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Figure 1: Our framework enables the control of a physics-based character using user-specified kinematic reference motion (in blue), mapping
it to a sequence of temporally and spatially consistent latent codes (decoded in green). In a second step, we condition a reinforcement learning
policy on the latent code, generating actuator commands that execute the motion (yellow) while obeying the laws of physics.

Abstract
Recent progress in physics-based character control has made it possible to learn policies from unstructured motion data.
However, it remains challenging to train a single control policy that works with diverse and unseen motions, and can be
deployed to real-world physical robots. In this paper, we propose a two-stage technique that enables the control of a character
with a full-body kinematic motion reference, with a focus on imitation accuracy. In a first stage, we extract a latent space
encoding by training a variational autoencoder, taking short windows of motion from unstructured data as input. We then use
the embedding from the time-varying latent code to train a conditional policy in a second stage, providing a mapping from
kinematic input to dynamics-aware output. By keeping the two stages separate, we benefit from self-supervised methods to get
better latent codes and explicit imitation rewards to avoid mode collapse. We demonstrate the efficiency and robustness of our
method in simulation, with unseen user-specified motions, and on a bipedal robot, where we bring dynamic motions to the real
world.

CCS Concepts
• Computing methodologies → Learning from demonstrations; Learning latent representations; Reinforcement learning;
Physical simulation; Animation; Control methods;

1. Introduction

Imitation-driven reinforcement learning has led to an astonishing
leap of progress towards a long-term goal of physics-based charac-
ter animation, namely accurate and robust tracking across diverse
skills. Despite this progress, we lack techniques that achieve this
goal with a single policy, covering the diversity in an unfiltered
dataset of universal and dynamic motions while providing full-
body control of the interactive character.

In this paper, we propose a two-stage technique that takes kine-
matic reference motion as input and maps it to actuator commands

of a character. In a first stage, we extract a latent representation
of kinematic motion from an unstructured dataset of motion clips.
To this end, we train a variational autoencoder to reconstruct kine-
matic motion, feeding it with short windows of motion data. In a
second stage, we train a policy to imitate motions from the dataset,
conditioned on both the current frame of the reference motion and
the latent code that corresponds to a time-shifted window centered
at the frame. After training, a user-provided kinematic reference is
mapped to the latent space and then fed to the policy to control the
character.
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By training the latent space and control policy separately instead
of end-to-end [MHG∗18,HPH∗20,WGH22], we take advantage of
well-studied self-supervised techniques to obtain a structured la-
tent code that captures the diverse distribution of motions within
a dataset. Conditioning on latent codes, we can train a single con-
trol policy with an explicit imitation reward that preserves the di-
versity in the input data, without the need for adversarial strate-
gies [PGH∗22,DCF∗23,TKG∗23] that are prone to mode collapse,
or a set of expert policies that are trained on clusters of similar
motions [WGH20, LCW∗23]. Taken together, the motion encoder
and control policy enable the control of the full character for skills
of high complexity, extracting motion features from short, overlap-
ping subsequences of clips.

With a set of demonstrations on both virtual and a physical hu-
manoid character, we show that a combination of known building
blocks arranged in a novel way leads to a simple, yet effective tech-
nique that scales well when it comes to diversity and training com-
plexity, tracks unseen dynamic motions closely and physically in-
feasible motions robustly, and interfaces with common animation
techniques and character control modalities. Succinctly, we con-
tribute

• A demonstration of enhanced downstream imitation learning
through a pretrained versatile motion prior that provides a struc-
tured encoding of kinematic motion.

• A single control policy that is trained on an unfiltered, large-scale
dataset of diverse human motions, providing accurate tracking
and generalization to unseen input.

• A demonstration that our two-stage processing transfers to
robotic characters in the real world, robustly executing expres-
sive motions at the physical limits of hardware.

2. Related Work

Learning-based techniques for character control have received in-
creasing attention in recent years, outperforming model-based tech-
niques in the generation of life-like motions by interfacing with
motion data. We focus our review on data-driven methods, in par-
ticular in the two broad categories of kinematic and physics-based
motion synthesis.

Kinematic Motion Synthesis In a learning-based approach to
kinematic motion generation, a common goal is to create a com-
pact representation of motion that allows for smooth temporal
and spatial composition [LWH∗12, HYNP20, SZKZ20, SMK22],
or to use auto-regressive models to learn the distribution of mo-
tion sequences [LZCVDP20, RBH∗21, CZG∗22]. Recently, ad-
vanced generative models were used to synthesize kinematic mo-
tions [TGH∗22,TRG∗23,STKB23,RLL∗23,RLT∗24,LKP∗23]. To
make the generated motions physically plausible, geometric losses
are used to reduce visual artifacts like foot sliding or penetrations.
To fulfill stricter constraints, physics engines can be incorporated
into the generation process [WGH22, YSI∗23].

