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We present a new method for decomposing an image into a set of soft color
segments that are analogous to color layers with alpha channels that have
been commonly utilized in modern image manipulation software. We show
that the resulting decomposition serves as an effective intermediate image
representation, which can be utilized for performing various, seemingly
unrelated, image manipulation tasks. We identify a set of requirements that
soft color segmentation methods have to fulfill, and present an in-depth
theoretical analysis of prior work. We propose an energy formulation for
producing compact layers of homogeneous colors and a color refinement
procedure, as well as a method for automatically estimating a statistical
color model from an image. This results in a novel framework for automatic
and high-quality soft color segmentation that is efficient, parallelizable, and
scalable. We show that our technique is superior in quality compared to
previous methods through quantitative analysis as well as visually through
an extensive set of examples. We demonstrate that our soft color segments
can easily be exported to familiar image manipulation software packages
and used to produce compelling results for numerous image manipulation
applications without forcing the user to learn new tools and workflows.
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1. INTRODUCTION

The goal of soft color segmentation is to decompose an image into a
set of layers with alpha channels, such as in Figure 1(b). These lay-
ers usually consist of fully opaque and fully transparent regions, as
well as pixels with alpha values between the two extremes wherever
multiple layers overlap. Ideally, the color content of a layer should
be homogeneous, and its alpha channel should accurately reflect the
color contribution of the layer to the input image. Equally impor-
tant is to ensure that overlaying all layers yields the input image.
If a soft color segmentation method satisfies these and a number
of other well-defined criteria that we discuss in detail later, then
the resulting layers can be used for manipulating the image content
conveniently through applying per-layer modifications. These im-
age manipulations can range from subtle edits to give the feeling
that the image was shot in a different season of the year (Figure 1(c))
to more pronounced changes that involve dramatic hue shifts and
replacing the image background (Figure 1(d)). In this article, we
propose a novel soft color segmentation method that produces a
powerful intermediate image representation, which in turn allows
a rich set of image manipulations to be performed within a unified
framework using standard image editing tools.

Obtaining layers that meet the demanding quality requirements
of image manipulation applications is challenging, as even barely
visible artifacts on individual layers can have a significant negative
impact on quality when certain types of image edits are applied. That
said, once we devise a soft color segmentation method that reliably
produces high-quality layers, numerous image manipulation tasks
can be performed with little extra effort by taking advantage of this
image decomposition. Importantly, the resulting layers naturally in-
tegrate into the layer-based workflows of widely used image manip-
ulation packages. By using soft color segmentation as a black box,
and importing the resulting layers into their favorite image manipu-
lation software, users can make use of their already-existing skills.

While the traditional hard segmentation is one of the most active
fields of visual computing, soft color segmentation has received
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Fig. 1. Our method automatically decomposes an input image (a) into a set of soft segments (b). In practice, these soft segments can be treated as layers that
are commonly utilized in image manipulation software. Using this relation, we achieve compelling results in color editing (c), compositing (d), and many other
image manipulation applications conveniently under a unified framework.

surprisingly little attention so far. In addition to direct investigations
of soft color segmentation [Tai et al. 2007; Tan et al. 2016], certain
natural alpha matting and green-screen keying methods presented
soft color segmentation methods—without necessarily calling them
as such—as a component in their pipeline. While it may seem at a
first glance that one can simply use any of these previous methods
for practical and high-quality photo manipulation, a closer look
reveals various shortcomings of the currently available soft color
segmentation methods. To this end, in this article, we provide a
theoretical analysis of the problems with previous work, which
we also supplement with quantitative evaluation, as well as visual
examples that support our arguments.

We address the two main challenges of soft color segmentation:
devising a color unmixing scheme that results in high-quality soft
color segments and automatically determining a content-adaptive
color model from an input image. We propose a novel energy for-
mulation that we call sparse color unmixing (SCU) that decomposes
the image into layers of homogeneous colors. The main advantage
of SCU when compared to similar formulations used in different
applications such as green-screen keying [Aksoy et al. 2016] is
that it produces compact color segments by favoring fully opaque
or transparent pixels. We also enforce spatial coherency in opacity
channels and accordingly propose a color refinement procedure that
is required for preventing visual artifacts while applying image ed-
its. We additionally propose a method for automatically estimating
a color model corresponding to an input image, which comprises
a set of distinct and representative color distributions. Our method
determines the size of the color model automatically in a content
adaptive manner. We show that the color model estimation can ef-
ficiently be performed using our novel projected color unmixing
(PCU) formulation.

We present a comprehensive set of results in the article and sup-
plementary material that show that our method consistently pro-
duces high-quality layers. Given such layers, we demonstrate that
numerous common image manipulation applications can be reduced
to trivial per-layer operations that can be performed conveniently
through familiar software tools.

2. RELATED WORK

Previous work uses the term soft segmentation in various contexts,
such as the probabilistic classification of computerized tomogra-
phy (CT) scans [Posirca et al. 2011], computing per-pixel fore-

ground/background probabilities [Yang et al. 2010b], and inter-
active image segmentation utilizing soft input constraints [Yang
et al. 2010a]. In fact, generally speaking, even the traditional k-
means clustering algorithm can be considered as a soft segmen-
tation method, as it computes both a label as well as a confi-
dence value for each point in the feature space [Tai et al. 2007].
In contrast to these approaches, we seek to compute proper al-
pha values rather than arbitrarily defined confidence values or
probabilities.

The goals of our method are similar to those of the alternating
optimization soft color segmentation technique [Tai et al. 2007]
and the decomposition technique via RGB-space geometry [Tan
et al. 2016], which decompose input images into a set of soft
color segments and demonstrate their use in various image manip-
ulation applications. A number of techniques proposed in natural
matting and green-screen keying literature, such as the ones by Sin-
garaju and Vidal [2011], Chen et al. [2013], and Aksoy et al. [2016],
can also be regarded as soft color segmentation methods. While the
goal of natural matting is to compute the alpha channel of the fore-
ground in an image, the aforementioned methods can also be used
to obtain soft color layers from the input image. Our method has
several advantages when compared to these works in terms of the
quality of the opacity channels, the color content of individual layers
and the absence of need for user input. We present an in-depth dis-
cussion of our differences to and the shortcomings of these methods
in Sections 4 and 6.

While we focus on soft color segmentation for the purpose of
image manipulation, other methods in the literature have been pro-
posed that utilize spatial information [Levin et al. 2008b; Tai et al.
2005], as well as texture [Yeung et al. 2008] for soft segmenta-
tion. The object motion deblurring method by Pan et al. [2016]
performs soft segmentation simultaneously with blur kernel esti-
mation to increase performance. There is also a substantial body
of work on traditional, hard segmentation. For a discussion and
evaluation of hard segmentation methods, we refer the reader to the
recent survey by Pont-Tuset and Marques [2015]. Similarly, there
are also examples of hard color segmentation such as the one by
Omer and Werman [2004]. Decomposing an image into several lay-
ers with transparency also has distinct applications with specialized
methods such as illumination decomposition for realistic material
recoloring [Carroll et al. 2011], anti-aliasing recovery [Yang et al.
2011], vectorizing bitmaps [Richardt et al. 2014], and reflection
removal [Shih et al. 2015].
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Fig. 2. The original image (a) is shown with the alpha channels of the layers corresponding to the yellow of the road lines estimated by the proposed sparse
color unmixing (b) and by the color unmixing [Aksoy et al. 2016] (c). Notice the spurious alpha values on the road in (c). When our sparse color unmixing
results are utilized for a color change (d) the regions that do not contain the yellow of the road are not affected. On the other hand, a color change using the
color unmixing (e) effects unrelated regions as well. The color change was applied after matte regularization and color refinement stages for both (d) and (e).

3. SOFT COLOR SEGMENTATION

Our main objective in this article is to decompose an image into mul-
tiple partially transparent segments of homogeneous colors, that is
soft color segments, which can then be used for various image ma-
nipulation tasks. Borrowing from image manipulation terminology,
we will refer to such soft color segments simply as layers throughout
this article.

A crucial property of soft color segmentation is that overlaying
all layers obtained from an image yields the original image itself so
editing individual layers is possible without degrading the original
image. In mathematical terms, for a pixel p, we denote the opacity
value as α

p

i and the layer color in RGB as up

i for the ith layer. and
we want to satisfy the color constraint:∑

i

α
p

i up

i = cp ∀p, (1)

where cp denotes the original color of the pixel. The total number
of layers will be denoted by N .

We assume that the original input image is fully opaque and thus
requires the opacity values over all layers to add up to unity, which
we express as the alpha constraint:∑

i

α
p

i = 1 ∀p. (2)

Finally, the permissible range for the alpha and color values are
enforced by the box constraint:

α
p

i , up

i ∈ [0, 1] ∀i, p. (3)

For convenience, we will drop the superscript p in the remainder
of the article and present our formulation at the pixel level, unless
stated otherwise.

