ones are the Panasonic DLPs, the upper left the Sony LCoS and the upper
right the Epson LCD device.

Fig. 7: Comparison of several projected images: The top two rows are showing the input images without any gamut mapping or color optimization
applied. (They were captured with half the exposure time to avoid saturation). The bottom five rows show the different gamut mapping and
optimization approaches.



resulting warping tables were used to transform all evaluation images
into the according perspectives of the projectors. Blending weight
maps were computed as described in Section 3.2. Next, the individual
color gamuts were acquired with a colorimeter6 using the adaptive
sampling strategy which has been summarized in Section 4. A ∆E00
threshold of 1.5 was used. The RGB inputs and the resulting measured
samples of all four projectors are visualized in Figure 67. As it can
be seen, the adaptive sampling algorithm had to carry out significantly
different strategies to achieve a mapping accuracy below the given
target threshold. Depending on the device, 111 up to 664 samples were
required to achieve the desired CPM accuracy. Each of the samples
was captured 15 times and averaged to minimize temporal variations
due to the potential temporal effects of the color processing engines
used such as mirror flips or dithering [4]. The overall scanning took
approximately 30 minutes.

The code was implemented prototypically in Matlab and ported to
C++. The constrained optimization described in Section 6.3.1 was
implemented using a box constrained non-linear solver with numerical
differentiation8. Note that discontinuities in the CIE2000 function [28]
makes it impractical to use analytical gradients. By utilizing exhaustive
parallelization and caching, the per pixel constrained optimization
approach for a set of four projection images for the proposed setup
shown in Figure 5 could be calculated in approx 5-10 minutes9. Results
as well as comparisons to the other proposed approaches will be shown
in the following.

7.1 Results
Figure 7 shows a comparison of the proposed methods for several im-
ages using the four projector setup. We compared seven conditions
where different gamut mapping and color optimization methods were
applied. The first two were baseline conditions where no gamut map-
ping or color optimization was applied. In the first condition (input),
only the geometric registration using structured light pattern projection
method described in Sec. 3.2 was applied. In the second baseline con-
dition (input blend.), a simple blending method also described in Sec.
3.2 was additionally applied. The other five conditions were prepared
by combining different gamut mapping and optimization approaches.
For gamut mapping, we show the methods of without gamut mapping
(without g.m.), conservative gamut mapping (conser. g.m.) and spa-
tially varying gamut mapping (sp. var. g.m.), which are described in
Sec. 5.3. For color optimization approach, we show the methods of
post-processed blending (post-proc.) in Sec. 6.1, constrained optimiza-
tion (constr. opt.) in Sec. 6.3.1, and pre-processed-blending (pre-proc.)
in Sec. 6.3.2.

Comparing the baselines (top two rows in the figure) and the others,
we find that significant improvements in image quality are achieved by
gamut mappings and color optimizations. Different gamut mapping
and color optimization methods can be compared by focusing a dark
region as shown in the right most column. The visibility of the black
level edges are more diminished in const. opt. and pre-proc. than post-
proc. Therefore, by integrating the alpha values into the optimization
process, the overall already good image quality can be further improved,
especially when the response curves are color dependent as it is the
case in the given configuration of the evaluation setup10. From the
same focused region, it can be seen that the visibility of the black level
edges are more diminished either by conser. g.m. and sp. var. g.m. than
without g.m. Therefore, our gamut mapping methods worked well.

7.2 Evaluation
Since the photographs in the figures make it difficult to accurately assess
and compare the image quality of the different methods, we objectively

6Klein K10-A
7The consistent target white point was manually chosen to represent neutral

white. Because of that, some values exceed 100 on the L axis.
8ALGLIB (www.alglib.net), Sergey Bochkanov
9Intel Xeon E5 2643-v4, 64 GB RAM

10It should be mentioned that the lower two Panasonic DLP projectors had
an uncontrollable black frame around the pixel area of the DLPs. This was not
considered in our approach
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Fig. 8: Color accuracy for each region of a projected uniform white
color expressed in ∆E00 color differences. The figure shows a photo-
graph of the unblended projections to highlight the projector overlaps.

