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Figure 1: We compute spherical integrals of visibility-masked functions commonly found in rendering, e.g. in ambient occlusion
and all-frequency direct illumination. This scene (123.2k triangles) took ∼5 minutes to render on a 4-core CPU, independent
of the lighting. These results render at 84% to 106% the speed of a noise-free ray-traced image, depending on the lighting.

Abstract
At each shade point, the spherical visibility function encodes occlusion from surrounding geometry, in all di-
rections. Computing this function is difficult and point-sampling approaches, such as ray-tracing or hardware
shadow mapping, are traditionally used to efficiently approximate it. We propose a semi-analytic solution to the
problem where the spherical silhouette of the visibility is computed using a search over a 4D dual mesh of the
scene. Once computed, we are able to semi-analytically integrate visibility-masked spherical functions along the
visibility silhouette, instead of over the entire hemisphere. In this way, we avoid the artifacts that arise from using
point-sampling strategies to integrate visibility, a function with unbounded frequency content. We demonstrate
our approach on several applications, including direct illumination from realistic lighting and computation of
PRT data. Additionally, we present a new frequency-space method for exactly computing all-frequency shadows
on diffuse surfaces. Our results match ground truth computed using importance-sampled stratified Monte Carlo
ray-tracing, with comparable performance on scenes with low-to-moderate geometric complexity.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and realism—Color, shading, shadowing, and texture

1. Introduction

Shadows are one of the most identifiable real-world lighting
phenomena, providing important depth cues and informa-
tion about the surrounding lighting environment. Advances
in rendering are increasing the accuracy and performance
of shadow generation, allowing all-frequency shadows from
real-world lighting on scenes of growing complexity.

While initial work on high-performance realistic shadows
focused on simple point and directional light sources (see
recent surveys [ESAW11, WP12]), the availability of real-
world data has prompted generalizations of these approaches
to more complex lighting. Efficiently computing accurate
shadows from environment lights is a difficult problem be-
cause, at each shading point, light must be integrated from

all directions and masked by the spherical binary visibility
function (or visibility, for brevity) at each shade point.

Computing visibility is often the bottleneck in realistic ren-
dering algorithms. Only unoccluded light directions con-
tribute to direct illumination, after weighting by the view-
evaluated BRDF. Computing the visibility is a difficult geo-
metric problem (cf. [DDP02]), typically solved with sam-
pling approaches, such as ray-tracing. Recent GPU ray-
tracing systems can accelerate this costly computation.

We propose a geometric solution to this problem and exploit
the fact that, for many scenes, visibility can be compactly
represented by its (spherical) boundary, or silhouette. We
do not consider scenes where this assumption breaks down
(e.g., stacked/jittered chain-linked fences, complex foliage,
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Figure 2: We compare common approaches for handling visibility. For a noise-free ray-traced result, our approach outperforms
importance-sampled QMC on this simple test scene (37.8k triangles). PRT is computed per-vertex using QMC. QMC scales
better with scene complexity, whereas our approach scales favorably with spherical sampling rate (see discussion in Section 5).

etc.); our method would still work on such scenes, but would
suffer from reduced performance. We compute the spherical
geometric contours about a shade point using a 4D accel-
eration structure, exploiting the fact that only a small per-
centage of all triangle edges contribute to these spherical
contours. We then use these contours to accurately compute
semi-analytic integrals of visibility-masked functions.

Integrals of visibility-masked functions appear in many ren-
dering applications, such as direct lighting [GH06], ambi-
ent occlusion [McG10], and precomputed radiance transfer
(PRT) [SKS02]. We apply our method to these applications
and present an additional optimization for diffuse BRDFs.
While our approach scales well in the number of integration
samples (or, put differently, the complexity of the function
being integrated), it does not scale as well as ray-tracing with
the size of the scene. As such, we are competitive with opti-
mized ray-tracing on scenes of low-to-moderate complexity.

2. Related Work

We address a general problem with immediate applications
in rendering and discuss previous work in related areas.

Boundaries and Sampling. Silhouette computation is crit-
ical to many non-photorealistic approaches [DFRS03] and
we are motivated by the large literature in this area. Hertz-
mann and Zorin [HZ00] use an octree defined over a 4D dual
mesh to quickly find contour edges, whereas we employ a
bounding volume hierarchy (BVH). Silhouette extraction us-
ing Hough transforms may accelerate our approach [OZ06].

Shadow volumes [Cro77] are encased by planes defined by
object silhouette edges seen from a point-light’s position.
Depth counting from the eye determines whether a pixel is in
shadow or not. Before we can consider integrating visibility-
masked functions, we must compute spherical silhouettes at
all shade points, which is significantly more difficult.

Chen and Arvo [CA00] derive analytic expressions for irra-
diance from polygonal lights and reduce the irradiance com-
putation to a contour integral over the edges of the polyg-
onal source using Stokes’ theorem. Similarly, McGuire ap-
proximates ambient occlusion (AO), using Stokes’ theorem

to integrate over the edges of an extruded ambient occlusion
volume [McG10]. We also integrate over boundaries, but to
compute accurate integrals of visibility-masked functions.

