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Figure 1: (a) A video screenshot from a train station; (b) 1000 tracklets (randomly selected from 19999); (c-g) The five orientation sub-
domains of the top pattern as location-orientation distributions. Inset shows discretization of the orientation, with black representing zero

velocity.

Abstract

Crowd simulation has been an active and important area of research
in the field of interactive 3D graphics for several decades. How-
ever, only recently has there been an increased focus on evaluat-
ing the fidelity of the results with respect to real-world situations.
The focus to date has been on analyzing the properties of low-level
features such as pedestrian trajectories, or global features such as
crowd densities. We propose a new approach based on finding la-
tent Path Patterns in both real and simulated data in order to analyze
and compare them. Unsupervised clustering by non-parametric
Bayesian inference is used to learn the patterns, which themselves
provide a rich visualization of the crowd’s behaviour. To this end,
we present a new Stochastic Variational Dual Hierarchical Dirich-
let Process (SV-DHDP) model. The fidelity of the patterns is then
computed with respect to a reference, thus allowing the outputs of
different algorithms to be compared with each other and/or with
real data accordingly.

Keywords: Crowd Simulation, Crowd Comparison, Data-Driven,
Clustering, Hierarchical Dirichlet Process, Stochastic Optimization

Concepts: eComputing methodologies — Motion processing;
Topic modeling; Bayesian network models;

1 Introduction

Although a large variety of crowd simulation methods exist, choos-
ing the best algorithm for specific scenarios or applications remains
a challenge. Human behavior is very complex and no one algorithm
can be a magic bullet for every situation. Furthermore, different pa-
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rameter settings for any given method can give widely varying re-
sults. Subjective user studies can be useful to determine perceived
realism or aesthetic qualities, but more objective methods are of-
ten needed to determine the fidelity and/or predictive power of a
given simulation method with respect to real human behaviors. The
hierarchical and heterogeneous nature of human crowd behaviors
make it very difficult to find a definitive set of evaluation rules or
empirical metrics. Therefore, data-driven evaluation methods are
particularly useful for this purpose.

In this paper, we propose a data-driven approach to crowd evalua-
tion based on exposing the latent patterns of behavior that exist in
both real and simulated data. Previous data-driven methods tend
to focus on comparisons between high-level global features such as
densities and exit rates, or low-level data such as individual trajecto-
ries. In the former case, the results are often too general and do not
reflect the heterogeneity of human behaviors, and in the latter case,
the results are too specific to the exact scenario recorded. Our ap-
proach offers a compromise between these two extremes that takes
both the global and local properties of crowd motion into account
in order to facilitate a comprehensive qualitative and quantitative
analysis of the data.

For a high-level explanation of our approach, we consider the exam-
ple of a large public square with many entrances and exits, such as
the train station shown in Figure 1(a). Pedestrians typically do not
wander randomly, nor do they walk in straight lines; rather, they
self-organize into flows or standing clusters, with each trajectory
consisting of a series of one person’s steps as he moves through the
square (Figure 1(b)). A group of similar trajectories can be thought
of as a trending path that represents the aggregation of multiple
pedestrians’ positions and orientations. Combining all such trend-
ing paths together will generate an overall path pattern that consists
of flows of location-orientation pairs (Figure 1(c-g)). In scenarios
where global path planning does not significantly affect behavior,
e.g., walking through a corridor, local inter-personal dynamics can
also lead to different path patterns. The path patterns created are
therefore the result of local/internal dynamics and global/external
factors.

The main contribution of our paper is a new approach to analyz-
ing and comparing crowd data based on discovering latent path
patterns. To automatically extract these patterns from both real
and simulated data, we present a SV-DHDP model that is the first
to combine a Dual Hierarchical Dirichlet Process with Stochastic
Variational Inference. The patterns themselves provide a rich visu-
alization of the crowd’s behaviors and can reveal qualitative prop-
erties that would be difficult or impossible to see by simply view-
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ing the original data. Furthermore, we propose a quantitative met-
ric that computes the similarity between both real and simulated
datasets. This allows us to analyze the predictive quality of various
simulation algorithms with respect to real data. We demonstrate the
qualitative and quantitative capabilities of our approach on several
real and simulated crowd datasets.

2 Related Work

Crowd motion properties are affected by a hierarchy of factors from
geometric to cognitive [Funge et al. 1999]. To model these myriad
behavioral aspects, methods such as field and flow based [Narain
et al. 2009; Treuille et al. 2006], force-based [Helbing and Molnér
1995; Karamouzas et al. 2009], velocity and geometric optimiza-
tion [van den Berg et al. 2008; Pettré et al. 2009; Ondiej et al.
2010] and data-driven [Lee et al. 2007; Lerner et al. 2009b] have
been proposed. Our aim is to provide an evaluation framework that
imposes no assumptions on the underlying simulation mechanism
and can therefore work on the output data of all such methods.