Table 1: Spatially-average color variations from the target colors ex-
pressed in ∆E00 color differences.

mean ∆E00 White Gray Red Green Blue Black
post-proc. 2.35 2.1 1.5 1.1 1.6 2.52
constr. opt. 1.34 1.33 1.24 0.89 1.1 1.5
pre-proc. 1.58 1.44 1.42 0.99 1.5 1.57

evaluated the quality of our approach by firstly measuring the reflected
colors using the colorimeter at different spatial locations and secondly
by setting up a second two-projector configuration to evaluate the
quality when using spatially varying color prediction models.

7.2.1 Color Uniformity Measurements
Since the camera images are not exactly giving an objective impression
of the quality of our method, we carried out further measurements:
To evaluate the uniformity which can be achieved with our presented
approaches, we displayed several uniform colors being processed by
the different color optimization methods. The reflected colors were
sampled by the colorimeter at 9 different locations and analyzed.

Figure 8 shows ∆E00 values between the measured and the expected
input XYZ values for a gamut mapped full white image at the nine
sampled locations for the different approaches. As it can be seen,
the proposed CPM is able to accurately reproduce the desired colors.
Furthermore, it shows that the pre-processed blending as well as the
constrained optimization approaches are able to significantly further
improve the accuracy compared to a post-processed blending approach.
This becomes obvious when comparing the five measurement areas
where the different projectors overlap.

In table 1, the averaged ∆E00 values for the nine sample locations
are listed for six different uniform color projections. Again, it can
be shown that our CPM is able to accurately reproduce the target
colors. Furthermore, it also shows that the additional computational
overhead of using the constrained optimization approach leads to the
most accurate color reproduction.

7.2.2 Spatially Varying Color Gamut Mapping
Figure 9 shows two interleaved photographs of a projection generated
by gamut mapping the content to a conservative gamut and one using
the spatially varying gamut mapping approach. One can observe that
by using the latter, we are able to achieve a higher contrast, i.e. darker
blacks as well as brighter highlights, without generating any color
clipping artifacts.

7.2.3 Spatially Varying Color Prediction Models
As mentioned in section 4.2, our method is also able to account for
spatially varying CPM within one projection. This is, for example,
required if the projector is illuminating the surface from a steep angle.



Fig. 9: Interleaved photograph of the projections where even stripes are
mapping to a conservative gamut and odd stripes to a spatially varying
gamut.

To evaluate how well such intra-projector variations can be handled,
we set up a second prototype consisting of two projectors (LCoS and
LCD) in a horizontal cross-configuration. The results are shown in
Figure 10. In (a), the photograph of an uncorrected grey projection
is shown. The numbers show the ∆E00 errors for corrections using
spatially uniform and varying CPMs. The result of the latter is also
shown in the photograph (b) in which a uniform gray projection is
generated.

7.3 Limitations

Although the proposed method is able to generate a high quality multi-
projection displays even in heterogeneous projector configurations and
with devices which are difficult to linearize, it still has limitations: The
proposed method does not consider black levels outside the projector
pixel area which is an issue for most DLP projectors. Since this area is
uncontrollable it can not be directly controlled but the other overlapping
projectors could be used to compensate for that offset. However, an
accurate knowledge of that area then is required which could be carried
out using the camera by thresholding individual black projections. This,
is one of the points which we are targeting to investigate in the future.

8 SUMMARY AND CONCLUSIONS

Our proposed framework for generating a consistent, uniform, high-
quality multi-projection display offers flexible but still efficient meth-
ods to achieve that goal, even when heterogeneous projectors are used
which do not have linear responses and cannot be linearized easily due
to their complex color processing operations. The experimental results
showed that our pre-processed blending and constrained optimization
methods provided superior visual quality to the classical post-processed
blending method in terms of luminance and color uniformity. In the
future, considering a display system consisting of a large number of pro-
jectors, we are planning to apply a distributed cooperative optimization
framework (e.g., [32]) to avoid a significant increase in computational
costs. Carrying out an in-depth evaluation of the perceived visual qual-
ity with accurately tuned RLab parameters regarding varying levels of
ambient illumination and color adaptation, as well as implementing and
evaluating other, eventually even more sophisticated color appearance
spaces is another interesting direction of future research.
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