Laine et al. [LAA∗05] and Lehtinen et al. [LLA06] com-
bine ray-tracing with a silhouette based approach to com-
pute direct illumination from planar polygonal light sources.
We also exploit silhouettes to simplify the representation
of visibility, although we consider the more general prob-
lem of a textured spherical light domain. We additionally
use line sampled integration, whereas Laine et al. and Lehti-
nen et al. sample with points. Many additional works lever-
age similar silhouette and depth complexity sampling in or-
der to efficiently compute soft shadows [FBP08, AAM03,
ED07], but none consider semi-analytic spherical integra-
tion. More recent works leverage lazy visibility evaluation
and analytic from-polygon form-factor computation to com-
pute soft shadows from geometric area lights and AO ef-
fects [MAAG12, AMGA12]. We are motivated by works on
semi-analytic visibility [NN85, SR00, HMN05] which com-
promise between stochastic sampling approaches that are
sensitive to noise, and more complex fully analytic solutions.

By determining the spherical visibility, we can compute in-
tegrals of arbitrary visibility-masked functions. We discuss
the differences between ours and the aforementioned ap-
proaches in Section 3 but, put briefly, we generalize prior
approaches to the spherical domain while leveraging line,
instead of point, sampling for semi-analytic integration.

Many recent approaches use line samples to perform numeri-
cal integration more efficiently than with point samples. Gri-
bel et al. [GBAM11] use line samples to compute motion
blurred ambient occlusion, and Barringer et al. [BGAM12]
determine camera visibility for geometric curve primitives
(e.g., hair) using per-pixel line sampled integration. These
techniques do not use silhouettes when testing visibility and
consider different visibility scenarios (e.g., not general envi-
ronment map occlusion). The way we perform line integra-
tion is similar to the evaluation of invisibility proposed by
Appel [App67], as well as drawing parallels to fundamental
work in prefiltering and anti-aliasing [GT96, JP00].

Wang et al. [WRG∗09] use a visibility representation, suit-
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able for spatial interpolation, based on signed-distance func-
tions. They still use point-sampling to project visibility into a
basis-space representation for relighting: this projection can
be accelerated with our approach (see Section 4). Annen et
al. [ADM∗08] sample environment maps at few (e.g., 30) di-
rections and use low-resolution filtered shadow maps to sam-
ple visibility for all-frequency shadows of dynamic scenes.
Their filtering masks typical spatial and angular shadow
mapping bias at the cost of blurring the shadows. We instead
determine spherical visibility geometrically and accurately
compute semi-analytic integrals of visibility-masked light-
ing and BRDFs without any noise or blurring.

PRT and Analytic Rendering Approaches. Recent work
focused on static geometry- and image-relighting using
spherical harmonics (SH) [SKS02], Haar Wavelets [NRH03,
NRH04], or radial basis functions [TS06, WRG∗09]. These
approaches represent the lighting, BRDF, visibility, or a
combination of these terms in basis expansions, and then
perform relighting entirely in the basis-space.

Some PRT-based approaches approximate visibility at run-
time to handle dynamic geometry by rasterizing block-
ers into a hemisphere [KLA04], multiplying precomputed
volumetric visibility for rigid blockers using basis-space
product operators [ZHL∗05], or using simplified blocker
proxies and accumulating logarithmic visibility in the
basis-space [RWS∗06]. GPU accelerated non-linear projec-
tions [GHFP08] could be employed in the context of sam-
pling per-pixel spherical visibility in parallel, however these
techniques scale linearly in the size of the scene.

Ramamoorthi and Hanrahan [RH01, RH02] show that out-
going radiance is a convolution of the (radially-symmetric)
view-evaluated BRDF and incident radiance. By represent-
ing BRDF and lighting in SH, this convolution simplifies to
a frequency-space product. In the case of diffuse reflection,
they show that an order-3 SH expansion of the clamped-
cosine ensures a maximum shading error ≤3%. They com-
pute unshadowed shading, where incident radiance is equal
to the environment light (no visibility). Sloan [Slo08] shows
that even this slight error can become noticeable with high
dynamic range (HDR) lighting. With our semi-analytic inte-
gration, shadowed incident radiance can be computed and
used in a frequency-space shading context. In fact, we
will show that when clamping incident light to the upper-
hemisphere, diffuse shading can be perfectly computed with
all-frequency shadows using only band-1 SH (3 coefficients
instead of 9). This resembles a vector irradiance formulation
by Arvo [Arv95] (see Section 4 and Appendix A).

3. Our Method

We integrate spherical functions f (ω) masked by visibility:

I =
∫

S2
V (ω) f (ω) dω, (1)

where S2 are all unit directions and f may be scalar or vector
valued. Since visibility is binary, we can write:

I =
∫
{ω|V (ω)=1}

f (ω) dω. (2)

To compute the integral over the unoccluded region, {ω |
V (ω) = 1}, we need to find the silhouette of all the occlud-
ers in the scene. Previous approaches which consider visi-
bility silhouettes [LAA∗05, LLA06] still require ray-tracing
and only compute shading from polygonal lights. We instead
consider the full spherical visibility (silhouette) and compute
arbitrary integrals of the form in Equation 1. Finding only
the silhouette edges is a difficult problem because whether
an edge is a silhouette edge or not may depend on occluders
far from the edge. Our approach is instead to find the con-
tour edges: edges which contain the silhouette and can be
quickly found using a dual-space BVH (see Section 3.1.)