It should be noted that different representations for overlaying
multiple layers exist. We use Equation (1), which we refer to as
an alpha-add representation, in our formulation, which does not
assume any particular ordering of the layers. This representation
has also been used by Tai et al. [2007] and Chen et al. [2013] among
others. In most commercial image editing software, however, the
representation proposed by Porter and Duff [1984], referred to in
this article as the overlay representation, is used. The difference
and conversion between the two representations are presented in
the appendix.

Our algorithm for computing high-quality soft color segments can
be described by three stages: color unmixing, matte regularization,
and color refinement, which will be discussed in the remainder of
this section.

Color Unmixing: An important property we want to achieve
within each layer is color homogeneity: The colors present in
a layer should be sufficiently similar. To this end, we associate each
layer with a 3D normal distribution representing the spread of the
layer colors in RGB space, and we refer to the set of N distributions
as the color model. Our novel technique for automatically extracting
the color model for an image is discussed in detail in Section 5.

Given the color model, we propose the sparse color unmixing
energy function in order to find a preliminary approximation to the
layer colors and opacities:

FS =
∑

i

αiDi(ui) + σ

( ∑
i αi∑
i α

2
i

− 1

)
, (4)

where the layer color cost Di(ui) is defined as the squared Ma-
halanobis distance of the layer color ui to the layer distribution
N (μi , �i), and σ is the sparsity weight that is set to 10 in our
implementation. The energy function in Equation (4) is minimized
for all αi and ui simultaneously while satisfying the constraints
defined in Equations (1)–(3) using the original method of multipli-
ers [Bertsekas 1982]. For each pixel, for the layer with best fitting
distribution, we initialize the alpha value to 1 and the layer color ui

to the pixel color. The rest of the layers are initialized to zero alpha
value and the mean of their distributions as layer colors. The first
term in Equation (4) favors layer colors that fit well with the corre-
sponding distribution especially for layers with high alpha values,
which is essential for getting homogeneous colors in each layer.
The second term pushes the alpha values to be sparse, that is, favors
0 or 1 alpha values.

The first term in Equation (4) appears as the color unmixing en-
ergy proposed by Aksoy et al. [2016] as a part of their system for
green-screen keying. They do not include a sparsity term in their
formulation, and this inherently results in favoring small alpha val-
ues, which results in many layers appearing in regions that should
actually be opaque in a single layer. The reason is that a better-fitting
layer color for the layer with alpha close to 1 (hence a lower color
unmixing energy) becomes favorable by leaking small contribu-
tions from others (assigning small alpha values to multiple layers)
with virtually no additional cost as the sample costs are multiplied
with alpha values in the color unmixing energy. This decreases
the compactness of the segmentation and, as a result, potentially
creates visual artifacts when the layers are edited independently.
Figure 2 shows such an example obtained through minimizing the
color unmixing energy, where the alpha channel of the layer that
captures the yellow road line is noisy on the asphalt region, even
though the yellow of the road is not a part of the color of the asphalt.
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Fig. 3. Two layers corresponding to the dark (top) and light wood color in the original image (a) are shown before (b) and after (c) matte regularization and
color refinement.

While these errors might seem insignificant at first, they result in
unintended changes in the image when subjected to various layer
manipulation operations such as contrast enhancement and color
changes, as demonstrated in Figure 2.

The sparsity term in Equation (4) is zero when one of the lay-
ers is fully opaque (and thus all other layers are fully transparent)
and increases as the alpha values move away from zero or 1. An-
other term for favoring matte sparsity has been proposed by Levin
et al. [2008b]: ∑

i

|αi |0.9 + |1 − αi |0.9. (5)

This cost is infinitely differentiable in the interval [0, 1]. Its infinite
derivatives at αi = 0+ and αi = 1− causes the alpha values to
stay at these extremes in the optimization process we employ. In
spectral matting, the behavior of this function is used to keep alpha
values from taking values outside [0, 1]. In our case, as the box
constraints are enforced during the optimization of the sparse color
unmixing energy, the negative values our sparsity cost takes outside
the interval do not affect our results adversely.

Matte Regularization: Sparse color unmixing is done indepen-
dently for each pixel, and there is no term ensuring spatial coherency.
This may result in sudden changes in opacities that do not quite
agree with the underlying image texture, as shown in Figure 3(b).
Hence, spatial regularization of the opacity channels is necessary
for ensuring smooth layers as in Figure 3(c). This issue also occurs
frequently in sampling-based natural matting. The common practice
for alpha regularization is using the matting Laplacian introduced
by Levin et al. [2008a] as the smoothness term and solve a linear
system that also includes the spatially non-coherent alpha values, as
proposed by Gastal and Oliveira [2010]. While this method is very
effective in regularizing mattes, on the downside, it is computation-
ally expensive and consumes a high amount of memory especially
as the image resolution increases.

The guided filter proposed by He et al. [2013] provides an effi-
cient way to filter any image using the texture information from a
particular image, referred to as the guide image. The guided filter is
an edge-aware filtering method that can make use of an image, the
guide image, to extract the edge characteristics and filter a second
image using the edge information from the guide image efficiently.
They discuss the theoretical similarity between their filter and the
matting Laplacian and show that getting satisfactory alpha mattes
is possible through guided filtering when the original image is used
as the guide image. While filtering the mattes with the guided fil-
ter only approximates the behavior of the matting Laplacian, we
observed that this approximation provides sufficient quality for the
mattes obtained through sparse color unmixing. For a 1MP image,
we use 60 as the filter radius and 10−4 as ε for the guided filter,

as recommended by He et al. [2013] for matting, to regularize the
alpha matte of each layer. As the resultant alpha values do not nec-
essarily add up to 1, we normalize the sum of the alpha values for
each pixel after filtering to get rid of small deviations from the alpha
constraint. The filter radius is scaled according to the image resolu-
tion. Note that the layer colors are not affected by this filtering and
they will be updated in the next step.

While enforcing spatial coherency on opacity channels is triv-
ial using off-the-shelf filtering, dealing with its side effects is not
straightforward. Obtaining spatially smooth results while avoiding
disturbing color artifacts requires a second step that we discuss next.

Color Refinement: As the original alpha values are modified
due to regularization, we can no longer guarantee that all pixels
still satisfy the color constraint defined in Equation (1). Violating
the color constraint in general severely limits the ability to use soft
segments for image manipulation. For illustration, Figure 6 shows
a pair of examples where KNN matting fails to satisfy the color
constraint, which results in unintended color shifts in their results.
To avoid such artifacts, we introduce a second energy minimization
step, where we replace the alpha constraint defined in Equation (2) in
the color unmixing formulation with the following term that forces
the final alpha values to be as close as possible to the regularized
alpha values: ∑

i

(αi − α̂i)
2 = 0, (6)

where α̂i represents the regularized alpha value of the ith layer. By
running the energy minimization using this constraint, we recom-
pute unmixed colors at all layers so they satisfy the color constraint
while retaining spatial coherency of the alpha channel. Note that
since the alpha values are determined prior to this second optimiza-
tion, the sparsity term in Equation (4) becomes irrelevant. Hence,
we only employ the unmixing term of the energy in this step. For
the optimization, we initialize the layer colors as the values found
in the previous energy minimization step.

Finally, to summarize our color unmixing process: We first min-
imize the sparse color unmixing energy in Equation (4) for every
pixel independently. We then regularize the alpha channels of the
soft layers using the guided filter and refine the colors by running
the energy minimization once again, this time augmented with the
new alpha constraint defined in Equation (6). This way we achieve
soft segments that satisfy the fundamental color, alpha, and box
constraints, as well as the matte sparsity and spatial coherency re-
quirements for high-quality soft segmentation.

Note that the two energy minimization steps are computed inde-
pendently for each pixel, and the guided filter can be implemented
as a series of box filters. These properties make our algorithm easily
parallelizable and highly scalable.
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4. ANALYSIS OF STATE OF THE ART

While the particular deficiencies of current soft color segmenta-
tion methods will be apparent from the qualitative and quantitative
evaluation results in Section 6 and the supplemental material, our
goal in this section is to highlight the theoretical reasons behind
some of those deficiencies. To this end, we take a closer look at the
formulations of the current methods.

The soft color segmentation methods in the literature can be
categorized into two classes: unmixing based and affinity based.
Unmixing-based methods [Tai et al. 2007; Aksoy et al. 2016] in-
cluding ours attempt to get unmixed colors and their corresponding
alpha values by processing the observed color of each pixel with
a statistical model for the layers. The method by Tan et al. [2016]
can loosely be categorized as unmixing based as it computes the
alpha values using a (non-statistical) color model using fixed layer
colors. Affinity-based methods [Levin et al. 2008b; Singaraju and
Vidal 2011; Chen et al. 2013], on the other hand, aim to use local
or non-local pixel proximities to propagate a set of given labels to
the rest of the image.

