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Abstract— In this paper a method for distributed reciprocal
collision avoidance among multiple non-holonomic robots with
bike kinematics is presented. The proposed algorithm,bicycle
reciprocal collision avoidance (B-ORCA), builds on the concept
of optimal reciprocal collision avoidance (ORCA) for holonomic
robots but furthermore guarantees collision-free motionsunder
the kinematic constraints of car-like vehicles. The underlying
principle of the B-ORCA algorithm applies more generally to
other kinematic models, as it combines velocity obstacles with
generic tracking control. The theoretical results on collision
avoidance are validated by several simulation experiments
between multiple car-like robots.

I. I NTRODUCTION AND RELATED WORK

In this paper, a novel collision avoidance strategy for a
group of car-like robots is presented. Various application
areas throughout research and industry have seen an ever-
growing interest in mobile robots. Industrial and service
robots are mostly non-holonomic, and often designed as
car-like vehicles. A particular example of car-like vehicles
deployed in an industrial setting are the MagneBikes [1],
compact robots with bicycle kinematics designed for the
collaborative inspection in power plants. This and all other
applications, where multiple car-like robots interact in their
workspaces, require reciprocal collision avoidance methods.

Moving a vehicle on a collision-free path is a well-
studied problem in robot navigation. The work in [2], [3]
and [4] presents representative examples of collision avoid-
ance methods for single mobile robots. Basically, similar
approaches as in the single robot cases can be applied
in the context of collision avoidance for multiple robots.
However, the increase in robot density and collaborative
interaction needs methods that scale well with the number
of robots and avoid collisions as well as oscillations. The
collision avoidance approaches are extended in [5] among
others for multiple robots by decoupling path planning and
coordination. In this line, [6] presented a method based
on velocity profiles and scheduling to navigate several cars
in a common environment. Collisions are then avoided but
some of the cars need to pause and stop completely to let
others move ahead freely. Other work investigated potential
fields [7] and cooperative control laws [8] to direct a group
of robots to their objectives while avoiding collisions. De-
centralized control helps lowering computational cost and
introduces additional robustness and flexibility to the multi-
robot system. The problem of navigating car-like robots in
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dynamic scenarios has also been studied, with a great interest
in navigation among humans [9]. A successful approach for
this kind of scenarios based on a dynamic window was
proposed in [10].

Our approach builds on Optimal Reciprocal Collision
Avoidance (ORCA) [11] for holonomic robots and extends
it to robots with car-like kinematics by using a trajectory
tracking control [12], which is specific for this type of kine-
matics. However, the concepts here proposed apply to other
kinematic models in general since the trajectory tracking
controller is seen as a module that can be replaced to adapt
the collision avoidance method to the particular kinematics of
other systems. ORCA is a collaborative collision avoidance
method based on velocity obstacles, where each holonomic
robot makes a similar collision avoidance reasoning and
collision-free motion is guaranteed without oscillations. Fur-
thermore, in our approach, ORCA could be substituted by
other sampling-based collision avoidance methods, such as
Reciprocal Velocity Obstacles [13] or Hybrid Reciprocal
Velocity Obstacles [14].

A formal extension of ORCA to differentially-driven
robots was presented by the authors in [15]. That work
shares with this paper the idea of extending ORCA to
robots with non-holonomic kinematics by tracking a holo-
nomic trajectory. ORCA was also extended to navigating
simple airplanes with car-like kinematics in 3D space [16],
where a set of trajectories is precomputed. Nevertheless,
safety is not fully guaranteed as collisions may arise in
the transient before reaching the desired velocity. In this
paper we introduce a formal approach where this is taken
into account by enlarging the radius of the robots. As an
alternative, [17] presented the acceleration velocity obstacles
for agents with holonomic acceleration capabilities, which
explicitly takes into account acceleration limits and results
in trajectories with continuous velocity (this was not the case
for RVO and ORCA). Nevertheless, it does not generalize to
general kinematics and cannot be directly applied to car-
like vehicles. In contrast, in our approach the continuity in
velocity and actuators is achieved thanks to the trajectory
tracking strategy.