These works use a latent space to generate output motions and
are related to the first stage of our proposed processing. However,
we focus on generating physically informed motion and use the
embedding as an interface to a low-level controller of a physics-
based character instead.

Physics-Based Methods The challenges of designing general ob-
jectives that produce natural motions have motivated the use
of data-driven techniques that imitate target animations [SKL07,
WPP14, LH17, GFK∗23]. Simple imitation objectives, together
with advances in deep reinforcement learning (RL) [SB18],
yield high-quality physics-based character control [PALVdP18,
BCHF19, PRL∗19, LSCC20]. However, in these works, the policy
is limited to the imitation of one or a handful of similar skills, re-
quiring additional mechanisms to transition between more diverse
skills.

To learn from large-scale motion datasets, sophisticated methods
are proposed that balance and filter motions, or learn motion match-
ing procedures to increase coverage [BCHF19,WGSF20]. Another
way to make use of large heterogeneous datasets is to divide the
data: Won et al. [WGH20] propose a motion clustering followed
by learning a mixture-of-experts, and Luo et al. [LCW∗23] pro-
pose to train a hierarchical policy where new policies are allocated
for increasingly difficult motion sequences. While they can achieve
impressive imitation quality on a diverse set of skills, we simplify
the process by incorporating a self-supervised kinematic stage that
enables the efficient training of a single and simple multilayer per-
ceptron policy on a large corpus of data.

Another stream of work focuses on exploiting latent spaces
that enable the reuse of policies in a more general setting, target-
ing a foundation model [BHA∗21] for motion control. [ZZLH23,
MHG∗18, HPH∗20, WGH22, GGW∗23] jointly train a motion en-
coder with the policy to extract an embedding that can be reused in
high-level RL tasks. Merel et al. [MTA∗20] extract a latent space by
post-processing multiple expert policies, distilling their knowledge
into a unified policy. To increase sample efficiency, a world model
can be incorporated [YSCL22, FBH21, FXL23], but does not scale
to hours of data [YSCL22] or is sensitive to data quality [FBH21].
Additionally, adversarial learning has been used as an alternative
to explicit imitation objectives [PMA∗21, PGH∗22]. However, this
approach suffers from a long training time and is prone to mode col-
lapse. A conditional discriminator mitigates mode collapse in these
settings [TKG∗23,DCF∗23], but does not prevent it. Moreover, due
to the long training time, these methods are trained on relatively
small datasets, which limits generalization to diverse, unseen mo-
tions. We show that a pre-trained latent space in combination with
explicit imitation rewards results in a universal motion controller
that avoids mode collapse and scales well to large datasets.

Directability of Characters To direct the character, RL-based
methods often use a combination of high-level policies, planners,
or finite state machines that interface with low-level policies, bridg-
ing the gap between high-level commands or task specifications
and actuator commands [PMA∗21,WGSF20,PRL∗19]. In this con-
text, latent space embeddings were used as input to the RL pol-
icy [PGH∗22, MTA∗20]. However, in hierarchical approaches, ex-
plicit control of the resulting motion is lost. To give users more
control, Juravsky et al. [JGFP22] couple latent control with the
latent space of a pre-trained language model [RKH∗21]. Xu et
al. [XSZK23] present a method that enables spatial imitation of
different motion clips while executing a high-level task. However,
retraining is required for new tasks or styles.

Similar to previous work [WGSF20,BCHF19], we interface with
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Figure 2: Overview. Our two-stage processing starts by taking random samples of motion windows from a database of clips as input to
train a variational autoencoder (VAE) to reconstruct them, extracting a latent kinematic motion space (Stage I). Feeding the encoder with
time-shifted motion windows, we then train a policy, conditioned on the latent code of the window and the frame at its center, with rewards
on the proximity of the simulated to the kinematic state at frame t (Stage II). The resulting encoder-policy pair provides full-body, motion
control of the interactive physics-based or robotic character (Inference).

common control modalities by providing fine-grained control of
characters but generalize over a more diverse set of skills by uti-
lizing a kinematic latent space. In summary, we are unaware of a
technique that trains a single policy efficiently, provides the same
level of coverage, robustness, and generalization properties on a
large-scale dataset of complex motions, while also preserving high-
fidelity full-body control of the character without the need for fur-
ther training.