Alternating Optimization (AO): The alternating optimization
algorithm proposed by Tai et al. [2007] is similar to ours in terms
of the end goal. The authors define a Bayesian formulation that
includes the alpha values, the layer colors, as well as the color
model for the soft color segments and find the maximum a priori
(MAP) solution to the problem by alternatingly optimizing for the
alpha values, the layer colors, and the color model parameters.
Here, we will only analyze AO’s alpha and layer color estimation
formulations and defer the discussion on its color model estimation
to Section 5.

AO estimates the alpha values by defining a Markov random
field that encodes the probability of the alpha values given the layer
colors and the color model. After some algebraic manipulation, their
maximization can be expressed as minimizing Eα = ∑

p Ep
α , with

Ep
α defined as

Ep
α = 1

2σ 2
c

‖cp −
∑

i

α
p

i up

i ‖2 + 1

σ 2
c

∑
i

α
p

i Di(ui) (7a)

+
∑
q∈Np

log

⎛
⎝1 + 1

2σb

⎛
⎝√∑

i

(
α

p

i − α
q

i

)2

⎞
⎠

⎞
⎠ , (7b)

where Np is the 8-neighborhood of the pixel p and σb and σc are al-
gorithmic constants. The color unmixing energy actually appears as
the second term in Equation (7a) together with the color constraint,
whereas Equation (7b) shows the smoothness term. The MAP es-
timation in AO is done via loopy belief propagation. They assign
the soft labels assigned by the belief propagation algorithm as the
alpha values. This global optimization scheme becomes a limiting
factor for AO in scaling to high-resolution images.

Due to the iterative nature of the algorithm, in the alpha esti-
mation step, AO uses the color values from the previous iteration.
Hence, it will find a compromise between the optimal alpha values
and satisfying the color constraint, which is to be corrected in the
color estimation step. Experimentally, we observed that this inter-
dependency, when also coupled with the interdependency with the
color model estimation, may result in layers oscillating between
two local minima as the iterations progress. The smoothness term,
on the other hand, depends on how close the estimated alpha values
from the previous iteration are rather than using the image texture.
Their results typically have unnatural gradients in layer alphas as it
can be seen in Figure 4.

Fig. 4. The layers corresponding to the outer region of the northern lights in
the input image (a) computed by the proposed algorithm (b), color unmixing
(c) and alternating optimization (d). Notice that the layers in (c, d) have
abrupt edges in opacity while our result has a smooth transition following
the input image content. Note that AO’s result already has smoothness
enforced in their optimization procedure. A comparison of our results and
that of CU after our matte regularization is presented in Figure 2.

Decomposition via RGB-Space Geometry (RGBSG): Tan
et al. [2016] use a different approach to the soft color unmixing
problem by fixing the layer colors beforehand and optimizing for
the opacity values. Differing from all the approaches discussed in
this section as well as ours, they use the overlay layers represen-
tation as defined in the appendix. This representation requires a
pre-determined ordering of the layers, and RGBSG requires this
ordering as input before the decomposition. The main advantage
of using alpha-add representation over overlay representation can
be said to be the indifference to layer order, which decreases the
amount of user input needed. However, their end goal and applica-
tion scenario is similar to ours.

They construct a color model that encompasses the hull of the
RGB values in the image, which will be discussed in Section 5.2,
and fix ui’s to these predetermined values. They define their energy
function as

ERGBSG = ωpEp + ωoEo + ωsEs

Ep = 1

K

∥∥∥∥∥∥un − c +
∑

i

⎛
⎝(ui−1 − ui)

N∏
j=i

(1 − α̃j )

⎞
⎠

∥∥∥∥∥∥
2

Eo = 1

N

∑
i

−(1 − α̃i)
2 Es = 1

N

∑
i

(∇α̃i)
2,

(8)

where K is 3 or 4 depending on whether they use RGB or RGBA
optimization as defined in their article, ∇α̃i is the opacity gradient,
and ωp = 375, ωo = 1, and ωs = 100 are algorithmic constants.
Notice the use of α̃ as opposed to α due to their compositing formu-
lation. As the layer colors are determined with the color model, this
optimization only determines the opacity values, unlike the other
unmixing-based approaches. The color constraint is satisfied with
the Ep term while sparsity and smoothness is enforced via the Eo and
Es terms, respectively. Characteristically, their sparseness energy is
somewhat similar to ours as it also depends on the sum of square
of the alpha values. Their smoothness measure follows that of AO
as it also depends on the smoothness of alpha values rather than
the image texture. Their layers do not necessarily give the original
image when overlayed due to the possibility of imaginary colors
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in their color model, as will be discussed in Section 5.2. However,
their layers have solid colors by definition.

One particular characteristic of RGBSG is that it requires a color
model that encompasses all the colors that appear in the image from
the outside. This requirement is sometimes limiting as the layers
can not have colors that are close to the center of the RGB cube. A
demonstration of this behavior is presented in Figure 9.

Green-Screen Keying via Color Unmixing (CU): The first step
of our algorithm, sparse color unmixing, shares common elements
with the color unmixing formulation proposed by Aksoy et al.
[2016]. While CU does the energy minimization while satisfying
the constraints in Equations (1)–(3) as we do, it lacks a sparsity
measure in the energy formulation, as discussed in Section 3. The
authors solve the matte sparsity problem by introducing a per-frame
local color model, which locally determines subsets of their global
color model. A first approximation of the local color model is com-
puted via a Markov random field optimization, which later needs
to be manually refined by the user in order to achieve high-quality
keying results. Note that the user interaction for obtaining local
color models is provided not for giving artistic freedom to the user,
but it is required in order to fix the errors of the initial estimate.

CU also lacks a measure for spatial coherency. While they can
achieve satisfactory results for green-screen keying with the help of
local color models, when applied to soft color segmentation, their
per-pixel formulation results in abrupt transitions between layers,
as seen in Figure 4(c).

Multiple Image Layer Estimation (ML): Multiple image layer
estimation method [Singaraju and Vidal 2011] makes use of the
matting Laplacian proposed by Levin et al. [2008a]. The matting
Laplacian encodes local affinities that effectively represent the alpha
propagation between neighboring pixels. ML formulates the prob-
lem of estimating multiple soft layers into several sub-problems of
two-layer estimation. Their formulation allows the estimation of N
layers in closed form. However, they discuss in depth that it is not
possible to solve for the layer alphas in closed-form while satisfying
both non-negative alpha values and the alpha values summing up to
1 for N > 2.

Spectral Matting (SM): It is worth mentioning that the soft seg-
mentation (as opposed to soft color segmentation) method spectral
matting [Levin et al. 2008b] also extracts multiple layers by making
use of the matting Laplacian. SM defines matting components, soft
segments that can be determined as the eigenvectors of the matting
Laplacian corresponding to its smallest eigenvalues. By making use
of the sparsity prior shown in Equation (5), they find N plausible
matting components, N being the number of layers specified by the
user. The primary aim of SM is to extract spatially connected soft
segments rather than layers of homogeneous colors. Their formula-
tion fails to keep the alpha values in [0, 1].

Both ML and SM only estimate the alpha values. In order to get
the layer colors, an additional step is needed for each of them. ML
uses the layer color estimation method proposed by Levin et al.
[2008a]. In this method, the authors define an energy for estimating
the foreground and background colors (only for the N = 2 case)
that make use of layer alpha and color derivatives:

∑
p

‖ cp −
∑

i

α
p

i up

i ‖2 +
[ ∇xα0

∇yα0

]T ∑
i

[ ∇x uT
i ∇x ui

∇y uT
i ∇y ui

]
. (9)

This energy, which takes the alpha values as input, propagates
the color values in the image to get plausible colors agreeing with the
alpha values. As the color constraint is only one of the terms in the
energy, the result does not necessarily satisfy the color constraint.

Fig. 5. A layer extracted by the proposed method (b) and KNN Matting
(c). KNN’s hard constraints on alpha values may cause artifacts as shown in
the inset.

Fig. 6. Our layers, when overlaid (b), give us the original image (a), while
layers extracted by KNN matting may result in erroneous reconstruction (c)
by failing to satisfy the color constraint. The effect may be local color loss
such as the lips in the top image or a global degradation of image quality as
seen in the bottom image.