In contrast to purely deterministic methods, in [18] a
method for recursive probabilistic velocity obstacles is stud-
ied, and in [19] collision-free trajectories are found by using
Gaussian processes.

The remainder of the paper is structured as follows.
Section II gives an overview of our collision avoidance
algorithm. Section III describes the kinematics of the robot,
whereas Section IV presents the trajectory tracking controller
and Section V gives an overview of optimal reciprocal



collision avoidance for holonomic robots. In Section VI the
B-ORCA algorithm is described in detail. In Section VII the
simulation experiments are discussed. Finally, Section VIII
concludes and gives an outlook on our future work.

II. OVERVIEW OF THE B-ORCA ALGORITHM

Bicycle reciprocal collision avoidance(B-ORCA) presents
an efficient method for avoiding collisions in a scenario
with multiple car-like robots. The method is fully distributed
and the information required by each robot in order to
avoid collisions includes the position, velocity and radius
of its neighbors. The B-ORCA algorithm does not only
offer oscillation-free reciprocal collision avoidance among
multiple possibly heterogeneous robot units (i.e. the robot
kinematics may not be of the same type), but also avoids
collisions with dynamic and static obstacles.

Likewise to [15], the main idea is that a robot with
given kinematic constraints is able to track a holonomic
trajectory within a certain maximum error bound. Therefore,
by enlarging the radius of the robot by this bound, it can be
treated as holonomic. In this case, a collision-free trajectory
is efficiently computed following [11]. By using a standard
trajectory tracking controller [12] and precomputing the
maximum tracking errors, a set of holonomic trajectories is
obtained that can be tracked within the given maximum error
bound. This set is introduced as a further constraint in the
selection of collision-free inputs for the robot. Furthermore,
the controller of [12] guarantees continuity in the driving
velocity and acceleration of the robot, as well as in the
steering angle, and respects the kinematic limits (maximum
driving velocity, driving acceleration, steering angle and
steering velocity) of the vehicle. Nevertheless, likewiseto
ORCA, a circular robot-shape is required.

III. ROBOT KINEMATIC MODEL

In this work the robots are considered to be non-holonomic
car-like vehicles. A simplified car model with a fixed rear
wheel and a steerable front wheel, as shown in Figure 1,
is used. The generalized coordinates areq = (x, y, θ, φ),
wherex, y represent the position of the rear wheel,θ the
orientation of the car andφ the steering angle. If the car
of lengthL has rear-wheel driving, the kinematic model is
given (in accordance with [12]) by
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wherev1 andv2 are the driving and steering velocity inputs,
respectively. The model singularity atφ = ±π/2 is avoided
by restricting the range of the steering angle to|φ| < φmax <
π/2. Furthermore, both inputs are limited to|v1| ≤ vmax

1
and

|v2| ≤ vmax
2

, as well as the driving acceleration|v̇1| ≤ amax
1

.
The parameters of the bicycle robots (see Section IV-D)

used in the simulation experiments of this work are those
of the inspection robot MagneBike as described in [20] and
those of a faster car-like vehicle.

Fig. 1. Schema of a car-like robot, with extended radiusǫ and desired
velocity vd. Its middle point is denoted byp.

IV. T RAJECTORY TRACKING

One of the underlying concepts of the B-ORCA algorithm
is that a car-like robot tracks a constant-speed straight-line
trajectory while staying within a known tracking error.

A. Trajectory tracking controller

The trajectory tracking controller [12] is obtained by
applying full-state linearization via dynamic feedback tothe
non-linear system of Equation (1).