3. Two-Stage Processing

As outlined in Fig. 2, our processing separates the extraction of
a kinematic latent space from the training of a dynamics-aware
policy. In a first stage, we train an encoder-decoder pair to recon-
struct short motion windows that we randomly sample from a large
dataset of unfiltered motion clips. These clips are representative
of the universal skills of a human, virtual character, or robot. In
a second stage, we then train a control policy, conditioned on the
kinematic state at the current frame and a latent code for a window
around the frame, to maximize kinematic tracking and smoothness
rewards. After training, we use the combination of the encoder and
control policy to control the full-body motion of a character with
unseen input motion. The user interface is therefore the specifica-
tion of a kinematic motion sequence, which allows for stylized and
precise control of the character.

In the next two subsections, we will discuss the first two stages of
our processing in detail, followed by an evaluation of our approach
with an ablation study, analysis of coverage and smoothness of our
latent space, and comparisons to related approaches in Sec. 4. In
Sec. 4, we will also demonstrate applications of our approach in
the fine-grained motion control of a physics-based and the control
of a robotic character.

3.1. Extracting Latent Motion Priors

To temporally and spatially resolve skills at a fine-grained level,
we extract the kinematic state, consisting of positions and veloci-
ties, for a few past and a few future frames, in addition to the center
frame. We then feed these randomly sampled motion windows to a
VAE architecture [KW13], learning a latent space that captures the
structure of the motion distribution and similarities between skills
for a short time horizon around the current state. While velocities
provide some information about what the future state of the char-
acter will be, velocities can suddenly change due to impact. Hence,
it is important to be able to anticipate what the character will do
in the near future, or know what has happened in the near past.
The launch and landing for a jumping sequence are good examples
of why context beyond the current state is important to capture in
a latent space. However, to achieve generalization, it is important
that the window is short enough, such that the latent space captures
fundamental motion building blocks that will also appear in unseen
motion and does not overfit to a particular training motion.

More formally, our first stage takes a dataset, D, of distinct clips
as input, consisting of a finite sequence of motion frames

mt = {ht ,θt ,vt ,qt , q̇t , pt}. (1)

ht is the height of the character’s root relative to the ground. While
we ignore the absolute position of the root in the plane, the inclu-
sion of the relative height is important to differentiate a jump where
the height changes from walking on the ground where the height re-
mains constant. θ represents the orientation of the root, expressed
as a 6D vector [ZBL∗19], and the 6D vector vt its linear and angular
velocity. qt and q̇t are the angular positions and angular velocities
of all joints. In addition, we include the positions, pt , of hands and
feet, relative to the root, in the features for frame t.

To train our VAE, we extract motion windows of length 2W +1

Mt = {mt−W , . . . ,mt+W} (2)
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from individual clips. To normalize them, we first express the orien-
tations, velocities, and end effector positions of individual frames in
a local heading frame that we extract from the root pose of the cen-
ter frame, making the normalized windows invariant to the heading
direction. We then use the mean and standard deviation of quan-
tities of all frames in D to normalize the quantities in the motion
window frames, except for orientation, where we skip this second
normalization.

The encoder of our VAE, eψ(zt |Mt), maps the motion window
to a distribution of latents, zt ∈ Rdz , and is modeled as a multivari-
ate Gaussian distribution. The sampled latent representation is then
mapped back to input space by a decoder, M′

t = dφ(zt). We train the
β-VAE [HMP∗17] with a reconstruction loss on the motion window

Lrec(Mt ,M′
t ) =

1
2W +1

t+W

∑
i=t−W

lrec(mi,m
′
i), (3)

and the weighted KL-divergence loss with a standard Gaussian dis-
tribution prior as the latent distribution. For individual frames, we
compute the loss on standard normalized quantities, first computing
rotation matrices for orientations using the Gram-Schmidt process

lrec(mi,m
′
i) =∥hi −h′i∥2

2 +∥R(θi)−R(θ′i)∥2
F +∥vi − v′i∥2

2

+∥qi −q′i∥2
2 +∥q̇i − q̇′i∥2

2 +∥pi − p′i∥2
2.

(4)

Because we work with normalized quantities, no relative weighting
is needed here.

After training, we prepare for the next stage by encoding mo-
tion windows for all frames of all clips, resulting in a latent code
zt per frame mt . At the beginnings and ends of clips, we repeat
the start and end frames to initialize complete windows. Note that
in contrast to previous work [PGH∗22, JGFP22, TKG∗23], we en-
code a clip with a sequence of latent codes instead of a single one,
identifying similarities at a fine-grained level. Besides being ad-
vantageous for generalization, our embedding is crucial for precise
control, because policies are less reactive otherwise and tend to fin-
ish the previous conditioned motion sequence before adapting to a
new target.