KNN Matting (KNN): KNN matting [Chen et al. 2013], in con-
trast to SM and ML, uses non-local affinities that are computed
using the neighbors of each pixel in a feature space rather than only
spatially close-by pixels. They also transform the layer estimation
problem into a sparse linear system and solve for the alpha values
of each layer separately. Unlike ML, they show that their algorithm
naturally satisfies the constraint that the alpha values sum to 1.
While the non-local approach, in fact, produces higher-quality soft
layers when compared to its local counterparts, the sparse affinity
matrix they construct ends up having many entries far from the di-
agonal. This significantly increases the runtime to be able to solve
the linear system. KNN puts hard constraints around the seed pixels
and this frequently results in disturbing blockiness artifacts due to
their affinity definition as shown in Figure 5.

KNN matting proposes a layer color estimation algorithm that
follows their non-local approach. By making a smoothness assump-
tion on layer colors, they again propose a sparse linear system for
estimating layer colors and solve for them for each layer inde-
pendently. We observed that independently solving for each layer
fails to satisfy the color constraint in the final result, as shown in
Figure 6. This is highly undesirable, especially for image editing
applications because of the information loss on the original image
prior to editing.

To summarize, the main advantages of our method are satisfying
all the constraints and requirements that we discussed in Section 3,
not requiring a pre-determined layer ordering, as well as providing
smooth transitions between layers and its per-pixel formulation that
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Fig. 7. Color model estimation is done by placing seed pixels (marked green on the top row) one by one and estimating a normal distribution (visualized as
the hexagons) from the local neighborhood of each of the seeds. To select the next seed pixel, we make use of the representation scores (bottom row, brighter
means better-represented). The pixels that are already marked as well-represented are highlighted with blue on the top row. The hexagonal visualization shows
the color variation along the three principal axes of the covariance matrices of the estimated 3D color distributions in their diagonals.

permits efficient implementation and scalability to high-resolution
images. In contrast, any other soft color segmentation method we
analyzed in this section fails in at least one aspect. Scalability is
especially crucial for practical applications, as in terms of both
computation time and memory consumption, current methods fail
to scale to resolutions captured by consumer-grade cameras. We will
further discuss the visual implications of these shortcomings and
required computational resources for each algorithm in Section 6.

5. COLOR MODEL ESTIMATION

In Section 3, we defined the color model as the set of layer color
distributions Ni that represents the color characteristics of layers,
which we then used as a fundamental component of our soft color
segmentation formulation. In this section, we discuss details of our
automatic color model extraction process, which we treated as a
black box until now.

One priority we have in the estimation of the color model is
determining the number of prominent colors N automatically. As
our layers are meant to be used by artists in image manipulation
applications, it is important to keep N at a manageable number. At
the same time, to enable meaningful edits, the color model should
be able to represent the majority—if not all—pixels of the input
image. In order to strike a balance between color homogeneity and
the number of layers N , we would like to avoid including colors that
can already be well represented as a mixture of other main colors.

Figure 7 illustrates our color model estimation process. In order
to determine how well a color model represents the input image, we
define a per-pixel representation score rp , which is the color un-
mixing energy obtained by minimization using the current (possibly
incomplete) color model. The color unmixing energy can be used to
assess the representativeness of an intermediate color model, since,
if the model fails to fully represent a pixel color in the input im-
age, then the color unmixing energy will be high due to the D(ui)
term. By using the color unmixing energy (Equation (4) without
the sparsity term) instead of only D(ui) terms, we make sure that
the colors that can already be represented as a mixture of several
existing colors are not added to the color model. This increases
the compactness of the estimated color model while preserving the
color homogeneity of the to-be-estimated layers.

Our first goal when estimating the color model is to determine
a set of seed pixels with distinct and representative colors. For
estimating the color model, we rely on a greedy iterative scheme,
where we keep selecting additional seed pixels until we determine
that the current color model is sufficiently representative of the
whole image. To select the next seed pixel, we rely on a voting
scheme. To that end, we first divide the RGB color space into
10 × 10 × 10 bins. Every pixel votes for its own bin, and each vote
is weighted by how well represented the pixel already is such that
the most underrepresented pixels get the highest voting right. We
finally select the seed pixel from the bin with the most votes. If no
bin has a significant number of votes, then the algorithm terminates.

Mathematically, the vote of each pixel is computed as

vp = e−‖∇cp‖ (
1 − e−rp )

, (10)

where ∇cp represent the image gradient, which is often a good
indicator of image regions with mixed colors. Since we would rather
like to select seed pixels with pure colors, the above expression
penalizes the votes coming from high-gradient image regions.

After selecting which color bin to add to the color model, we
choose the next seed pixel as follows:

si = arg max
p∈bin

Spe−‖∇cp‖, (11)

where Sp is the number of pixels in the same bin as pixel p in its
20 × 20 neighborhood. We then place a guided filter kernel around
p to use as weights in estimating a normal distribution from the
neighborhood of the seed.

We use a representation threshold to determine which pixels are
sufficiently represented and remove them from the voting pool:

Remove p if rp < τ 2. (12)

The representation threshold τ roughly indicates the number of
standard deviations the color of a pixel can be away from the mean
of a layer distribution to be considered as well represented. Smaller
values of τ would produce larger color models that may be cumber-
some for users manipulating images, but the resulting layers would
be more homogeneous in terms of their color content. On the con-
trary, a larger τ would result in compact color models but possibly
cause the layers to be less homogeneous. We show in Section 6.1

ACM Transactions on Graphics, Vol. 36, No. 2, Article 19, Publication date: March 2017.



19:8 • Y. Aksoy et al.

that although our algorithm requires τ as a parameter, fixing τ in-
stead of the number of layers N generalizes well over different types
of images. Through experimentation, we found τ = 5 to be a good
compromise between color model size and layer homogeneity and
use this value to produce all our results.

As stated earlier, the color model is computed as a pre-processing
step to the soft color segmentation algorithm detailed in Section 3.
A computational challenge here is estimating the representation
scores efficiently. Instead of running the computationally demand-
ing nonlinear optimization scheme of color unmixing every time
we add a new seed pixel to the color model, we approximate the
color unmixing cost using the novel projected color unmixing as
described in Section 5.1.

5.1 Approximating the Representation Score

From an implementation point of view, the main challenge with
the aforementioned color model estimation scheme is the expensive
cost of recomputing the color unmixing energy every time we add
a new entry to the color model. The key observation that enables
us to circumvent this challenge is that in order to estimate the
representation scores rp , we only need to know the color unmixing
energy F , but do not necessarily need to obtain the correct alpha
and color values as a result of the minimization process.

We reformulate the representation score computation as:

r̂p = min({Di(cp), ∀i} ∪ {F̂i,j (cp), ∀i,∀j �= i}), (13)

where F̂i,j (cp) represents an approximation of the minimized color
unmixing energy using the ith and j th color distributions as input.
The major simplifying assumption we make here is that the mixed
colors mainly constitute major contributions from at most two dis-
tributions in the model. The first term in Equation (13) corresponds
to colors that fit well with a single color, while the second represents
the case for two-color mixtures. We approximate the two-color min-
imum color unmixing energy using the method we call projected
color unmixing.

5.1.1 Projected Color Unmixing. The color line assumption
[Ruzon and Tomasi 2000], that is, the unmixed layer colors and
the observed pixel color should form a line in the RGB space, is a
useful tool especially for sampling-based natural matting methods
in the literature, such as Gastal and Oliveira [2010]. While this as-
sumption can be used for the two-layer case, this simplification does
not generalize to N > 2. In this section, we utilize the color line
assumption and provide an approximation to the color unmixing
energy [Aksoy et al. 2016] for the N = 2 case, which we illustrate
in Figure 8.

Color unmixing samples colors from 3D normal distributions in
color space. In order to make use of the color line assumption, we
restrict the possible space of samples taken from each distribution
to a 2D plane. For a pair of normal distributions N1(μ1, �1) and
N2(μ2, �2), the plane of possible unmixed colors for the first layer
is then defined by the normal vector n = μ1 − μ2 and the point μ1.

We determine the approximations û{1,2} to the unmixed colors
u{1,2} as projections of the observed color c to the two planes:

û{1,2} = c − (c − μ{1,2}) · n

n · n
n. (14)

The alpha values are then determined such that they satisfy the color
constraint:

α̂1 = ‖c − u2‖
‖u1 − u2‖ , α̂2 = 1 − α̂1. (15)

Fig. 8. An illustration of projected color unmixing. See text for discussion.

If c does not lie between the two planes, then we conclude that the
pixel p can not be represented as a mixture of samples drawn from
the two color distributions.

In order to compute the cost of this color mixture, we project
the normal distributions onto the corresponding planes as well. We
then apply the color unmixing energy formulation using these 2D
distributions:

F̂ = α̂1Dproj
1 (û1) + α̂2Dproj

2 (û2), (16)

where we refer to F̂ as PCU energy.
If the two largest eigenvalues of the normal distribution are close

to lying on the plane we defined above, then the estimated layer
color is actually very close to the one found by color unmixing, as
illustrated by distribution 1 in Figure 8. Otherwise, the approxima-
tion error is larger, as illustrated by distribution 2.