The two system outputs and their derivatives are given by

z =

[

x
y

]

, ż =

[

ξ1 cos θ
ξ1 sin θ

]

,

z̈ =

[

−ξ2
1
tanφ sin θ/L+ ξ2 cos(θ)

ξ2
1
tanφ cos θ/L+ ξ2 sin(θ)

]

, (2)

with ξ1 and ξ2 two integrators added to the system. It can
be seen that the dynamic controller takes the form

v1 = ξ1

v2 = −3ξ2 cosφ
2 tanφ/ξ1 − Lr1 cosφ

2sinθ/ξ2
1

+Lr2 cosφ
2 cos θ/ξ2

1

ξ̇1 = ξ2

ξ̇2 = ξ3
1
tanφ2/L2 + r1 cos θ + r2 sin θ, (3)

where the feedback termsri (i = 1, 2) are given by

ri =
...
z d,i + ka,i(z̈d,i − z̈i) + kv,i(żd,i− żi) + kp,i(zd,i − zi),

(4)
where zd, żd, z̈d and

...
z d are computed for the desired

trajectory to track (see Section IV-B). The feedback gains
are such that the polynomials

λ3 + ka,iλ
2 + kv,iλ+ kp,i, i = 1, 2, (5)

are Hurwitz (all roots of the polynomial are real negative).
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Fig. 2. Maximum tracking errors in[m] for a desired trajectory given byvd ∈ V and saturated at 5m. From left to right, the initial driving velocity v0
and the steering angleφ vary from (v0, φ) = (−4m/s, −25 ◦) , (−4m/s, 0 ◦) to (0m/s, 0 ◦). Images best viewed in color.

Furthermore, recall [12] that this controller allows for
parking maneuvers. Constraints in maximum steering angle,
driving and steering velocity inputs and driving acceleration
are directly added by saturating the respective variables (φ,
ξ1, v2 andξ2).

B. Tracking of constant-speed straight-line trajectory

Due to position and rotation invariance, consider a car
initially centered at the origin (p(0) = 0) and with orientation
θ(0) = 0. Consider a desired straight-line trajectory given
by a constant velocityvd and passing throughp(0). Denote
vd = ‖vd‖ and θd = atan2(vd). The feedback terms of
Equation (4) are then given by

r1(t) = −ka,1z̈1(t) + kv,1(vd cos θd − ż1(t))

+kp,1((vdt− s1L/2) cos θd − z1(t))

r2(t) = −ka,2z̈2(t) + kv,2(vd sin θd − ż2(t))

+kp,2((vdt− s1L/2) sin θd − z2(t)), (6)

wheres1 = 1 if the car to be tracked is considered to move
forward ands1 = −1 otherwise. This ambiguity appears
because the trajectory to be tracked is given with respect to
the center of the robot, whilst the controller is designed for
rear-wheel tracking.

The initial conditions of the variables are given by

z(0) =
[

L
2
cos θ(0)

L
2
sin θ(0)

]

; ξ(0) =

[

v0
a0

]

(7)

wherev0 = v1(0) and a0 = v̇1(0) are the driving velocity
and acceleration respectively. In our implementation, we
chooses1 = sign(cos θd cos θICR + sin θd sin θICR) where
θICR = sign(φ)(π/2 − |atan(2/| tanφ|)|) + θ(0) is the
angle between the abscissa and the perpendicular to the line
formed by the instantaneous center of rotation (ICR) and the
middle pointp(0) of the vehicle at initial time. As a further
simplification, in our experiments, we considera0 = 0, thus
guaranteeing continuity in velocity but not in acceleration.

Despite the initialization, it may occur that the tracking
robot and the tracked virtual car move with opposite ori-
entations, i.e. one forward and one backward. This would

lead to perfect tracking of the rear wheel but large error in
the tracking of the reference robot center point. In order to
compensate, if this situation is detected (cos θd cos θ(t) +
sin θd sin θ(t) < 1), the velocity of the tracked pointzd
is temporally increased, or decreased respectively, untilthe
orientation of the reference car is reversed. Note that the
center point of the reference car always moves at speedvd.