3.2. Training Conditional Policy

In the second stage of our processing, we train a policy using a re-
inforcement learning framework [SB18], where the agent interacts
with the environment and maximizes the expected discounted re-
turn. At each time step, the agent produces an action at according
to the stochastic policy, π(at |st ,ct), where ct is the conditional in-
put to the policy, and st is the observed state at time t. Provided
with the action, the environment then produces the next state, st+1,
and a scalar reward rt = r(st ,at ,st+1,ct).

We control our character with a policy that is conditioned on the
time-varying latent code, zt , and the instantaneous motion refer-
ence, mt , i.e., ct = (mt ,zt). We normalize mt with the same proce-
dure as we use for motion windows, with W = 0. Our experiments
show that adding both modalities is beneficial: The kinematic ref-
erence provides instantaneous feedback to the policy and improves
tracking accuracy, while the latent code contains information about
the intermediate past and future and helps the policy to bring the
current target in alignment with similar motions.

During training, we initialize an episode of fixed length T by
randomly choosing a frame from the dataset, retrieving the pair
(mt ,zt). We then shift by one frame within the same motion clip
to retrieve the next pair. We continue this process until we reach
the end of a clip, randomly sampling a new frame from a new
clip if the episode has not terminated yet. The randomized ini-
tialization avoids the policy getting stuck within the starting se-
quence of motion clips and leads to an increased learning effi-
ciency [PALVdP18].

Our reward contains a combination of motion tracking, staying
alive, and regularization terms that mitigate high-frequency motion,

rt = rtrack
t + ralive

t + rsmooth
t . (5)

Following previous work on tracking-based imitation learn-
ing [LKL10, PALVdP18, PRL∗19], we compute rewards between
the reference mt and simulated pose of the character,

rtrack
t = − ch∥ht − ĥt∥2

2 − cθ∥R(θt)−R(θ̂t)∥2
F − cv∥vt − v̂t∥2

2

− cq∥qt − q̂t∥2
2 − cq̇∥q̇t − ˆ̇qt∥2

2 − cp∥pt − p̂t∥2
2,

(6)

where quantities with a hat denote observations from the simulated
state, normalized with the same procedure as we use for motion
frames.

To allow ground contact with every body part, we apply early ter-
mination on large deviations from the target state that persist for a
longer time period, instead of the contact-based termination used in
related work [PALVdP18]. Concretely, we terminate the episode if
the maximum end-effector deviation, ∥pt − p̂t∥∞, exceeds a given
threshold, t p, for more than f frames.

A survival reward provides a simple objective that motivates the
character to stay alive and prevent it from seeking early termination
at the beginning of training,

ralive
t = calive. (7)

To mitigate vibrations and avoid unnecessary actions, we ap-
ply a first- and second-order action rate penalty, and penalize joint
torques τ,

rsmooth
t =− c∆a∥at −at−1∥2

2 − c∆
2a∥at −2at−1 +at−2∥2

2

− cτ∥τ∥2
2,

(8)

where the smoothness weights trade off tracking accuracy against
the suppression of sliding or vibration artifacts.

Finally, we use domain randomization to increase the robustness
of the policy and avoid overfitting to a single set of simulation pa-
rameters. The mass of each rigid body is randomized by a percent-
age error ϵm. We perform random pushes on the root, head, hands,
and feet. Moreover, we randomize the frictional coefficient of the
ground to prevent the policy from exploiting a particular coefficient
through foot sliding or vibrations. To further reduce the sim-to-real
gap, we added actuator models to the simulator. For robotic char-
acters, we additionally perturb the joint positions by a maximum
of ϵq to account for inaccuracy in joint calibration, and random-
ize the friction coefficient of the local ground plane to account for
imperfections in the real world.
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4. Evaluation and Results

Before we discuss evaluations and applications of our technique,
we describe the large and diverse dataset (11 h) that we use for
training, also detailing the network architectures and training pro-
cedures we use for the two stages.

4.1. Characters, Dataset, and Training Procedure

Characters We evaluate our technique on a standard humanoid
with 36 degrees of freedom (DOF) and a bipedal robot (LIME) with
20 DOFs. The robot is 0.84 m tall and weighs 16.2 kg. Both charac-
ters are controlled with a set of torques, τt , which we compute from
the actions with an actuator model [GKH∗24]: Taking the actions
as inputs, we compute motor torques with proportional-derivative
(PD) controllers

τ
motor
t = κP · (at −qt)−κD · q̇t , (9)

where · denotes component-wise multiplication. We set the propor-
tional and derivative gains, κP and κD, according to entries in Tab. 1
top. In addition, we compute frictional torques using a Coulomb
model with a viscous component