The approximation to the alpha values shown in Equation (15)
is actually the same as the alpha estimation equation proposed by
Chuang et al. [2001] and utilized by many sampling-based natural
matting approaches,

α̂B
1 = (c − u2) · (u1 − u2)

‖u1 − u2‖2
. (17)

The cost of using a pair of samples is typically defined in relation
to chromatic distortion [Gastal and Oliveira 2010],

C = ‖c − α1u1 − α2u2‖, (18)

which is basically the deviation from the color constraint. While
both chromatic distortion and PCU measure the quality of the un-
mixing using the two samples/distributions, a significant difference
between them is that PCU measures the cost when the color con-
straint is satisfied using the statistical models for the layers.

Experimentally, we found that the projected color unmixing en-
ergy gives us an approximation to the two-layer color unmixing
energy by an error rate of 15% on average, while running approx-
imately 3,000 times faster on a standard PC. By estimating the
unmixing costs efficiently, our overall gain in total color model
computation time is a 5-time improvement compared to using the
color unmixing optimization procedure. On average, the time re-
quired to compute the color model for a 1MP image is 9s.

A step-by-step example of our color model computation proce-
dure is presented in Figure 7. To summarize our color model com-
putation, we add new layer color distributions to our color model by
first computing the per-pixel representation scores efficiently using
projected color unmixing (Equation (13)). We then group the image
pixels into color space bins and execute a voting scheme where
we give higher weights to pixels with lower representation scores.
Within the bin with the highest votes (Equation (10)), we select
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Fig. 9. The color model and corresponding layers computed by the proposed method (left) and by Tan et al. [2016]. The layers on the right have been converted
to alpha-add representation from overlay representation (see the appendix) for a more meaningful comparison. The number of layers is different for the two
algorithms because we are using the original result of Tan et al. [2016] which has 5 layers, and our automatic color model estimation method determined 6
dominant colors in the image. See text for discussion.

the seed pixel from an image region where the gradient magnitude
is low (Equation (11)). We compute the parameters of a normal
distribution from the neighborhood of the seed pixel and add this
distribution to the color model. We remove the well-represented
pixels (Equation (12)) and repeat the procedure until no bins have
enough votes.

5.2 Color Model Estimation Methods in Literature

There are several methods to compute a color model given an image.
We will discuss the common clustering methods such as k-means
and Gaussian mixture models (GMM) as well as methods integrated
with their soft color segmentation or color editing counterparts by
Tai et al. [2007], Chang et al. [2015], and Tan et al. [2016].

Our method generalizes well over different types of images with
a fixed parameter τ = 5 as opposed to the rest of the algorithms, all
of which need the number of layers N as the input parameter that
change dramatically from image to image. In contrast, KNN [Chen
et al. 2013], ML [Singaraju and Vidal 2011], and CU [Aksoy et al.
2016] rely on user input in forms of scribbles or seed pixels rather
than a color model. RGBSG [Tan et al. 2016] requires the ordering of
the layers as input in addition to N . It should be noted that there are
generalized methods such as G-means [Hamerly and Elkan 2003] or
PG-means [Feng and Hamerly 2006] for automatically estimating
the number of clusters in arbitrary data sets. However, they do not
take into account the specific characteristics of estimating the num-
ber of color layers, such as mixed-color or high-gradient regions.

The color model, referred to as the palette by Chang et al. [2015],
is determined by a modified version of the k-means for the palette-
based recoloring application [Chang et al. 2015]. They simplify the
problem by using color bins rather than all of the pixel colors in the
image and disregarding dark color entries.

Clustering methods such as k-means or expectation maximiza-
tion for GMM, as well as the palette estimation by Chang et al.
[2015], tend to produce layer color distributions with means far
away from the edges of the RGB cube. This often results in under-
representation of very bright or highly saturated colors in the color
model.

On the other hand, the color model estimation of AO, as well as
GMM, typically results in normal distributions with high covari-
ances, which has an adverse effect on the color homogeneity of the
resulting layers. This is due to the lower energy achieved with large
covariances in the expectation maximization for GMM. In the case
of AO, they estimate the parameters using the layer colors at a partic-
ular iteration of their algorithm. This causes their algorithm to begin
with large covariances as in the first iteration they assume opaque

pixels after an initial clustering, and this inclusion of unmixed colors
in the model estimation causes large color variation in each layer.
Large covariances promote non-uniform layers and as a result, fur-
ther iterations do not tend to make color distributions more compact.

RGBSG begin their model estimation by assuming that the input
image is formed by a limited set of colors. This assumption does
not generalize well to natural images as they may include much
more complex color schemes and mixtures. Their alpha estimation
method requires the model colors to envelop the convex hull formed
by the pixel colors in the image, and hence they identify the model
colors by simplifying the wrapping of the hull. This results in se-
lection of colors that are either on the edge or outside the convex
hull. Hence, the colors picked by them do not necessarily exist in
the image, and a dominant color that is in the middle of the RGB
cube cannot be selected as a model color. The effect of this can be
observed in Figure 9, where orange were not included by their color
model and instead yellow, which does not appear anywhere in the
image, is selected. The orange pixels are then represented by the
mixture of red and yellow. Tan et al. [2016] points out that this be-
havior allows the algorithm to discover hidden colors in the image.
However, it is suboptimal for image editing in various scenarios as
when the edited color does not exist in the image, the effects of the
edit becomes hard to predict. In addition, the simplified wrapping of
the hull does not necessarily stay inside the valid color values. They
map these imaginary colors onto the acceptable range and this may
result in their alpha estimation not satisfying the color constraint.

Our method, in contrast to some of the competing approaches,
exclusively selects colors that exist in the image. By constructing
the model through selected seed pixels instead of clustering, we can
include highly saturated or bright colors.

While each approach has advantages and disadvantages, an im-
portant thing that should be noted is that the integrated approaches
in RGBSG, AO, and ours have characteristics coupled with their
corresponding layer estimation methods. RGBSG requires colors
that envelop the pixels, and AO requires an iterative approach to re-
fine the layers together with the model. Our approach constructs the
color model using the unmixing energy, which results in a model
that is able to represent the pixel colors with low unmixing en-
ergy, which in turn makes our estimated layers have smaller color
variation. We evaluate our automatic technique in Section 6.1.

6. EVALUATION

Evaluating soft color segmentation methods is challenging, since
how the optimal set of layers resulting from decomposing a par-
ticular input image should exactly look like is not clear. In fact,
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Table I. Quantitative Test Results for ML [Singaraju and Vidal
2011], SM [Levin et al. 2008b], KNN [Chen et al. 2013], AO

[Tai et al. 2007], CU [Aksoy et al. 2016] and the Proposed
Algorithm. Italic Font Indicates Values Below

Quantization Limit
SM ML KNN AO CU Ours

α /∈ [0, 1] 34% 30% 0.0001% 0% 0% 0%
Rec. Error 0.0039 0.0138 0.0183 0.00002 0.0003 0.0005
Color Var. 0.050 0.044 0.006 0.051 0.001 0.005

Grad. Corr. 0.78 0.71 0.84 0.55 0.56 0.89

even the existence of such a ground-truth soft color segmentation
is questionable at best. Accordingly, in this section, we present two
types of evaluation. As qualitative evaluation, we present layers that
are computed by our method in comparison with previous methods
in Figure 12 and in the supplementary material for visual inspection
by the reader. These results provide insights on the overall qual-
ity level of each algorithm and serve as a visual reference on the
characteristic artifacts each method produces. For quantitative eval-
uation, we devise a set of blind metrics for assessing how well each
method satisfies the constraints and requirements that we discussed
in Section 3. These metrics are as follows:

—Out-of-bounds alpha values: Check if the box constraint (Equa-
tion (3)) is satisfied for alpha values. The metric returns the per-
centage of alpha values outside the permissible range.

—Reconstruction error: Check if the color constraint (Equa-
tion (1)) is satisfied. The metric computes the average squared
distance between an input image and the alpha-weighted sum of
all its layers.

—Color variance: Assess the color homogeneity of layers. The
metric returns the sum of individual variances of RGB channels
averaged over all layers of an input image.

—Gradient correlation: Assess whether the texture content of the
individual layers agrees with that of the input image. Inconsis-
tencies such as abrupt edges in a layer, which are not visibly
identifiable in the original input image will result in a low score.
The metric returns the correlation coefficient between the alpha
channel gradients of the layers and the color gradients of the
original image. We define the alpha channel gradient as the L2
norm of the vector that comprises the gradients of alpha values of
every layer. Similarly, we compute the L2 norm of the gradient
of each color channel as the color gradient.