Given this superset of edges, we could use 2D geometric
booleans to determine which ones comprise the silhouette,
but this is a costly and error-prone procedure. Instead, we
reduce the dimensionality of the problem by parameterizing
the sphere by u and v (we discuss our specific choice of pa-
rameterization in Section 3.3), rewriting Equation 2 as

I =
∫

u

(∫
{v|V (u,v)=1}

f (u,v) J(u,v) dv
)

du, (3)

where J(u,v) =
∥∥∥ dω

du ×
dω

dv

∥∥∥. For each u, the region {v |V =

1} is a set of disjoint intervals, allowing us to write:

I =
∫

u

N(u)

∑
i

(∫ v+i (u)

v−i (u)
f (u,v) J(u,v) dv

)
du, (4)

where N(u) is the number of intervals and [v−i (u),v+i (u)] is
the ith interval. Finally, we discretize along the u dimension,
decomposing the 2D problem into a set of 1D problems:

I = ∑
u

Nu

∑
i

(∫ v+i,u

v−i,u
f (u,v) J(u,v) dv

)
∆u, (5)

where Nu, v−i,u, and v+i,u are the discrete analogues of the con-
tinuous variables N(u), v+i (u), and v−i (u). In other words,
we need only find the intersection points of the silhouette
with u-isolines, as illustrated in Figure 3. The depth com-
plexity function (DCF; Section 3.1) allows us to find these
points efficiently. This basic pattern of boolean dimensional-
ity reduction dates back to the early days of ray casting (e.g.,
Roth [Rot82]); we use it for finding integration bounds. The

way we evaluate the definite integral
∫ v+i,u

v−i,u
f (u,v) J(u,v) dv

depends on f ; we discuss specifics in Section 3.2.

3.1. Contour Edge Computation

At a point p, we are interested in the visibility function V (ω),
which specifies whether a ray starting at p towards ω inter-
sects any scene geometry. Although this definition suggests
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Figure 3: Visibility diagram of two polyhedral occluders
projected onto the sphere. W values (Section 3.1) are shown
as well as unoccluded portions of u-isolines. The DCF in-
crements along a u-isoline are shown in green. Examples of
this picture using our parameterization are in Figure 5.

ray-tracing, we entirely avoid ray-tracing in our method. The
visibility function is piecewise-constant (in fact, binary) and
it changes precisely when the ray crosses silhouette edges,
by definition. To find the silhouette edges, we define the
DCF, W : S2→ N0, which generalizes V .

For a direction ω, W (ω) counts the times a ray starting at p
in that direction intersects the scene geometry. This function
is also piecewise constant and its value changes when the
ray crosses contour edges, as shown in Figure 3. Although
the DCF is more complicated than visibility , silhouettes are
defined by a global condition, whereas contour edges are de-
fined locally, making them easier to compute.

We assume our scenes are represented with triangle meshes.
Consider what happens to W (ω) at a fixed p as we vary ω

so that the ray crosses a triangle edge e. If e is a bound-
ary edge, i.e., has only one adjacent triangle, then the ray
goes from not intersecting this triangle to intersecting it or
vice versa. In this case W (ω) changes by ±1. If e is ad-
jacent to two triangles, there are two possibilities: the ray
can go from intersecting one of the triangles to intersecting
the other, or the ray can go from intersecting neither to in-
tersecting both (Figure 4). Assuming triangles are oriented
consistently, if the triangles are both front-facing w.r.t p or
both back-facing w.r.t. p, then the first possibility occurs and
W (ω) does not change. If, on the other hand, one of the tri-
angles is front-facing and the other is back-facing (w.r.t. p),
then W (ω) changes by ±2 when the edge is crossed.

Let f1 and f2 be plane equations of the triangles, expressed
as 4D vectors (the first three components are the normal,
the fourth is the offset). Then W changes, according to the
conditions detailed above, when an edge is crossed and iff:

sign(f1 ·p) 6= sign(f2 ·p), (6)

where p is expressed in homogeneous coordinates. The con-
tour edges for shade point p are therefore the mesh boundary
edges and edges that satisfy Equation 6.

Finding the mesh boundary contour edges, specifically the
mesh edges with only one adjacent triangle, is simple since
they are the same at every shade point. To quickly find the

Figure 4: Left: W changes by 2 when the edge is crossed
(making it a contour). Right: no change in W (not a contour).

non-boundary contour edges, we use a method similar to that
of Hertzmann and Zorin [HZ00], discussed below.

For scenes with smooth objects, only a small fraction of
edges are contour edges. To avoid testing whether each edge
satisfies Equation 6, we represent each edge e (in the primal
domain) as a line segment in a dual 4D space with endpoints
f1 and f2. These 4D line segments form a 4D mesh in the
dual space which we place into a 4D BVH. To find contour
edges, we perform a 3D-hyperplane (corresponding to the
normal at p in the dual space) vs. 4D dual mesh intersec-
tion using the 4D BVH. We are only interested in the visible
half-space (x−p) ·n≥ 0 and we filter out contour edges hav-
ing both endpoints in the invisible half-space. Since subse-
quent processing is done on a sphere, we project the contour
edges onto the unit sphere around p, making each edge the
arc of a great circle. At a high level, the above resembles the
way Laine et al. [LAA∗05] consider silhouettes; however,
we compute integrals over line samples and handle arbitrar-
ily large domains. We discuss these and other distinguishing
differences below.