Qualitative methods for crowd evaluation have been proposed and
include visual comparison [Kim et al. 2013; Lemercier et al. 2012]
and perceptual experiments [McDonnell et al. 2008; Guy et al.
2011; Ennis et al. 2011]. Quantitative methods fall into two main
categories: model-based [Kim et al. 2012; Golas et al. 2013] and
data-driven [Singh et al. 2009; Ju et al. 2010; Kapadia et al. 2011;
Musse et al. 2012]. Data-driven metrics have been proposed that
use the statistics of geometric and dynamic feature analysis [Wolin-
ski et al. 2014], model-based comparisons of motion randomness
[Guy et al. 2012] and decision making processes [Lerner et al.
2009a].

Our data-driven evaluation method is partly inspired by two previ-
ous approaches. Guy et al. [2012] use a dynamic system to model
crowd dynamics and compute an entropy metric based on individ-
ual motion randomness distributions learned from the data. Our
method differs in that we learn global path patterns from groups
of trajectories, rather than individual ones. Charamlambous et.al.
[2014] apply a number of different criteria to detect anomalies in
the data, whereas we focus on discovering mainstream latent pat-
terns.

We also draw inspiration from the field of Computer Vision, where
hierarchical Bayesian models [Blei et al. 2003; Teh et al. 2006]
have been successfully employed for scene classification [Fei-Fei
and Perona 2005; Sudderth et al. 2007], object recognition [Sivic
et al. 2005], human action detection [Niebles et al. 2008] and video
analysis [Kaufman and Rousseeuw 2005; Zhou et al. 2011; Wang
et al. 2009]. The Hierararchial Dirichlet Process (HDP) has been
successfully used in Natural Language Processing to discover can-
didate topics within corpora. By observing that crowd data can also
be decomposed into a bag of words, Wang et al. [2009] used a Dual
HDP (DHDP) to analyze paths in video data.

There has been extensive research in computer vision and robotics
on crowd analysis and we discuss some representative approaches
here. Zhou et. al [2012] model trajectories as linear dynamic sys-
tems and model starting positions and destinations as beliefs. The
key information, belief, is manually labelled. Although the user
can roughly label these areas, we suspect that a finer classifica-
tion will require more extensive labelling. Furthermore, it is un-
clear how they such areas could be labelled in a highly unstruc-
tured space where every position on the boundary could be both a
starting and an ending area. In our approach, we do not require
manual labels for such beliefs. Ikeda et.al [2013] models paths by
first determining sub-goals and then learning transitions between
sub-goals. However, their model of the crowd is solely based on
the social-force model, and sub-goals are defined as points towards

which many velocities converge. There may not be any such sub-
goals (consider flows with no intersections), or there could be too
many. Our method does not make any assumptions about the under-
lying behavior model or the existence of sub-goals. Other methods
based on density or mean-flows [Ali and Shah 2007; Zhong et al.
2015] interpret the whole field as one density map or one flow field
whereas our method gives a series of weighted patterns.

3 Methodology

3.1 Model Choice

The first step towards exposing the latent path patterns in a crowd
data set is to find a set of trending paths. Here, a trending path
can be seen as a collection of similar trajectories. However, man-
ually labelling clusters of trajectories would be difficult and time-
consuming as we lack a good distance metric and prior knowledge
of the number of patterns present. Popular unsupervised clustering
algorithms, such as K-means [MacQueen 1967] and Gaussian Mix-
ture Models (GMMs) [Bishop 2007], require a pre-defined clus-
ter number. Hierarchical Agglomerative Clustering [Kaufman and
Rousseeuw 2005] does not require a predefined cluster number, but
the user must decide when to stop merging, which is similarly prob-
lematic. Spectral-based clustering methods [Shi and Malik 2000]
solve this problem, but require the computation of a similarity ma-
trix whose space complexity is O(n?) on the number of trajectories.
Too much memory is needed for large datasets and performance de-
grades quickly with increasing matrix size.

An alternative perspective is to treat a trending path as a dis-
tribution over location-orientation pairs (Figure 2). A group of
trajectories connecting points A and B can be represented by a
trending path modeled by Multinomial distributions over location-
orientation pairs. Note in this representation, a trending path is a
flow sub-field rather than a group of 2D curves. Although the trajec-
tories are broken into individual location-orientation observations
in this way, we overcome the randomness of a particular trajectory
and represent such a trajectory group as one trending path. Next, we
find all trending paths under the assumption that: if a trending path
exists, there should be repeated location-orientation occurrences on
this path. Then the problem is transformed to computing a (poten-
tially infinite) number of Multinomial distributions. We present a
non-parametric hierarchical Bayesian model that can automatically
compute a desirable number of such Multinomial distributions from
the data. Thus, it does not require a pre-defined cluster number and
its space complexity is smaller than O(n?).
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Figure 2: Two sets of trajectories (a, c) and their corresponding
trending paths modeled by Multinomials (b, d). Color coding rep-
resents different orientation sub-domains (cf. Figure 1)