Note that the above metrics only evaluate constraints and require-
ments that are not satisfied by at least one method. For example,
we excluded the box constraint for color (Equation (3)), since the
particular implementations of all the methods we consider in our
evaluation produce color values within the permissible range. We
executed the above metrics on a test set of 100 diverse images and
report the average numbers in Table I.1

We also analyzed the runtime and memory requirements of each
method both as a function of the color model size (Figure 10) and
image resolution (Figure 11). For the former test, we selected eight
images at 1MP resolution with varying color model sizes from 4
to 11. In the latter test, where we investigate the scalability of each
method in terms of image size, we chose an image with seven
layers,2 which we resized from 5MP down to 40kP. It should be

1All images and the corresponding layers produced by six methods shown
in the figure are presented in the supplementary material.
2The average size of the color model was 6.88 for the 100 images on which
we do the evaluation.

Fig. 10. Computational resources needed for soft color segmentation with
respect to the number of layers. We selected example images corresponding
layer count to see the trend in each algorithm. Note that the data axes are in
logarithmic scale.

Fig. 11. Computational resources needed for soft color segmentation with
respect to the image size. We scaled an image with 7 layers to see the trend
in each algorithm. Note that the data axes are in logarithmic scale.

pointed out that our parallelized C++ application is compared to the
MATLAB implementations of the competing methods except for
CU. KNN, SM, and ML solve large linear systems which cannot be
efficiently parallelized. However, these graphs still give us an idea
of the scalability of each method.

In our evaluation, we used publicly available implementations of
SM and KNN, whereas for CU, we use the original source code.
We implemented ML using Levin et al.’s [2008a] publicly available
matting Laplacian and foreground layer estimation implementation.
We utilized the latter also for computing the layer colors of SM.
As AO’s implementation was not available,3 we implemented the
method ourselves in MATLAB, where we utilized the UGM toolbox
for the loopy belief propagation [Schmidt 2007]. Our own results
were generated using our research prototype written in C++ with
parallelization using OpenMP.

3On correspondence with the first author, we learned that the original code
is no longer available.
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Fig. 12. Comparison of the soft color segments produced by various algorithms including ours. Results of all the algorithms shown here are provided for 100
different images in the supplementary material. See text for discussion.

SM and AO require the number of layers N a priori as input,
whereas KNN obtain N seed pixels through user interaction, CU
requires N scribbles, and ML similarly requires N user-specified
regions. In order to enable a meaningful comparison among all
competing methods, we utilized the number N , as well as the N seed
points determined by our color model (Section 5). As the input to
ML, we used N image regions, each comprising pixels with similar
colors to a seed pixel. In order to avoid biasing the comparison by
artistic talent, we excluded the local color models from CU. It should
also be noted that SM, by design, produces spatially connected soft
layers rather than emphasizing color homogeneity. Nevertheless,
for completeness, we include SM in our evaluation.

A representative qualitative comparison is presented in Figure 12,
where we show the layers produced by all competing methods.4

The figure clearly illustrates the shortcomings of propagation based
methods SM and ML. For example in ML’s case, the sky and its
reflection on the lake end up in two separate layers, despite having
similar colors. The quantitative results for both methods, in agree-
ment with our theoretical analysis (Section 4), indicate that they, in
fact, suffer from alpha values outside the permissible range. Their

4See the supplementary material for many other examples and further
discussion.
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Fig. 13. The soft color segments produced by the proposed algorithm (left) and by the method by Tan et al. [2016] (right). The layers by Tan et al. [2016]
have been converted to alpha-add representation from overlay representation (see the appendix) for a more meaningful comparison. An extension of this figure
is available in the supplementary material. See text for discussion.

results on the remaining metrics reveal that they are generally worse
than others for the task of soft color segmentation (Table I).

On the other hand, both Figure 12 and Table I confirm our claims
from Sections 4 and 5 on AO’s potential color homogeneity issues
and the consequences of solving for alpha and color values sepa-
rately. The figure clearly shows spurious hard edges on AO’s layers,
and the method performs badly on both color variance and gradient
correlation metrics.

While KNN does not share AO’s weaknesses, it instead tends to
fail to satisfy the color constraint for reasons discussed in Section 4.
Another significant drawback of KNN is its prohibitively long run-
time, which prevents the method to be used on high-resolution
images on current PC hardware.

The layers computed by CU in Figure 12 clearly show the visual
effect of the absence of spatial coherency, which manifests itself as
spurious hard edges throughout the layers. This problem is also evi-
dent from the gradient correlation metric outcomes in Table I, where
CU gets the worst score among all the algorithms we evaluated.

We could not include RGBSG [Tan et al. 2016] in these compar-
isons because it requires the user to define the ordering of the layers.
The quality of its layers depend on this ordering and hence we could
not use a random ordering to determine its true performance. This
ordering is rather hard to define prior to soft color segmentation even
by a user and the need for it is a significant shortcoming. Instead,
we compare our layers against RGBSG using the layers provided
by Tan et al. [2016] as supplementary material to their article in
Figure 13.5

RGBSG provides opacity layers with smooth transitions as we
do, as opposed to other algorithms we analyze in this section. Also,
their layer colors are defined to be solid, which makes their color
variation score 0. However, their formulation and model estimation
requires the model colors to envelop the pixel colors of the origi-
nal image from the outside in RGB space, which makes the color
content of their layers differ from the dominant colors in the image.
This behavior, when coupled with the solid color layers, results in
reduced sparsity in their layers. Figure 13 demonstrates this partic-
ular shortcoming. While the girl’s hoodie has a particular shade of
the blue, it was not included in the color model of RGBSG. As a
result, that region also has strong green and white components in
addition to blue. Also, the purple color does not exist in the original
image but is included in the model of RGBSG and computed as
an additional layer. By containing a subset of actual image colors,

5Our layers for the 18 images used by Tan et al. [2016] are provided as
supplementary material.

our automatically computed layers provide an intermediate image
representation that is more intuitive to use.

To summarize, all current soft color segmentation methods suffer
from one or more significant drawback(s). Our method, on the other
hand, successfully satisfies the alpha, box, and color constraints
and produces layers with homogeneous colors. The transitions in
between layers of our method are highly correlated with the texture
of the original image. Importantly, due to its highly parallelizable
per-pixel formulation, our method is more memory efficient and
runs more than 20× faster than KNN and RGBSG, which are the
closest competition in terms of the quality of results. The proposed
algorithm can process a 100MP image in 4h using up to 25GB of
memory. Note that KNN and AO can only process a 2.5MP image
within the same time budget, and SM requires more than 25GB of
memory for a 5MP image. Also, note that our modifications to the
color unmixing formulation by Aksoy et al. [2016] cause only a
modest performance hit, while significantly improving the quality
of the layers.

6.1 Color Model Estimation

We also compare our color model estimation method (Section 5)
with other methods, such as the specialized color model estimation
schemes from AO, RGBSG, and palette-based recoloring [Chang
et al. 2015], as well as general-purpose clustering methods k-means
and expectation maximization for GMM.

Figure 14 shows exemplary results for discussion, whereas the
full set color models for 100 images is presented in the supplemental
material. These results demonstrate several advantages of our color
model estimation method over others.

First, Figure 14 clearly demonstrates that the number of main
colors N in an image (and thus the desired cardinality of the color
model) is highly content dependent. However, all current meth-
ods require N to be specified a priori. Figure 14 shows that any
fixed number will be overkill for certain images, whereas being too
restrictive for others. Our method is highly advantageous in this
regard, as it determines N automatically by analyzing the image
content using a fixed parameter τ = 5. Note that to enable a mean-
ingful comparison, we set N for the competing methods to the value
determined by our method.

One characteristic of clustering-based methods is the lack of
highly saturated or bright colors in the estimated model. This is
because, as they form clusters, the centers tend to be far from
the edges of the RGB cube to get a lower clustering energy. By
sampling colors directly from the image using our voting-based
scheme, we are able to get the colors as they appear in the image.
This behavior is especially apparent in the last image in Figure 14,
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Fig. 14. Comparison of the color models estimated by our method, alternating optimization [Tai et al. 2007], expectation maximization using Gaussian
mixture models (GMM), RGB-hull based method used in RGBSG [Tan et al. 2016], palette estimation used in palette-based recoloring [Chang et al. 2015],
and K-means clustering. The green dots on the images denote seed points determined by the proposed algorithm. The hexagonal visualization shows the color
variation along the three principal axes of the covariance matrices of the estimated 3D color distributions in their diagonals. The square visualization shows a
single solid color, which is used for methods that only estimate colors rather than distributions. See text for discussion.

where k-means and palette-based recoloring fails to capture the
vivid colors in the image.

RGBSG color model estimation, on the other hand, selects colors
that lie outside the convex hull formed by the pixel colors in the
image. This results in many colors appearing in the color model that
do not exist anywhere in the image, such as the bright green entries
in the second and third examples in Figure 14.