3.2. Computing the Final Integral

We now use the contour edges to evaluate Equation 5 by
computing the depth complexity W along every discrete u-
isoline and evaluating the innermost integral along segments
where W is zero. By construction, W changes at intersec-
tions of the contour edges and the u-isolines. We therefore
associate a bucket with each u-isoline where we store these
intersections. For each edge, we determine which discrete u-
isolines it intersects, and put the v values of the intersections
as well as the change of W (±1 or ±2) into the associated
buckets. We then sort each bucket, to obtain the changes to
W in order of increasing v. For a u-isoline, suppose we know
the value of W at v = 0. By traversing the sorted bucket, we
can then incrementally compute the value of W for each v
and integrate f (u,v) J(u,v) over the segments where it is 0.

There are two important caveats. First, determining the value
of W at v = 0. By choosing a parameterization so that all u-
isolines start at the same spherical point, we reduce the prob-
lem to computing W at that single point. The robust solution
is to trace a ray in that direction [LAA∗05]; we implement a
simpler solution: we pick an arbitrary W starting value, tra-
verse the buckets to determine the minimum W and then off-
set the starting value so that this minimum value is zero. The
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Figure 5: Three unfolded octahedra show the visibility about the three red points in the scene, in order of the point on the plane,
on the sphere, and on the teapot. Octahedral edges are black, the visible half-space boundary is blue, contour edges are green,
and unoccluded sections of u-isolines are red. y and z axes are reversed for the sphere and teapot points (see Section 3.3).

second caveat is that we filter out contour edges in the invis-
ible half-space, so if a u-isoline crosses into this half-space
and then crosses back, the values for W will not be correct.
We choose the parameterization so that once u-isolines cross
into the invisible half-space, they never cross back.

Although Laine et al. [LAA∗05] use silhouettes to represent
visibility, in addition to differences in silhouette detection
and applications, our integration method is itself fundamen-
tally different. In their method, light integration is based on
planar point samples, while we integrate semi-analytically
along entire contiguous spherical (iso)lines. As a result, our
integration scales as O(

√
k) in the number of effective sam-

ples k, while the integration in their method scales as O(k).

3.3. Spherical Parameterization

The simplest parameterization to use is spherical angles. The
u and v coordinates are azimuthal and zenith angles. All u-
isolines start at the north pole and, as long as the north pole
is in the visible half-space, u-isolines that cross into the in-
visible half-space never cross back. If the north pole is not in
the visible half-space, we simply reverse the direction of u
and start from the south pole. Unfortunately, computing the
v coordinates of edge intersections with u-isolines requires
evaluating trigonometric functions, which is expensive.

Our implementation instead uses an octahedral parameteri-
zation, similar to Praun and Hoppe [PH03]. Instead of pro-
jecting edges onto the unit sphere, we project them through
the origin onto a unit octahedron |x|+ |y|+ |z|= 1 (Figures 5

-y
y
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-z

-z

z

xx -x-x y

-y

-y

-y-y

Figure 6: Unfolded octahedron (left) and u-isolines (right).

and 6). This projection maps (x,y,z) to (x,y,z)
|x|+|y|+|z| and has the

property that, within an octant, straight lines map to straight
lines. This implies that for an edge within an octant, the v
coordinate of the intersection of the u-isolines with the pro-
jection of that edge is a simple linear function of u and does
not require trigonometry to evaluate. We use the x and y co-
ordinates of our projection as u and v. The z coordinate is
then determined up to sign: we have a set of buckets for +z
and a set of buckets for −z. This property allows our in-
tersections to be computed roughly twice as fast as for the
spherical parameterization. The change-of-variables term of
this parameterization is J(u,v) =

(
u2 + v2 +(1−|u|− |v|)2

)1.5.

The situation with our two caveats from Section 3.2 is some-
what more complicated in the octahedral parameterization.
First, when determining the value of W at v = 0, the u-
isolines all start at different points which requires us to cal-
culate W values at every point. We do this by recording
all projected edge intersections with v = 0 into a special
bucket. We can then calculate W at ω(u,0) incrementally
from W (ω(0,0)) by traversing the elements in this bucket.
The second issue is that in this parameterization, a u-isoline
can cross into the invisible half-space and then back out.
However, this can only happen if |ny|< |nz| and in this case
we simply reverse the y and z axes, temporarily rotating the
domain in order to avoid the double-crossing event.

4. Applications

We focus on applications in realistic rendering, where inte-
grals of the form in Equation 1 commonly arise. Each appli-
cation can be fully described by its f (ω). Our algorithm can
sample shade points arbitrarily; we use per-pixel shading in
all cases except for per-vertex PRT vector computation.

For a function f (ω) (e.g. environment map) we compute a
summed area table (SAT) over u-isolines, reducing definite
integral computation to two lookups and a subtraction. Eval-
uating f only affects SAT construction cost, which is negligi-
ble compared to the cost of silhouette search and integration.
We discuss below how basis projections can be combined
with our SAT to handle higher-dimensional functions.
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Ambient Occlusion. We compute AO with f (ω) = bn ·
ωc0. Note that AO sometimes refers to average visibil-
ity [LS10] without the cosine; this value corresponds to
f = 1, assuming no AO fall-off functions are employed. Our
approach cannot support typical distance-to-intersection AO
fall-off functions since we only mask functions according to
binary visibility. Figures 9 and 11 illustrate this application.