τ
friction
t = µs · tanh(q̇t/q̇s)+µd · q̇t , (10)

dividing (component-wise) joint velocities by static activation ve-
locities, q̇s, and multiplying the two terms with the static and dy-
namic friction coefficients, µs and µd . We finally form the joint
torques by clamping the motor torques and subtracting the fric-
tional torques

τt = clamp(τmotor
t )− τ

friction
t . (11)

To clamp the torques, we define velocity-dependent minimum and
maximum torques. These limits consist of constant limit torques for
braking and low velocities, τmax, and linear limits ramping down
the available torques above limit velocities, q̇τmax . The linear lim-
its cross the maximum velocities, q̇max, when the limit torques are
zero. For the two 5 DOF legs of the robot, we use Unitree-A1
(U-A1), and for its neck and arms Dynamixel-XH540-V150-R (D-
XH540) actuators. We also use actuator limits for the humanoid,
scaled to the size and expected dynamic performance of the char-
acter.

The observable state for the humanoid is a 217-dimensional vec-
tor consisting of the measured root height, root velocities, joint
states, and key body positions, normalized with respect to the head-
ing direction. Additionally, the actions of the previous two time
steps are added to the state, which allows the policy to perform well
on our smoothness rewards. For our bipedal robot, we omit the root
height and key body positions from the state vector. The former
is hard to accurately estimate in the real world, while the latter re-
moves the need to compute forward kinematics on the robot. On the
physical system, we use encoder measurements from the actuators,
together with measurements from an on-board IMU, to estimate
the robot’s state [HGEG20], incorporating motion capture data for
increased accuracy.

Dataset We use three sources of motion data: Reallusion (214
clips, 0.5 h) [Rea24], the CMU mocap dataset (1870 clips,
8.5 h) [CMU01], and Mixamo (2150 clips, 2.0 h) [Mix24]. They

Table 1: Actuator, VAE, and RL Parameters.

Actuator Parameters
Param. entries Units Humanoid U-A1 D-XH540

κP N m rad−1 100 15 5
κD N m s rad−1 1.0 0.6 0.2
q̇s rad s−1 0.1 0.1 0.1
µs N m 0.45 0.45 0.05
µd N m s rad−1 0.023 0.023 0.009
τmax N m 500 34 4.8
q̇τmax rad s−1 20 7.4 0.2
q̇max rad s−1 100 20 7

VAE Parameters VAE Training
Param. Humanoid & Robot Param. Value

β 0.002 Batch size 512
W 30 Number of epochs 50 000
dz 64 Learning rate 0.003
Param. 0.8M KL-scheduler cycles/ratio 7/0.5

Warm restart T0/Tmult 1000/5

RL Parameters RL Training (PPO)
Param. Humanoid Robot Param. Value

ch 0.5 0.0 Batch size 8192× 32
cv 1.0 2.0 Mini-batch size 8192× 8
cθ 1.0 1.0 Clip range, e 0.2
cq 1.0 7.0 Discount factor, γ 0.99
cq̇ 0.1 0.1 GAE discount factor, λ 0.95
cp 1.0 1.0 Number of epochs 5
calive 6.0 30.0 Desired KL-divergence 0.01
c∆a 0.1 1.5 Max gradient norm 1.0

c∆
2a 0.01 0.45

cτ 1 · 10−5 1 · 10−4

t p 0.2 m 0.3 m
f 3.0 s 3.0 s
T 30.0 s 30.0 s
ϵm 10.0 % 10.0 %
ϵq 0.2 rad 0.2 rad

span highly diverse motions, from simple walking cycles to acro-
batic motions that only very skilled humans can perform. While
the Reallusion and Mixamo datasets are artist-processed and hence
clean, the CMU dataset contains infeasible motions and noisy data.
We work with the full and unfiltered dataset. To retarget the kine-
matic motions onto our robotic character, we use an inverse kine-
matics formulation [SKB21].

VAE The variational autoencoder [KW13] for our motion latent
space is built with 1D-convolutional layers, followed by 4 convRes-
net blocks without bias components [DJP∗20], Layer Normaliza-
tion [BKH16], ReLU activations [Fuk69], and a final linear layer.
We use a latent code dimension of dz = 64 and a window size of
W = 30, amounting to 1 s. At the bottleneck layer, we double the
encoder output dimension and sample from a multivariate Gaussian
distribution. The decoder mirrors the encoder with deconv-layers.