Another advantage of our color model estimation is its ten-
dency to produce homogeneous color distributions, which directly
influences the color homogeneity of the resulting layers computed
by the soft color segmentation method. The hexagonal visualiza-
tions of each method’s estimated color distributions in Figure 14
reveal that AO and GMM produce noticeably more color variation
in each color model entry compared to our method.

Our method can also capture distinct colors confined in small im-
age regions, such as the skin color in the middle image in Figure 14,
or the green of the plant in the fourth image in the figure, which are
missed by all other methods except palette-based recoloring. Since
such regions usually form small clusters in color space, k-means
and GMM tend to merge them into larger clusters.

While the competing methods have particular disadvantages, we
refer the reader to Section 5.2 for the discussion on how and why the
specialized model estimation methods in AO and RGBSG, as well as
ours, fit well with their corresponding layer estimation counterparts.

7. APPLICATIONS

A key advantage of our framework is that it allows numerous,
seemingly unrelated, image manipulation applications to be exe-
cuted trivially, once an input image is decomposed into a set of
layers. For example, color editing can simply be performed by
translating the colors of one or more layers, green-screen keying
amounts to removing the layer(s) corresponding to the background,
texture overlay can be achieved by introducing new texture layers
obtained from other images, and so on. In this section, we show
high-quality results for different image manipulation applications
that were produced by first letting our method do the heavy lifting
and then applying a small set of basic per-layer operations.

Our method naturally integrates into the layer-based workflow
adopted by the majority of the current image manipulation pack-
ages. In Figure 15 (bottom) we list some basic image manipulation

operations that are implemented in image manipulation software
packages. In practice, users can easily import the layers computed
automatically using our method into their preferred software pack-
age and perform these edits through familiar tools and interfaces.
This way, we prevent any unnecessary learning effort, as well as take
full advantage of the powerful layer-based editing tools available.

We produced our application results by first exporting the layers
computed automatically by our method to Adobe Photoshop and
then performing a set of operations on individual layers.

We present our results in Figures 15 and 16, where input images
and the corresponding automatically estimated color models are
shown on the top, and edited images are shown at the bottom, along
with the list of image manipulation operations applied to obtain the
presented results. These image manipulation operations are denoted
by small icons underneath the edited images, and the correspond-
ing legend is presented at the bottom of Figure 15. For example,
Figure 15 (Image (3)) is obtained by changing brightness, colors,
and saturation on certain layers, whereas in Figure 15 (Image (8))
we only applied color changes to a subset of the layers. For brevity,
in the remainder of this section we will refer to the specific results
presented in Figures 15 and 16 solely by their designated indices.

In the following paragraphs, we discuss numerous examples of
image manipulation applications and highlight our corresponding
results. These applications can be categorized into layer adjust-
ments, where we modify properties of existing layers, and com-
positing, where we add new layers to an image or remove existing
ones. Note that some of our results contain specific manipulations
that can be classified under more than one application, which can
easily be performed under a single framework using our method.

7.1 Layer Adjustments

The users can easily enhance or even completely change image
colors as well as adjusting brightness and exposure on a per-layer
basis. Note that while performing such edits globally throughout the
entire image is trivial, making local adjustments is often challenging
and prone to producing visual artifacts.

Color enhancement/change: A number of effects can be
achieved by simply using the hue/saturation tools available in most
image manipulation software, as well as the more sophisticated
color adjustment tools (such as the vibrance control in Photoshop)
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Fig. 15. Example results that were generated using the layers provided by the proposed algorithm. Each set shows the input image (top), the color model, the
edited image and the set of operations applied to individual layers. The set of operations is defined on the bottom. See text for discussion.

on selected layers of an input image. We showcase several exam-
ples, including changing colors of clothing (Images (1), (4), (6), (8),
(13), and (18)), fauna (Image (3)), illumination (Images (2) and (7)),
sky (Images (16) and (17)), fire (Image (17)), and metallic surfaces
(Image (15)).

Brightness/exposure change: The brightness and exposure of
specific layers can similarly be modified to make slight adjustments
in the overall image appearance. Such subtle edits are performed in
most of our results presented in Figures 15 and 16. Additionally, in
Image (16) and Figure 1(c), we demonstrate a local enhancement
of luminance contrast of the clouds, which results in certain details
becoming visible and giving the impression of more volume
compared to the input images. A particularly interesting image
manipulation is showcased in Image (19), where we increase the
intensity of shadows to facilitate establishing the skater as the
center of attention in the composition.

Skin tone correction: Adjusting skin tones is one of the most
common photo editing operations applied in practice. Since humans

are usually the most salient scene elements and our visual system
is highly tuned for detecting any imperfections, especially on faces,
even the slightest visual artifacts caused by re-adjusting skin colors
can be disturbing for the viewer. Our results (Images (1), (4), (6),
and (18)) show examples of modified skin tones, which we achieved
by making the mid-tones richer in the corresponding layer using the
curve tool. The highlights on the faces can also be edited to be
weaker (Images (1) and (4)).

7.2 Compositing

Our layers also serve as a useful intermediate image representation
for general-purpose compositing applications.

Green-screen keying: Images (11), (12), (13), and (14) show
our green-screen keying results obtained automatically by simply
removing the layers corresponding to the green screen. Note that any
other background object on the green-screen (such as the markers in
Image (14)) can easily be removed using a standard garbage matte.
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Fig. 16. Example results continued. See text for discussion.

We additionally present a video result for green-screen keying in
the supplementary material.

Texture overlay: Our method also allows additional layers to
be overlaid onto existing ones. Image (10) shows such an example
where we extract the drawing from the blackboard on the source
image and overlay it on a new image only by applying a perspective
transform to the corresponding layers. Note that, due to their accu-
rate opacity channels, the transferred layers properly mix with the
texture of the concrete ground and shadows. In Image (15) we make
a file cabinet appear more rugged by overlaying a texture pattern.

Layer replacement: Our method can also be used for removing
existing layers and adding new ones, even if the content is not cap-
tured in a green-screen setting. Image (9) shows an example where

we extract the object from the background with the help of roto
masks and use it to create a web page. Note that the details, such as
the shadow of the motorcycle, are retained in the composited result
with proper opacity. Finally, in Image (18), we completely replace
the original background with an external image while properly re-
taining the reflection on the window.

Our results demonstrate that state-of-the-art quality can be
achieved using our soft color segmentation as an intermediate image
representation, which in turn trivializes numerous image manipu-
lation applications. This suggests that soft color segmentation is,
in fact, a fundamental technical problem in image manipulation.
By isolating this problem and solving it effectively and efficiently,
our method serves as a unified framework for high-quality image
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Fig. 17. Step-by-step editing of the image on the left in Adobe Photoshop using our layers (a), by a professional artist using only Adobe Photoshop (b),
using the palette-based image editing tool by Chang et al. [2015] (c), and the layers computed by AO [Tai et al. 2007] (d), KNN [Chen et al. 2013] (e), and
RGBSG [Tan et al. 2016] (f). AO and RGBSG rows lack one step each (the color of the sunset for AO and the color of the sea for RGBSG) because the layers
corresponding to the intended edits did not exist in their color model. See text for discussion.

manipulation, which gives users significant flexibility for realizing
their artistic vision.

8. COMPARISONS AT THE APPLICATION LEVEL

We demonstrated the use of our soft color segments in image editing
in Section 7. Theoretically, any soft color segmentation method
could produce layers that can be used for the same applications.
We analyzed in Section 6 the differences between the current state
of the art in soft color segmentation and the proposed method. In
this section, we will demonstrate how these differences affect image
editing results. We will also present the results of professional artists
using commercially available tools for some of the demonstrated
applications.

Figure 17 shows an image being edited by using our layers,
layers by AO, KNN, and RGBSG, as well as those by a professional
artist using Adobe Photoshop and using the palette-based recoloring
application by Chang et al. [2015]. Creating a mask in Photoshop for
targeted color edit results in color artifacts when the artist attempts
to change the pink of the coat to yellow. The soft color transitions
and fine structures are the main source of the problem since the layer
masks do not include unmixing of the colors and the color changes
result in suboptimal color transitions with the neighboring regions.
The feedback we got from the artist was that very precise masks
should be drawn at the pixel level manually and targeted color

edits should be done to make the transitions look more natural,
which is a very time-consuming and error-prone task. The fine
structures and transitions are dealt with better by the palette-based
recoloring. However, in this case, we see significant artifacts around
bright regions. Using the layers by AO also creates significant visual
artifacts, as the pink layer could not cover the full extent of the color.
The layers by KNN do not give the original image and this results in
a degraded version of the image even without editing. The pink layer
covers areas in around the hair and in the background in RGBSG
layers, which results in some artifacts in the edited result. It can also
be observed that the transition from pink to blue of RGBSG layers
is suboptimal, and some pinkish hue can be observed in this region
after the color change.