C. Achievable velocities

Given the initial conditions of the robot (initial driving
velocity v0 and steering angleφ) and the desired velocity
vd ∈ V ⊂ R

2, its trajectory subject to the controller
presented in this section is simulated and the maximum
tracking error in the robot center point is computed. For given
φ andv0, the set of precomputed tracking errors forvd ∈ V
is denoted byEφ,v0 . Consider

Vφ,v0,ε = {vd ∈ V | Eφ,v0(vd) ≤ ε}, (8)

the subset ofV of velocities that can be tracked with an
error lower thanε (computed with respect to the robot center
point).

We consider the discretizationsV = [−vmax
1

: ∆v1 :
vmax
1

]2, φ ∈ Φ = [−φmax : ∆φ : φmax] and v0 ∈ V0 =
[−vmax

1
: ∆v1 : vmax

1
]2. For φ ∈ Φ, v0 ∈ V0 and vd ∈ V ,

the trajectories of the car-like robot are simulated, and the
maximum tracking errors precomputed and stored in a look-
up table. Note that this computation is expensive, but is done
off-line and only once for the kinematics of a given robot.
In our simulations, the feedback gains of Equation (5) are
computed such that all roots equal to -1 (MagneBike) and
-2.5 (fast car).

In Figure 2, the maximum tracking errors obtained for
the kinematics of the fast car are visualized for(v0, φ) =
(−4m/s, −25 ◦) , (−4m/s, 0 ◦) and(0m/s, 0 ◦). Note that due
to symmetry, the tracking errors only need to be computed
for one half of the full range of steering anglesφ, e.g.φ ∈
[−φmax, 0 ◦]. However, the same does not hold true for the
driving velocities.

Figure 3 shows the tracking errors for the MagneBike
robot. Here continuity in speed is not imposed, which results
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Fig. 3. Maximum tracking errors in[m] for a desired trajectory given by
vd ∈ V , here shown forφ = −45 ◦. In the case of MagneBike,v0 is set
to s1vd, and thus precomputation includes varying steering anglesonly.

in sets that are clearly different from the sets of the car
illustrated in Figure 2 (see also Section IV-D below).

It is observed that the areas of best tracking are strongly
related to the steering angle of the front wheel, which has
an impact in the maneuverability of the robot.

D. Parameters for the simulated vehicles

The parameters for the simulated vehicles are as follows.
1) Car: φmax = 30o, vmax

1
= 5m/s, vmax

2
= 30o/s,

amax
1

= 2m/s2, L = 2m, ∆φ = 1o, ∆v1 = 0.25m/s.
2) MagneBike:φmax = 85o, vmax

1
= 0.045m/s, vmax

2
=

33o/s, L = 0.25m, ∆φ = 5o, ∆v1 = 0.0025m/s.
For the MagneBike, unconstrained acceleration is considered.
To allow for discontinuities in driving velocity, in Equa-
tion (7), the initial conditions may be rewritten asξ(0) =
[s1vd, 0].

V. RECIPROCAL COLLISION AVOIDANCE FOR

HOLONOMIC ROBOTS

B-ORCA relies on the concept of Optimal Reciprocal
Collision Avoidance (ORCA) for holonomic robots presented
by [11]. In this section an overview of ORCA is given.

Consider a group ofN disk-shaped robots with radiusri
at positionpi and with current velocityvi. Further consider
each robot has a preferred velocityvprefi towards its goal
position.

The velocity obstacle for roboti ∈ [1, N ] induced by any
other robotj 6= i is defined as the set of relative velocities
v̄ = vi − vj leading to a collision within a time-horizonτ

V Oτ
i|j =

{

v̄ | ∃t ∈ [0, τ ] , t · v̄ ∈ D(pj − pi, ri + rj)
}

,
(9)

whereD(p, r) = {q | ‖q − p‖ < r} is the open ball of radius
r centered atp. The set of collision-free velocitiesORCAτ

i|j
for robot i with respect to robotj can be geometrically
constructed fromV Oτ

i|j . First, the minimum change in
velocity

u = (argmin
v̄∈∂V Oτ

i|j

‖v̄ − (vopti − voptj )‖)− (vopti − voptj ) , (10)

Fig. 4. Constraints in velocity space generated byORCAτ
i|j

from multiple
robots. The region of collision-free velocitiesORCAτ

i is highlighted and
v∗i is displayed.