For each training iteration, we extract a batch of 512 ran-
domly sampled windows. We use the training objective of a
β-VAE [HMP∗17] with a KL weight of 0.002 and cyclical schedul-
ing to mitigate KL vanishing [FLL∗19]. We use the RAdam
optimizer [LJH∗20] with an initial learning rate of 0.003, adapted
using a cosine annealing scheduler with warm restarts [LH16].
The VAE is trained on an RTX 4090 for 10 h. See Tab. 1 middle
for hyperparameters.
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RL We keep our policy network small and model it as a diagonal
multivariate Gaussian distribution with the mean given by a neural
network with ELU activations [CUH16] and 3 hidden multilayer
perceptron (MLP) layers of 512 units. We simulate the character us-
ing the GPU-accelerated simulator in Isaac Gym [MWG∗21], with
8192 environments simulated in parallel on an RTX 4090.

For training, we use Proximal Policy Optimization (PPO)
[SWD∗17] and train for 48 h. To represent the value function we
use the same architecture as for the policy. Observations are nor-
malized using a running mean. See Tab. 1 bottom for reward and
PPO parameters.
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Figure 3: Latent Similarity. Given a query motion window from
the dataset (top) or unseen input (bottom), we compute the cosine
similarity with all other windows using their latent representation.
For each query, we show frames from the window with highest (1)
and second highest (2) similarity score.

4.2. Evaluation of Motion Embedding

The goal of our kinematic latent embedding is to capture simi-
larities between short-horizon motion windows around individual
frames. To enable generalization, motion windows from unseen
kinematic input should map to latent codes that are in proximity to
those of similar motion windows within the dataset. To validate that
our latent space has desirable properties in this regard, we evaluate
the latent space for the standard humanoid and show in Fig. 3 a ran-
domly chosen window from our dataset (top query) and compare it
to the two motion windows within the dataset that are closest in la-
tent space. We repeat this experiment for an unseen user-specified
input motion (bottom query).

Table 2: Ablation Study - Pose. Motion Tracking MAE [joints |
end-effectors] [deg | m]. Best overall and best without latent codes.
The RL policy inputs are based on motion input only (M), latent
code (L) or both (LM).

Motions
Input Idle Walk Attack Dance Unseen

M 7.52 0.037 8.63 0.044 13.11 0.065 12.79 0.057 13.29 0.075
M5 6.87 0.042 8.69 0.047 12.52 0.064 13.47 0.060 13.33 0.077
M10 7.96 0.038 9.06 0.044 12.93 0.062 13.76 0.058 13.60 0.079

L 6.10 0.040 7.53 0.054 10.70 0.069 10.45 0.064 10.92 0.072
LM 4.31 0.031 4.15 0.037 7.08 0.060 5.80 0.046 7.83 0.069

In the video, we also evaluate the smoothness of our latent space
by linearly interpolating between the latent space trajectories corre-
sponding to two different clips. After interpolation, we decode this
sequence and visualize the middle frame of the decoded window
as a new motion clip. This results in natural in-between skills and
demonstrates that our latent space provides the expected smooth-
ness. We also visualize the reconstruction of unseen motion win-
dows, exhibiting the expected coverage and generalization.

Comparison with End-to-End Latent Codes CALM [TKG∗23]
trains a latent representation end-to-end with the control policy. We
compare the quality of the resulting representation by assessing the
separability between motion classes within the latent space using
Linear Discriminant Analysis (LDA) [Bis95] and by quantifying
the mutual information between input motion and latent codes. To
facilitate comparison, we train the first stage of our method on their
dataset and use the same 2 s window length. Upon encoding the en-
tire dataset using both approaches, motion classes for LDA are con-
structed by labeling consecutive 2 s of latent codes as a single class,
with the subsequent 2 s being omitted to ensure distinct classes.

Method LDA acc. ↑ MI ↑

CALM 0.687 0.121
Ours 0.854 0.341

For mutual information anal-
ysis, the same dataset is uti-
lized, and the latent codes are
discretized into 100 bins per
dimension. Mutual information scores are then computed for each
pair of features. The results of LDA accuracy and mutual infor-
mation in the inset table demonstrate that our latent space pre-
serves more information and exhibits superior separability of mo-
tions compared to the end-to-end method.

4.3. Evaluation of Two-Stage Processing

We first ablate our proposed choice of conditional policy inputs us-
ing a smaller dataset. Subsequently, we discuss the enhanced track-
ing performance and generalization potential achieved through
training on a larger dataset. We then investigate the robustness of
our policy in the face of infeasible inputs, disturbances, as well as
its responsiveness to input discontinuities. All evaluations are per-
formed with the standard humanoid.