Precomputed Radiance Transfer. We apply our approach
to precomputing basis projections of visibility in PRT triple-
product relighting. In this case, f (ω) = B(ω), where B is
a vector-valued function of the basis functions. We use the
real-valued SH basis functions, B = y where

ym
l (ω) =


K0

l P0
l (cosωθ), m = 0√

2 Km
l cos(mωφ) Pm

l (cosωθ), m > 0√
2 K|m|l sin(|m|ωφ) P|m|l (cosωθ), m < 0

and

y = [y0
0(ω), y−1

1 (ω), y0
1(ω), y1

1(ω), y−2
2 (ω) . . .] (7)

and m indexes the (2l + 1) band-l basis functions, Km
l is a

normalization term, and Pm
l are associated Legendre polyno-

mials. Note however that any basis with a double- or triple-
product formulation can be employed, including data-driven
bases [NKLN10]. By multiplying B with an arbitrary f ,
we can also project visibility-masked functions onto a ba-
sis which is different, and generally more accurate, than per-
forming a product with visibility in the basis space.

Image relighting. For a fixed view, we can precompute sil-
houettes and modify the light at run-time. Therefore, we in-
tegrate the product of visibility and view-evaluated BRDF,
fr(ω,ωo), weighted by cosine foreshortening: f (ω) =
fr(ω,ωo)bn ·ωc0, where ωo is the view vector.

All-Frequency Diffuse Shading. Diffuse shading is the
convolution of a clamped cosine kernel, aligned along n,
with the incident radiance. Since this kernel is clamped to the
upper hemisphere, the sharp discontinuity along the equa-
tor in the angular domain causes infinite frequencies in its
SH projection. Ramamoorthi and Hanrahan [RH01] show
that a 9 coefficient, order-3 SH projection of this kernel cap-
tures the majority of its energy, despite its infinite frequency
content. They project the unshadowed incident radiance (the
environment map, for distant lighting) into order-3 SH and
shade using analytic SH convolution.

We will show that, by incorporating hemispherical clamping
into the incident radiance computation before projecting into
SH, we can compute all-frequency shadows with a band-
limited unclamped cosine, requiring only 3 SH coefficients.
We avoid soft-shadowing approximation errors caused by
SH projection in PRT by projecting visibility-masked inci-
dent illumination. We discuss below how to perform final
shading using a fully band-limited BRDF kernel.

Diffuse direct lighting is computed as the following integral:

I =
ρ

π

∫
S2

Lin(ω)V (ω)H(ω,n)(n ·ω)dω , (8)

where the hemispherical clamping function, H(ω,n), is 1
when n ·ω > 0 and 0 otherwise. The integral of a product of
two spherical functions is the dot-product of their SH projec-
tion coefficient vectors. Previous approaches projected the
functions Lin(ω) and V (ω)H(ω,n)(n ·ω) into SH, because
this enabled run-time manipulation of lighting for static ge-
ometry. Both of these terms have unbounded frequency con-
tent, which means that the accurate computation of the dot-
product of their coefficients requires infinitely many terms.
Ramamoorthi and Hanrahan’s observation relates to the fact
that, while the clamped cosine has unbounded frequency
content, most of it is concentrated in the first three SH bands.

In our case, to avoid precomputing a SAT for each normal,
we need to decouple incident light from n ·ωby integrating
the hemispherical clamping in our silhouette integration of
Lin, treating it as a part of visibility. The incorporation of
hemispherical clamping in the silhouette computation is per-
formed by default, as discussed in Section 3.1.

The remaining function, n ·ω, is unclamped and has bounded
frequency content. This function only has non-zero SH pro-
jection coefficients in the linear l = 1 band. This permits us
to compute the integral of the product of these two terms us-
ing a single SH band, meaning we need only retain the linear
band of the SH projection of Lin(ω) H(ω,n).

We obtain these three coefficient with f (ω) = Lin(ω)
H(ω,n)y1(ω), where y1(ω)= [y−1

1 (ω), y0
1(ω), y1

1(ω)] is a
vector valued function of the three linear SH basis functions
(Appendix A relates this discussion to vector irradiance).
This representation of incident radiance can be extended to
non-diffuse BRDFs where, unlike prior work, shading can
be computed more accurately and efficiently.

Glossy Rendering. We compute the optimal SH projec-
tion of incident radiance depending on the BRDF. For dif-
fuse BRDFs, we only use l = 1, whereas for Phong BRDFs
we choose the SH order according to guidelines set by Ra-
mamoorthi and Hanrahan [RH02]: namely, that a larger SH
expansion is required as the Phong exponent increases. As
opposed to shading uniformly with a maximum SH order re-
gardless of the underlying BRDF, this approach guarantees
that additional computation is only performed as needed. We
do, however, precompute a single SAT for a maximum SH
order. Figures 1 and 9 illustrate scenes with both diffuse and
glossy BRDFs. While we chose SH to leverage our new dif-
fuse formulation, other basis representations could easily be
substituted (i.e. different families of B(ω)).