which needs to be added tōv to avoid a collision, is
computed.vopti is the optimization velocity, set to the current
velocity vi of the robot. From our experience with ORCA,
this choice gives good results. It can further be seen that

ORCAτ
i|j = {vi|(vi − (vopti + λi,ju)) · n ≥ 0} (11)

where n denotes the outward normal of the boundary of
V Oτ

i|j at (vopti − voptj ) + u, and λi,j defines how much
each robot gets involved in avoiding a collision (where
λi,j + λj,i = 1). λi,j = λj,i = 0.5 means both robots
help to equal amounts to avoid colliding with each other;
λi,j = 1 means roboti fully avoids collisions with a dynamic
obstaclej. Likewise, the velocity obstacle can be computed
for static obstacles [11].
ORCAτ

i , the set of collision-free velocities for roboti is
then given by

ORCAτ
i = D(0, V max

i ) ∩
⋂

j 6=i

ORCAτ
i|j , (12)

Figure 4 shows the setORCAτ
i for a configuration with

multiple robots.
The optimal collision-free velocity for roboti is given by

v∗i = argmin
v∈ORCAτ

i

‖v − vprefi ‖. (13)

This optimization with linear constraints can be efficiently
solved, returning a convex and compact setORCAτ

i and a
collision-free velocityv∗i . In order to avoid reciprocal dances,
one of the sides ofV Oτ

i|j may slightly be enlarged to avoid
the symmetry. In our case,V Oτ

i|j is enlarged by 0.001m/s
to one side.

VI. T HE B-ORCA ALGORITHM

The B-ORCA method first of all precomputes the tracking
errors Eφ,v0 with respect to the straight-line trajectories
defined by the velocity vectorsvd ∈ V for all possible
initial steering anglesφ ∈ Φ and initial velocitiesv0 ∈
V0 following Section IV-B. In this step the kinematics of
the robot are taken into account. As the velocities to be
tracked are considered relative to a robot’s orientation, the



Fig. 5. Trajectories of ten car-like robots exchanging antipodal positions on a circle.Left: Experiment 1 with car-like vehicles.Middle: Experiment 1
with MagneBikes.Right: Experiment 2, where one car is non-reactive (straight-linetrajectory in red), thus ignoring the other robots.

previously obtained tracking errors are not only invariantto
the position of the robot but also to its current orientation. In
the following,Eφi,v0 is expressed in a relative frame oriented
with θi, whilst ORCAτ

i is computed in the global reference
frame.

In every iteration of the collision avoidance stage, each
robot reads out its sensors and gains knowledge about
its internal state, given by its positionpi, orientationθi,
steering angleφi, current velocity vi, preferred velocity
vprefi , current driving velocityv0 = v1, radiusri and desired
radius extension̂εi. Furthermore, each robot obtains from
its neighbors via communication or sensing their position
pj , current velocity (or velocity estimate)vj and extended
radiusrj + εj .

Given a group ofN robots, with known aggressiveness
λi,j , fixed maximum time to collisionτmax and sensing
range dmax, assume a known fixed update rate of the
controller ofdtc and of the sensing ofdts, with dtc << dts.

The following steps are computed independently by each
robot in every iteration:

1) A preferred velocityvprefi towards the goal is obtained.
2) The extended radiusri + εi is set to ri +

minj (ε̂i, (d(i, j)− ri − rj)/2), whered(i, j) denotes
the distance (middle points) from roboti to robotj.

3) All robots (including roboti) within dmax are consid-
ered as holonomic robots of radiusrj + εj . Following
Section V the setORCAτ

i is computed.
4) A new collision-free velocityvi is computed, such that

it is closest tovprefi and such that it verifiesvi ∈
ORCAτ

i ∩ Vφi,v0,εi . Thus,

vi = argmin
v∈ORCAτ

i
∩Vφi,v0,εi

‖v − vprefi ‖. (14)

5) The trajectory given byvi is tracked with control
update ratedtc, as described in Section IV.