Ablation For our ablation study, we train the latent space as well as
variants of our policy on the Reallusion dataset (0.5 h) and evaluate
tracking performance qualitatively (Fig. 4, accompanying video)
and quantitatively (Tab. 2). For evaluation of a policy, we gener-
ate 1024 fixed-size episodes with the same procedure as we use for
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Figure 4: Tracking Performance. Our proposed method (LM) tracks a kinematic input (K) significantly better than policy variants that are
conditioned on the latent code (L) or the reference motion (M) only.

training (Sec. 3.2), restricting the random sampling of clips to cate-
gories of increasing difficulty from Reallusion (Idle, Walk, Attack,
Dance) and a small, randomly chosen subset of motions from the
other two datasets (Unseen). To compare tracking performance, we
report the mean absolute error (MAE) of joint positions over all
frames, joints, and evaluation episodes (Tab. 2).

We first condition the policy on a single motion frame (M) and
on motion windows with 5 (M5) and 10 (M10) additional future
frames. These variants are similar to related approaches that tar-
get the fine-grained control of characters (e.g., DReCon [BCHF19],
UniCon [WGSF20]), omitting the use of additional mechanisms or
policies for a fair comparison. As expected, the tracking error is
higher for more challenging motions or unseen data. While the per-
formance is good for less complex motions, it degrades quickly for
more challenging or unseen input, visually perceived as the result
of a low-pass filter. Similar to UniCon [WGSF20], we did not ob-
serve significant benefits from additional future frames.

In the lower half of Tab. 2, we report numbers for a variant that
is only conditioned on the latent code (L), together with our pro-
posed processing (LM). While the L-variant already consistently
improves tracking performance, our LM variant clearly outper-
forms all other variants in all categories, especially for highly dy-
namic or unseen motions (Fig. 4; ∼50 % reduction in tracking error
for Dance).

Comparison with End-to-End Method To visually compare our
method to CALM [TKG∗23], we sample random motion windows
from the dataset. For CALM, we compute the corresponding la-
tent code and condition the policy with the same code for a 2 sec-
ond window, aligning with their training strategy. We then track
the same motion using our pipeline. The video presents the results
side-by-side. Note that CALM requires two weeks of training on an
industrial-grade A100 GPU, whereas our complete method trains
in under three days on a consumer-grade RTX 4090. Retraining
CALM on a consumer-grade GPU would take months. As demon-

strated in the video, our method matches CALM’s motion qual-
ity while exhibiting fewer artifacts. Our stronger coupling between
latent code and target motion allows for easier control, whereas
CALM’s latent-only conditioning can result in repeated motion and
is less reactive.

Generalization To achieve generalization, it is essential to train
on a large dataset. In our two-stage processing, the additional
conditioning on the latent code during RL has a negligible ef-
fect on iteration time compared to the simple M-variants. This
enables us to scale our approach and train a policy on a
significantly larger dataset compared to related end-to-end ap-
proaches (ASE [PGH∗22], PADL [JGFP22], CALM [TKG∗23],
CASE [DCF∗23]). To demonstrate the utility of our pre-trained
latent space, we use the encoder and policy trained on the small
Reallusion dataset as a baseline. Next, we use the small dataset
during RL while using an encoder that is trained on the full
set, with the exception of clips that we use for evaluation (Un-
seen). This already reduces the MAE tracking error on unseen mo-
tions by 15 % (see inset), indicating that the generalization per-
formance of the policy is enhanced by improving the encoder.

RL Small RL Full

VAE Small 7.83 -
VAE Full 6.62 5.03

By training both the en-
coder and the policy on
the large set (except Un-
seen), we reduce the error
to about 5◦ on unseen data. In the accompanying video, we pro-
vide a visual comparison of these three variants on a sequence of
unseen dancing and fighting motions. We observe excellent track-
ing performance with our single policy that is trained on the full
set, with noticeable artifacts for the variant that uses only the Real-
lusion dataset for both stages.

Robustness Our policy is robust to motions that are far from fea-
sible, as shown in Fig. 5 and demonstrated in our video: The pol-
icy tracks the in-air stair climbing sequence as closely as possible
while maintaining dynamic balance on the ground. In our video,
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we also demonstrate robustness under heavy disturbances by ap-
plying random forces and torques to the root, head, hands, and feet
of the character. Additionally, on previously unseen uneven terrain,
the character makes necessary adjustments to maintain balance and
tracks the intended motion whenever possible. The method reaches
its limits when the target motion is fast and physically unattainable.
In such cases, the policy might either not track the motion or result
in failure as demonstrated in our video.

Figure 5: Robustness. Conditioned on frames from an infeasible
reference motion, the character remains stable and tries to track
the performance as well as possible.

Reactivity We evaluate the capability of the policy to abruptly
transition between motions in the accompanying video. Since the
policy is conditioned on a stream of latent codes rather than a sin-
gle code for a longer sequence, it reacts instantly. This means that a
user can arbitrarily sequence motions, without the need for smooth
transitions. The policy is able to quickly adapt even if there are
discontinuities in the input stream.