Material Editing. We can support a simple material edit-
ing scenario: in the context of image-relighting, we allow
a user to interactively change the BRDF of the objects in a
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Ours QMC Ours QMC Ours QMC

Scene # Triangles Env. (5002) (752–852) (502) (502) (102) (102)

BMW 50.2k Ambient 1m:24s 6m:37s 1m:10s 3m:42s 0m:56s 0m:28s
Fly 1 89.9k Uffizi 4m:07s 8m:16s 3m:27s 3m:57s 2m:55s 0m:21s
Fly 2 89.9k Grove 3m:19s 4m:20s 2m:49s 2m:35s 2m:16s 0m:23s

Rhino Car 123.2k Grace 6m:16s 4m:22s 5m:47s 1m:32s 4m:53s 0m:27s
Teapot Grid 1.9M Grove 31m:57s 17m:33s 30m:12s 8m:03s 28m:22s 1m:18s

Table 1: Timing comparison of our approach and importance-sampled QMC for different sampling rates (in brackets). With
few samples QMC outperforms our technique and scales well with scene complexity. Our approach can outperform QMC at
sample rates necessary to obtain artifact-free images for our scenes with low-to-mid geometric complexity (see Figure 10).

scene. By computing the basis projection of cosine-weighted
incident radiance with f (ω) = Lin(p,ω)bn ·ωc0 y(ω) using
a pre-determined number of basis functions (unlike the dif-
fuse case), we can compute the basis projection of fr(ω,ωo)
on-the-fly and shading is computed with a dot-product of the
projection coefficients [SKS02] (see Figure 7).

Figure 7: Editing the car’s paint in Figure 1 from glossy to
diffuse, and changing its texture. The BRDF is incorporated
at shade time, making material changes instantaneous.

5. Results and Discussion

Our experiments were performed on a 4-core hyper-threaded
Intel Core i7-2600K, with an NVidia GTX 560. In our
method, the GPU was only used for final shading; the ac-
tual integral computation was done in parallel on the CPU,
both for our method and for Monte Carlo. Because we do
not exchange data between shade points, our memory usage
beyond the BVH and the output texture is negligible: even
our largest scene used less than 170 MB of RAM.

We use Intel’s optimized Embree v1.1 [Int11] ray-tracer
for comparisons but, like our method, the surrounding code
(ray generation, sampling, shading, etc.) is not as optimized
as the ray-tracing engine. Embree is optimized for tracing
incoherent rays, and we note that our AO and/or direct-
illumination computations generate more coherent ray struc-
tures. Once Embree constructs the ray-tracing acceleration
structure (a BVH variant), we compute a PDF according
to the environment light then generate and warp determin-
istic Halton distributions by this PDF, at each shade point.
At shading time, we reject (importance-sampled) directions
in the lower hemisphere and launch shadow rays for the re-
maining samples, evaluating the BRDF at these directions.

The performance of our integration is largely independent
of f (ω)’s complexity, and is primarily a function of scene

complexity. The majority of our algorithm’s processing time
is spent finding visibility silhouettes; once found, these are
used during final integration which scales linearly with

√
k

but only composes a small portion of the final render time.
The cost to construct the BVH and the SAT for f is negli-
gible compared to the cost of integrating at all the points.
The cost of integrating at a point is roughly proportional to
the number of contour edges that point sees (subject to the
cost of finding them using the BVH). For a scene with n tri-
angles, the number of contour edges for an average shade
point increases roughly in proportion to n0.8 [McG04].

Although asymptotic analysis ignores many considerations,
it can nevertheless shed light on how different algorithms
scale. If we use m shade points (m ≤ 1024×768 in our ex-
amples) and a sampling rate of k for f , our runtime scales
roughly as O(m

√
kn0.8). Due to the 4D BVH, extracting

the contour edges is roughly proportional to their num-
ber O(mn0.8) but with a larger constant. Our method takes
approximately the same time to compute ambient occlu-
sion, all-frequency direct lighting, and PRT vectors. In con-
trast, Monte Carlo integration is dominated by ray-tracing
and shading. Tracing a ray has approximately logarithmic
complexity in n (the number of triangles) therefore, for
similar sampling rates, Monte Carlo will require roughly
O(mk logn) time. The actual sampling rate depends on the
lighting: as Figure 11 shows, Monte Carlo requires more
samples for low-frequency lighting, as importance sampling
cannot adapt to the variance. Similarly, Monte Carlo requires
more rays to render glossy surfaces: glossy BRDFs require
different sampling distributions at every shade point, re-
ducing the effectiveness of light-importance sampling. This
can be alleviated to a certain degree with BRDF-sampling
in a multiple importance sampling framework [VG95]. For
larger scenes, ray-tracing overtakes our method (Figure 12).

“Samples” in our approach correspond to the number of uv
iso-buckets into which we semi-analytically discretize the
visibility silhouette for integration; our sampling resolution
is set to match f (ω)’s SAT resolution. For QMC, “sam-
ples” correspond to the number of integration rays launched
at each pixel. We use independent sampling sets at each
pixel for QMC, resulting in noise when features are under-
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42 = 16 samples 82 = 64 samples 152 = 225 samples 1282 = 16384 samples

3m:43s; RMSE = 0.0889 3m:58s; RMSE = 0.0264 4m:25s; RMSE = 0.0253 5m19s; RMSE = 0.0180

U
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3m:21s; RMSE = 0.0477 3m:39s; RMSE = 0.0366 4m:13s; RMSE = 0.0216 4m:47s; RMSE = 0.0108

Figure 8: Convergence with increasing sample counts on the Tank Car scene (85.2k triangles). Banding is caused by the uniform
discretization of f (ω) in our SAT shared across pixels. Our approach always converges to ground truth with k = 106.

sampled, whereas a global coordinate system is used when
bucketing silhouette segments in our approach, resulting in
banding artifacts for under-sampled features. For low-to-
medium geometric complexity and at the higher sampling
rates required to obtain converged results, our approach oc-
casionally outperforms QMC (see Figures 10 and 11).