If ORCAτ
i ∩ Vφi,v0,εi = ∅, the time to collisionτmax is

reduced (τmax = τmax/2), and steps 3) and 4) are repeated.
If τmax reaches a minimum admissible valueτmin

max ≥
vmax
1

/amax
1

, the problem is considered unfeasible and robot
i decelerates at maximum acceleration. If this is the case
for robot i, all other robots must fully avoid collisions with

it in the coming time steps while its optimization remains
unfeasible; this is achieved by temporally settingλj,i = 1
for every other robotj.

A. Implementation details on step 4) of B-ORCA

Depending on the complexity ofVφi,v0,εi , two options are
discussed below.

1) Polygonal approximation ofVφi,v0,εi : Likewise to
[15], the setVφi,v0,εi may be approximated by a convex
polygonPφi,v0,εi ⊂ Vφi,v0,εi (or by two convex polygons
respectively). If the approximation is accurate, step 4) ofB-
ORCA can be efficiently computed as an optimization with
linear constraints given byPφi,v0,εi and ORCAτ

i . This is
the case for the sets depicted in Figure 2.

2) Sampling ofVφi,v0,εi : For complex setsVφi,v0,εi

where a convex polygonal approximation is over-restrictive,
the optimization can be solved by sampling. This is the case
for the sets depicted in Figure 3.

As a naive approach, starting from the velocityvprefi

and searching the discrete spaceORCAτ
i ∩ Vφi,v0,εi for

the closest velocityvi could computationally be expensive.
Nevertheless,vi can be efficiently computed. First,v∗i is
obtained solving the optimization with linear constraints
given by Equation (14). Then, the procedure in step 4) of the
algorithm continues with a constrained wave expansion from
v∗i as follows: An ordered list is initialized withv ∈ V as the
closest velocity tov∗i according to a given distance metric,
and all its neighbors are added keeping ascending order in
distance. While the list is non-empty the first velocityv
of the list (with minimum distance tov∗i ) is checked. Ifv
verifies a set of linear constraints, i.e.v ∈ ORCAτ

i , the list
is expanded with the neighbor velocities ofv. If v further
verifies the precomputedEφi,v0(v) ≤ εi, i.e. v ∈ Vφi,v0,εi ,
thenv is directly returned as the collision-free velocityvi.

This search method is bounded to the convex polygon
given by ORCAτ

i , and thus the optimal velocity is found
in a few steps unlessORCAτ

i ∩ Vφi,v0εi = ∅, where no
solution exists.

B. Remarks on the B-ORCA algorithm

Remark 1 (Collision-free): B-ORCA guarantees collision
-free trajectories. In each time-step, the planned straight-



line trajectories given byvi are collision-free for holonomic
robots of radiusri + εi. Further, the trajectory of each car-
like robot stays withinεi of the planned straight line. This
guarantees that the distance between two robots is greater
than the sum of their radii, thus requiring step 2) of B-
ORCA. After each time-step a new collision-free trajectory
is computed, leading to more complex global paths.

Remark 2 (Kinematic continuity):B-ORCA guarantees
trajectories with continuity in (at least) velocity and steering
angle, and fully respects the kinematic constraints and limits
in actuators, velocities and accelerations. This properties
follow from the controller presented in Section IV.

Remark 3 (Convergence):Convergence to goal destina-
tions is not fully guaranteed in a reasonable time. Deadlock
situations may result when the robot’s collision-free velocity
closest to its preferred velocity tends to zero orVφi,v0εi

is over-restricted. This can be resolved by choosing a new
preferred velocity given by a global path planner.

VII. S IMULATION RESULTS

A set of simulated experiments has been conducted to
show the performance of the proposed B-ORCA algorithm.
The simulated bicycles and car-like vehicles are governed by
the kinematics and parameters of Section III and Section IV.
Furthermore, the following parameters are chosen for the
simulations:

1) Car: τmax = 10s, τmin
max = 2s, dmax = 35m, dtc =

0.025s, dts = 0.2s andε̂i = 1m.
2) MagneBike: τmax = 30s, τmin

max = 4s, dmax = 2m,
dtc = 0.1s, dts = 1s andε̂i = 0.05m.