4.4. Directability

Our policy interfaces with kinematic reference motion, generalizes
well to new motions, and is robust to irregular input. It, therefore,
seamlessly integrates into the standard workflows of artists and al-
lows them to directly control a physics-based character without ad-
ditional training. Hereafter, we present examples of how an artist
might use our technique.

Spatial Composition Our policy allows users to control the char-
acter by spatially composing motions of different body parts as il-
lustrated in Fig. 6 and our video with three examples where arm
motions are sourced from a different clip than the body motion.
Even for random spatial compositions of motions that can result in
implausible or unnatural input, we observe that our policy tracks
the motion as closely as possible within the physical limits.

Motion Editing With our technique, users can sequence full or
partial motion clips in an arbitrary order to quickly create an initial
reference animation for a character, as illustrated in Fig. 7 for a
fighting sequence (Start). Because our method provides full-body
control, they can then edit the motion reference to precisely time
key events at key locations to achieve a particular task (Precision,
hitting a pillar), followed by a stylization pass (Stylization).

Artist-Created Motion We additionally asked an artist to create
a dancing sequence with leg, arm, and full-body movements of in-

Figure 6: Spatial Composition. Input motions can be spatially
composed (selected bodies visualized in blue) without any addi-
tional training. Our method tracks the new motions as closely as
possible within physical limits.
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Figure 7: Motion editing. Provided with an initial motion sequence
(Start), a user can adapt the reference motion to precisely control
the character (Precision) or change the style (Stylization).

creasing complexity with standard animation tools and workflows
that are not physics-aware. As is common for artist input, there is
visible foot sliding. Our method robustly tracks the performance
and removes all foot sliding (see video). Because our inference is
interactive, an artist could use our technique during animation to
create physics-informed motions.

4.5. Robot Control

Recent progress in robotics in bridging the so-called sim-to-real
gap [ZQW20] provides evidence that extended domain randomiza-
tion [PAZA18] and the inclusion of actuator dynamics in the sim-
ulation [HLD∗19] can facilitate real world deployment at the ex-
pense of presenting the RL algorithm with a significantly harsher
training environment. We show that our presented pipeline, with
actuator and learning parameters as summarized in Tab. 1, and
domain randomization as discussed in Sec. 3.2, leads to a robust
and effective policy that allows us to transfer versatile motions to
a bipedal robot. Fig. 8 shows an example of a reference motion
(top) and the resulting execution on hardware (bottom). Because
our robotic character does not have an ankle-roll actuator, it cannot
balance on a single leg for an extended amount of time. Interest-
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ingly, as shown in the last frame, the policy adapts by placing the
tip of the right leg on the floor such that the reference pose can
be closely matched without losing balance. The video shows addi-
tional demonstrations of highly dynamic motions. The quality of
motion tracking remains high, even when constrained by the prac-
tical limits of physical actuators. Our results demonstrate that our
method is effective on real robotic characters, showing that we do
not rely on artificially strong simulated characters, external helper
forces, or simulation artifacts.

Figure 8: LIME Robot. Transfer of dynamic motion skills onto a
bipedal robot. The policy tracks the style as accurately as possible
while maintaining balance.

5. Conclusions

We have shown that a pre-trained latent representation of motion
improves both the tracking and generalization performance of a
downstream RL-based control policy. Our two-stage training al-
lows us to robustly track a diverse set of skills. Moreover, our kine-
matic motion interface empowers users to craft character-specific
animations and have full-body control over physics-based charac-
ters. While not demonstrated explicitly, our approach would also
interface with other common control modalities. Recent kinematic
motion generators [TRG∗23,GZZ∗22] could be used together with
the policy to solve generative tasks in a physical environment.

However, while our method has proven its strength on a diverse
set of motions, it has difficulties in imitating clips that require a
longer planning horizon. Acrobatic motions like backflips require
a certain commitment to the performance. We believe that simple
MLP policies cannot achieve generalization to this class of mo-
tions, requiring more sophisticated architectures with hidden states
to accomplish coverage over unseen acrobatic input with extended
flight phases. Moreover, while our method can track a kinematic
reference, we have yet to explore generative capabilities of our pro-
cessing, requiring an additional mechanism to traverse our time-
varying latent space.

By demonstrating expressive motions on robotic hardware, we
have unified recent progress in both the computer graphics and
robotics communities. We see great potential at the intersection of
these two fields and are excited about the future avenue of bringing
increased agility and expressivity to more physical characters. In
particular, we believe that the combination of self-supervised and
reinforcement learning on large datasets provides a path to univer-
sal control policies that serve as a foundation model for a wide
range of downstream tasks.
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