When integrating higher-dimensional (e.g. BRDFs) or
spatially-varying functions, basis projections can be em-
ployed and a component of our render time will contain a
linear dependence on the size of the basis expansion. At
every shade point, we cannot easily consider only a subset
of the scene geometry when computing silhouettes; as such,
we do not support AO with arbitrary fall-off functions. Our
approach is consistent and, for high-frequency environment
maps, a sampling rate of 642 to 2562 (k = {642,2562}) is
sufficient to generate converged results. The time required to
compute a single spherical integral with our algorithm grows
much more rapidly with scene complexity than with sam-
pling rate. For simpler scenes (Figure 2 and BMW), this time
varies roughly between 0.06ms and 0.13ms. For moderately
complex scenes (Fly 1, Fly 2, Rhino Car, Tank Car) it varies
roughly between 0.26ms and 0.61ms. The time per inte-
gral for Crash (184.5k triangles; Figure 11) and Teapot Grid
(1.9M triangles; Figure 12) were from 0.79ms to 2.48ms.

Timings are reported in Table 1, Figures 8 and 10. Images
are rendered at 1024×768 and equal-quality comparisons
use an RMSE ≈0.01 vs. ground truth computed with QMC
and k= 106: from Figures 8 and 10 we note that at sample
counts over 452=2025 the majority of the QMC images vi-
sually converge to almost noise-free results. QMC typically
exhibits better performance vs.quality behavior than our ap-
proach at low sample counts and scales much better with
geometric complexity; however, our approach scales better
with the sampling rate (O(

√
k) vs.O(k) for QMC).

Figure 10 compares our convergence/performance profile to
QMC. At lower sampling rates, QMC has a favorable per-
formance vs. error behavior. However, at the high sampling

rates required to obtain converged results on scenes like ours
with low-to-moderate geometric complexity, we can outper-
form the QMC solution (see e.g. BMW, Fly 1 and Fly 2 with
k = 452). The convergence of our approach (as a function of
k) depends on f (ω) as e.g. higher-frequency lighting envi-
ronments may exhibit more drastic banding artifacts during
convergence (Figure 8); however, in all cases we observed
visual convergence with 64≤

√
k≤ 256. Figure 9 illustrates

our approach on scenes with progressively higher-frequency
lighting, and we stress-test our approach on a scene with
1.9 million triangles (Figure 12). While our approach does
not scale as favorably with scene complexity as ray-tracing,
which benefits from three decades of research on accelera-
tion structures, we hope that our work will motivate investi-
gations on such structures for silhouette extraction.

6. Future Work

Our algorithm is data-parallel, implemented on a multi-
threaded CPU, but a high-end 4-core CPU is not capable of
as many FLOPS as a single GPU. We leave GPU acceler-
ation of our approach to future work. Our approach is or-
thogonal to adaptive spatial and image-space sampling (e.g.,
Sloan et al. [SGNS07]), and our approach can be extended
to compute occlusion-aware irradiance gradients [RMB07]
for irradiance caching [WRC88] with environment lighting.

A preliminary investigation of building a hierarchy over
shade points using a Cartesian product tree, similar to hi-
erarchical penumbra casting [LA05], only yielded marginal
performance improvements however this and other adaptive
approaches are interesting directions of future work. Exten-
sions to indirect lighting and dynamic geometry are left for
future work. The latter will benefit from research in fast
BVH reconstruction (we currently use a simple axis-aligned
bounding box BVH). Our approach does not scale well to
complex geometry, e.g. foliage, especially when this com-
plexity increases the DCF. Addressing these shortcomings
mandates more scalable silhouette searching.
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Figure 9: Rendering with different lighting: (left to right) ambient, Uffizi, Grove, and Grace. Render times for each scene (Fly
1 and BMW) are independent of lighting and take (top to bottom) 4m:07s, 1m:24s, and 1m:29s. Changing the materials from
diffuse to glossy in the BMW scene does not add significant overhead, due to our frequency-space optimization.

7. Conclusion

We have presented a semi-analytic approach for comput-
ing spherical integrals of visibility-masked functions. We
demonstrate the feasibility of our approach on several ren-
dering applications and, while our approach does not scale
as well as Monte Carlo ray-tracing on complex scenes, our
proof of concept competes with optimized ray-tracing on
scenes with low-to-moderate geometric complexity. Our al-
gorithm is data-parallel, has a modest memory footprint, and
its performance is independent of the function being inte-
grated (depending only on the function’s resolution).

We hope our approach will promote work on new accelera-
tion structures for silhouette detection to improve the perfor-
mance and scalability of our approach on complex scenes.
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Figure 10: Convergence and performance against QMC at equal sampling rates for the scenes (but not the same lighting) in
Table 1. Our discretization of f (ω) shared across pixels results in banding artifacts at low sampling rates, whereas different
sampling patterns at each pixel for QMC result in noise. Our algorithm’s processing time is dominated by silhouette search and
it scales well with increasing sample counts, however QMC scales better with increasing geometric complexity (see Section 5).
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Our Result (∼6m:02s; SAT Sampling Rate: 5002 = 250000, regularly distributed)

Quasi-Monte Carlo (Equal Time; ∼2300 – 2600 samples)

16× absolute luminance difference image

Quasi-Monte Carlo (Equal Quality)

8500 samples / 18m:47s 6000 samples / 14m:51s 6500 samples / 15m:27s 8000 samples / 18m:41s