The desired extension̂ǫ of the robots’ radii is selected
as a value that presents a good trade-off between radius
enlargement and maneuverability for the considered robots.
Although the aggressivenessλi,j can be variable, it is chosen
as λi,j = 0.5 for every pair of robots in the presented
simulations, and thus all robots take the same responsibility
in avoiding collisions.

Three experiments are presented in this work, all of them
performed with ten simulated vehicles of both types (cars
and MagneBikes), as follows:

• Experiment 1: Exchange of antipodal positions on a
circle.

• Experiment 2: Exchange of antipodal positions on a
circle; one robot acts as dynamic obstacle and does not
perform any collision avoidance. The remaining nine
robots take full responsibility (λi,j = 1) in avoiding it.

• Experiment 3: All robots start from random positions,
orientations and steering angles and move to random
goal positions.

In all of the experiments, uniform noise in position of
amplitude 0.1m for the cars and 0.01m for the MagneBikes
is added.

In the left of Figure 5 the trajectories of all ten simulated
cars, and in the middle of Figure 5 the trajectories of all ten
simulated MagneBikes are displayed for the first experiment.

Finally, on the right of Figure 5 the trajectories of the cars
are shown for the second experiment, where one of the cars

Fig. 6. Trajectories of ten car-like robots starting from a random
configuration and moving to random goal positions. The straight line and
dashed line trajectories represent the middle and rear-wheel points of the
cars, respectively. The robots are displayed in their initial configurations and
goal positions are represented by red circles.

is non-reactive and follows a straight-line trajectory towards
its goal.

These experiments all present extreme symmetry and are
thus challenging. B-ORCA performs best in more natural
scenarios, where robots are in any position with any ori-
entation and steering angle, and the velocity-based local
collision avoidance provides a simple solution. In Figure 6
the trajectories of the third experiment are shown. In this
case, the ten cars start from a random configuration and
evolve towards a set of random goals. The paths are again
smooth. The robots are stopped in the proximity of their
goals because the controller of Section IV is designed for
trajectory tracking. In order to have perfect convergence,
a position controller must be applied when reaching the
neighborhood of the goals.

In the accompanying video, all three experiments are
presented in full length for both vehicle types, where for
each robot three arrows are plotted, representingvprefi (red),
v∗i (blue) andvi (black).

We have further implemented the B-ORCA algorithm
under ROS1, and are currently experimenting on collision
avoidance with several real MagneBike robots [20], [1].

VIII. C ONCLUSION AND FUTURE WORK

In this work, a distributed method for reciprocal local
collision avoidance among bicycle or car-like robots, so-
called B-ORCA, is presented, where each individual robot
does not need information about the kinematics of other
robots. The method guarantees collision-free motions and
achieves smooth trajectories as shown in simulated experi-
ments with ten MagneBike and ten car robots. The method

1www.ros.org



relies on the ORCA algorithm that computes a collision-
free velocity as if the robots were holonomic. The method
further relies on a trajectory tracking controller for car-like
vehicles, which could essentially be substituted by any other
tracking controller for kinematic constraints different than
those presented in this paper.

Furthermore, reciprocal collision-free motions are guar-
anteed in heterogeneous groups of robots with car-like
robots running B-ORCA, navigating in an environment with
differentially-driven robots running NH-ORCA [15] and
holonomic robots running ORCA [11]. Moreover, collisions
with both dynamic and static obstacles are avoided, except
in the cases of unfeasibility when due to the kinematic
constraints of the robot, no solution exists. Nevertheless, in
order to avoid deadlocks in a scenario with static obstacles,
a global path planner is required.

Further research is needed in solving deadlock situations
in extremely crowded situations. For less controlled envi-
ronments, or a full integration of sensing and actuation, the
method must also be extended to compensate for uncertain-
ties and communication delays.
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