We present color editing results using our layers in images used
by Tan et al. [2016] (RGBSG) and Chang et al. [2015] (PBR) in
Figure 18. We observed some matte smoothness issues in the results
by RGBSG as apparent in the top two images. The color change
from blue to pink in the bottom example results in artifacts around
the soft transition from the chair to the background. The luminance
constancy constraint of PBR, which states that the luminance of a
particular palette color should always be lower than other palette
colors that are originally brighter in the non-edited palette, results in
overexposed regions when one attemps to increase the luminance
of the sky in the top example. Also, the orange hue in the boat
example still exists in the ground after the color change from orange

ACM Transactions on Graphics, Vol. 36, No. 2, Article 19, Publication date: March 2017.



Unmixing-Based Soft Color Segmentation for Image Manipulation • 19:17

Fig. 18. Color editing results using our layers (a), layers by Tan et al. [2016] (b) and using the recoloring application by Chang et al. [2015] (c) on images
used by Tan et al. [2016] and Chang et al. [2015] in their papers. An extension of this figure is available in the supplementary material. See text for discussion.

Fig. 19. Comparison to Aksoy et al. [2016] with manually edited active colors (a), and the same method with all colors activated at all pixels (b). Their results
without the manual active color selection show severe visual artifacts. On the other hand, the proposed method (c) achieves comparable quality to (a) despite
the lack of any user interaction. Three images on the right show work of an independent professional artist using multiple commercially available tools (d),
only Keylight (e) and only IBK (f) as reported by Aksoy et al. [2016].

to purple, alongside with other artifacts around the boat itself. The
color change in the bottom example erroneously affects the color
of the chair completely when PBR is used.

In practice, green-screen keying depends heavily on user interac-
tion. The common practice in industry requires a specialized com-
positing artist to combine multiple commercially available tools
such as Keylight, IBK, or Primatte to get the best possible result.
The state of the art in the academic literature [Aksoy et al. 2016]
also requires multiple user interaction stages, although it decreases
the total interaction time significantly. We compare our results with
those of Aksoy et al. [2016] with user interaction, their results with-
out user interaction using only the color unmixing proposed in the
same article [Aksoy et al. 2016], as well as with the work of a
professional compositing artist that were provided in their article in

Figure 19. It can be observed in both examples in Figure 19 that we
are able to conserve intricate details of the foreground object while
requiring only a simple mask to get rid of the markers, and so on,
in the background to clean the matte in a post-process. Note that
this mask is only one of the steps of interaction that is required in
commercially available tools. Unlike the proposed method, using
color unmixing without the interaction steps described by Aksoy
et al. [2016] results in disturbing artifacts.

In summary, while given enough time our results could poten-
tially be reproduced by a skilled artist utilizing various specialized
tools for each task, our method in general significantly reduces the
manual labor required for achieving production-quality results, and
provides artists a unified framework for performing various image
manipulation tasks conveniently.
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Fig. 20. In some cases, the proposed color model estimation algorithm
may give more layers than the user intends to make use of, as seen in the
bottom row (c). However, these layers can easily be combined to be edited
together, an example of which is shown in the top row (b) with the original
image and the color model (a).

Fig. 21. Although our automatic method is not able to deal with color spill
(c) as well as [Aksoy et al. 2016] (b), it is possible to use commercial keying
software such as Keylight to get rid of the spill as a post-processing step (d).

9. LIMITATIONS

In some cases, the automatically estimated color model comprises
color distributions that are subjectively similar, such as the three
separate white layers and the separate dark brown/black layers in
Figure 20(c). While this level of granularity might be useful, a
more concise color model would be more convenient for certain
edits. Fortunately, combining multiple layers into one is trivial in
our framework (Figure 20(b)). It is worth noting that the transitions
between layers with perceptually similar color distributions are still
smooth and have accurate alpha values. Therefore, they can still be
edited separately if the user intends to do so.

Our method has a significant advantage over the state of the art
in green-screen keying [Aksoy et al. 2016] in that it completely
replaces the cumbersome two-step user interaction process with
a fully automatic workflow without sacrificing the quality of the
results in general. That said, our sparse color unmixing energy
formulation (Section 3), which is designed for general-purpose
soft color segmentation, is not as effective in dealing with color
spill (indirect illumination from the green-screen) as the method
by Aksoy et al. [2016]. Fortunately, we found that this problem can
easily be alleviated in practice, as off-the-shelf tools can effectively
remove spill even in challenging cases, such as Figure 21, after
only a few mouse clicks.

The color model estimation method we propose selects seed pix-
els from the image and hence comprises only colors that exist in
the image. This strategy is effective for including colors with high

brightness or saturation when compared to the clustering-based
methods as discussed in Section 6.1. However, one limitation is that
it cannot identify colors that only appear as a mixture in the image,
such as the original color of a colored glass or smoke that is not
dense. For estimating such a color that does not appear opaque any-
where in the image, a different specialized approach is needed that
would estimate the partial contributions from an existing incomplete
color model in order to isolate the missing color.

Finally, as our soft color segmentation method does not utilize
high-level information such as semantic segmentation or face de-
tectors, the spatial extent of our soft segments do not necessarily
overlap with semantically meaningful object boundaries. That said,
it is also fairly easy to limit the spatial extent of layers by introduc-
ing masks since our layers naturally integrate into current image
manipulation software.

10. CONCLUSION

We proposed a novel soft color segmentation method that is espe-
cially suitable for image manipulation applications. We introduced
SCU, which gives us compact preliminary layers. We discussed
the challenges of enforcing spatial coherence and proposed a color
refinement step that prevents visual artifacts. We also proposed a
method for automatically estimating the color model that is required
for solving the color unmixing problem, which completely removes
the need for user input. A key component in our color model estima-
tion is projected color unmixing, which enables efficient computa-
tion of representation scores we need for compact color models. We
presented a theoretical reasoning as well as quantitative and quali-
tative evaluations showing that our results are superior to previous
work in soft color segmentation. We also demonstrated state-of-the-
art results in various image manipulation applications. The future
directions for our research include addressing the limitations of our
method discussed in Section 9, as well as extending our per-frame
method to exploit temporal information in order to natively handle
image sequences.

APPENDIX

A. ALPHA-ADD AND OVERLAY LAYER
REPRESENTATIONS

For handling layers, our blending formulation in Equation (1) corre-
sponds to the alpha add mode present in Adobe After Effects. The
normal blending option in Photoshop differs slightly from ours,
which is defined for two layers as follows:

uo = α̃aua + α̃bub (1 − α̃a)

α̃a + α̃b(1 − α̃a)
, (19)

α̃o = α̃a + α̃b (1 − α̃a) , (20)

where uo and α̃o define the overlaid result with Photoshop-adjusted
alpha value, ua and α̃a define the top layer, and ub and α̃b define the
bottom layer. We refer to the layers following this representation as
overlay layers with alpha values denoted by α̃, in opposition to the
representation used in our formulation, to which we refer as alpha-
add layers with alpha values α. Unlike the alpha-add representation
where the ordering of the layers is irrelevant, overlay layers depend
on a pre-defined layer order.

Assuming that the layers form an opaque image when overlaid,
given the layer order from 1 to N , with the N th layer being at the
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top, one can convert alpha-add layers to overlay layers as follows:

α̃n =
{

αn∑n
i=1 αi

if
∑n

i=1 αi > 0

0 if
∑n

i=1 αi = 0
, n ∈ {1 . . . N}. (21)

Since some regions are completely occluded by the layers on top,
the alpha values assigned to them are arbitrary, although we defined
α̃n = 0 when

∑n

i=1 αi = 0. If the artist intends to remove some
of the layers during editing for compositing applications as we
demonstrate in Section 7, then those layers should be placed at the
bottom before the conversion.

Similarly, the overlay layers can be converted to alpha-add layers
using the following formulation:

αn = α̃n

(
1 −

N∑
i=n+1

αi

)
, n ∈ {1 . . . N}. (22)

Note that the layer colors ui are not affected by these conversions.
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Quinan; in Figure 6 (top) from Flickr user Jason Bolonski; in
Figure 15 (Image (2)) from Flickr user Nana B Agyei; in Figure
15 (3) from Flickr user taymtaym; in Figure 15 (Image (7)) from
Flickr user Paul Bica; in Figure 16 (Images (10), (13), and (14)) by
Flickr user Dave Pape; and in Figures 16 (Images (11) and (12))
and 19 are from the movie Tears of Steel by (CC) Blender Founda-
tion (mango.blender.org). The result images in Figures 1(d) and 16
(Images (9)–(12)) were generated by Alessia Marra, and the ones
in Figures 1(c), 15 (Images (1)–(8)), and 16 (Images (13)–(19)) by
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