Figure 11: We perform an equal-time/quality comparison with importance-sampled QMC ray-tracing in the Crash scene
(184.5k triangles). Our integration is independent of f (ω), and so our results compute in (approximately) equal time.
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Figure 12: Stress test: comparing convergence/performance vs. QMC on a large scene (1.9 million triangles).

ows. Comput. Graph. Forum 31, 1 (2012). 2

[McG04] MCGUIRE M.: Observations on silhouette sizes. Jour-
nal of Graphics Tools 9, 1 (2004), 1–12. 7

[McG10] MCGUIRE M.: Ambient occlusion volumes. In Pro-
ceedings of High Performance Graphics (2010). 2

[NKLN10] NGUYEN C. H., KYUNG M.-H., LEE J.-H., NAM
S.-W.: A PCA Decomposition for Real-time BRDF Editing and
Relighting with Global Illumination. Computer Graphics Forum
29, 4 (2010), 1469–1478. 6

[NN85] NISHITA T., NAKAMAE E.: Continuous tone representa-
tion of three-dimensional objects taking account of shadows and
interreflection. In Proceedings of the 12th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1985), SIGGRAPH ’85, ACM, pp. 23–30. 2

[NRH03] NG R., RAMAMOORTHI R., HANRAHAN P.: All-
frequency shadows using non-linear wavelet lighting approxima-
tion. Transactions on Graphics (2003). 3

[NRH04] NG R., RAMAMOORTHI R., HANRAHAN P.: Triple
product wavelet integrals for all-frequency relighting. Transac-
tions on Graphics (2004). 3

[OZ06] OLSON M., ZHANG H.: Silhouette extraction in hough
space. Computer Graphics Forum 25, 3 (2006), 273–282. 2

[PH03] PRAUN E., HOPPE H.: Spherical parameterization and
remeshing. ACM Transactions on Graphics (2003). 5

[RH01] RAMAMOORTHI R., HANRAHAN P.: An efficient repre-
sentation for irradiance environment maps. In SIGGRAPH (NY,
2001), ACM. 2, 3, 6

[RH02] RAMAMOORTHI R., HANRAHAN P.: Frequency space
environment map rendering. In Proceedings of SIGGRAPH (NY,
2002), ACM. 3, 6

[RMB07] RAMAMOORTHI R., MAHAJAN D., BELHUMEUR
P. N.: A first-order analysis of lighting, shading, and shadows.
Transactions on Graphics (2007). 8

[Rot82] ROTH S. D.: Ray casting for modelling solids. Computer
Graphics and Image Processing 18, 2 (Feb. 1982), 109–144. 3

[RWS∗06] REN Z., WANG R., SNYDER J., ZHOU K., LIU X.,
SUN B., SLOAN P.-P., BAO H., PENG Q., GUO B.: Real-time
soft shadows in dynamic scenes using spherical harmonic expo-
nentiation. In SIGGRAPH (NY, USA, 2006), ACM. 2, 3

[SGNS07] SLOAN P.-P., GOVINDARAJU N. K.,
NOWROUZEZAHRAI D., SNYDER J.: Image-based proxy
accumulation for real-time soft global illumination. In Pacific
Graphics (Washington, DC, 2007), IEEE. 8

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. Transactions on Graphics 21
(July 2002), 527–536. 2, 3, 7

[Slo08] SLOAN P.-P.: Stupid Spherical Harmonics (SH) Tricks.
Game Developers Conference (2008). 3

[SR00] STARK M. M., REISENFIELD R. F.: Exact Illumination
in Polygonal Environments using Vertex Tracing. In Proceedings
of the Eurographics Workshop on Rendering Techniques 2000
(London, UK, UK, 2000), Springer-Verlag, pp. 149–160. 2

[TS06] TSAI Y.-T., SHIH Z.-C.: All-frequency precomputed ra-
diance transfer using spherical radial basis functions and clus-
tered tensor approximation. Trans. on Graphics (2006). 3

[VG95] VEACH E., GUIBAS L. J.: Optimally combining sam-
pling techniques for monte carlo rendering. In SIGGRAPH
(1995), pp. 419–428. 7

[WP12] WOO A., POULIN P.: Shadow Algorithms Data Miner.
Taylor & Francis, 2012. 1

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A ray
tracing solution for diffuse interreflection. SIGGRAPH (1988). 8

[WRG∗09] WANG J., REN P., GONG M., SNYDER J., GUO
B.: All-frequency rendering of dynamic, spatially-varying re-
flectance. Transactions on Graphics 28 (2009). 2, 3

[ZHL∗05] ZHOU K., HU Y., LIN S., GUO B., SHUM H.-Y.: Pre-
computed shadow fields for dynamic scenes. In Proceedings of
SIGGRAPH (NY, USA, 2005), ACM. 3

Appendix A: Linear SH and Vector Irradiance

Our l = 1 SH incident radiance is related to a vector irradiance for-
mulation of diffuse shading. Arvo [Arv95] shows that diffuse radi-
ance can be formulated as the dot-product of the surface normal with
the first-moment of scalar irradiance, called vector irradiance:

v =
∫

Ωn

 x
y
z

 ·Lin(p,ω) dω, such that Lo(p) = n ·v ,

where Ωn is the hemisphere about n. Since band-l SH basis func-
tions are degree-l polynomials in the Cartesian coordinates of ω =

(x,y, z), the l = 1 SH incident radiance coefficients are just a scaled
permutation of the elements of v, and the vector irradiance formula-
tion is equivalent to our optimal hemispherical representation.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.