We first define the terminologies in Table 1. Our SV-DHDP model
employs a Dual Hierarchical Dirichlet Process, similar to that pre-
sented in [Wang et al. 2009], for pattern analysis, but we combine it
with Stochastic Variational Inference (SVI) for posterior estimation
that results in better performance on large datasets. In a standard
hierarchical Bayesian setting, a tree is constructed in an attempt to
explain a set of observations through a hierarchy of factors. In our
problem, the observations are agent states, which we divide into
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Figure 3: SV-DHDP model. DP is Dirichlet Process. way, is the
nth agent state in data segment d. K is the total number of patterns.
v, is the weight of the kth pattern. By is the kth pattern. Arrows
indicate dependencies.

Terms Notation | Meaning
Agent State w w = {p,v} where p and v are the
position and orientation of an agent
State Space S The set of all possible states. S =
{wi}
Path P A probability distribution over S.
P(s)
Path Pattern I} A mixture of paths.

Table 1: Terminology and Parameters

equal-length data segments along the time domain. Our goal is to
find a set of path patterns {(Bx } that, when combined with their re-
spective weights, best describe all the segments in terms of their
likelihoods. Such a tree structure is shown in Figure 3. This is
a simplified figure of a three-layer Bayesian hierarchy explaining
how the observations wg,, can be explained by all possible patterns
B with weights vy. For the sake of conciseness, the full detailed
version of the model is provided in the supplementary material. The
overall goal here is to estimate 8js and vis given wq,, , which is the
posterior distribution of this model p({8k}, {vr} | wa, ). We ex-
plain the posterior estimation in Section 4.
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Figure 4: Illustrative example with 100 data segments each with
accumulative 50 positions: (top left) 10 ground truth path patterns;
(right) example data; (bottom left) The top 16 path patterns learned

3.2 An lllustrative Example

After initial experiments using our model, we find that although
many trending paths can be found in a dataset, only a subset of
them are needed to describe a data segment (i.e., a time slice of the
dataset). Furthermore, different subsets of the path patterns exist in
different data segments. We use a simple example to illustrate this
principle.

Consider again the case of a public square, simplified asa 5 X 5
grid environment. Imagine that there are only 10 possible paths
that people will take, illustrated as horizontal and vertical bars (Fig-
ure 4 top left). Note that in this simple case each path represents a
single ground truth path pattern, whereas in more complex scenes
such as those presented later in this paper, a particular path usually
co-occurs with different ones. For the sake of clarity, we also only
cluster positions. We synthesize a dataset representing the activ-
ity in the square by randomly combining several ground truth path
patterns and performing random sampling to generate 100 data seg-
ments, each consisting of 50 accumulated positions (e.g., Figure 4
right). Each data segment is a density map of positions (the darker
the cell, the higher the density) and mimics an observation of the
square over some time interval. We can observe the phenomenon
that each segment can be described by a subset of path patterns. Ap-
plying our model, we learn all the latent path patterns from our syn-
thetic dataset and Figure 4 (bottom left) shows the top 16 found. As
we can see, the top 10 match our ground truth patterns. Although
additional patterns are learned, they are less prominent (smaller in-
tensities) and have much smaller weights, so they are ranked lower.

4 Posterior Estimation and Similarity Metric

As discussed in Section 3.1, the novelty of our SV-DHDP model is
the way we compute the posterior. There are two approaches com-
monly used for this purpose: sampling and variational inference.
Sampling methods provide good model fitness on relatively small
datasets. But the proof of convergence is still open and they have
other shortcomings [Teh et al. 2008]. We therefore use a Stochastic
Variational Inference (SVI) method, which is much faster on large
datasets (such as crowd behaviors observed over time).

For a standard two-layer HDP model, many methods have been de-
veloped [Teh et al. 2008; Hoffman et al. 2013; Wang et al. 2011].
Our SVI technique is similar to that recently proposed in [Hoff-
man et al. 2013], except that their model is a simple two-layer
HDP model whereas ours has an additional DDP layer. This ex-
tension is non-trivial and involves much more than merely adding
one more DP layer to a two-layer HDP model. To our knowledge,
this is the first attempt to apply variational inference on this type
of model. Please refer to the supplementary materials for detailed
math derivations and algorithms.

4.1 Model Fitness

By dividing a dataset into training data C',4i» and a test data seg-
ment Ctiesr, We can evaluate the model fitness by the predictive
likelihood of Clest. We further divide Cies¢ into two sets of sam-
ples: observed w?®®, and held-out w?°. We also keep the unique
state sets of the two sets disjoint. We first use C'rqirn to train our
model to compute the approximate posterior, and then use w$®®
and the approximate posterior to fine tune the top-level path pattern
weights. Finally, we compute the log likelihood of w?*°. This met-
ric gives a good predictive distribution and avoids comparing pa-
rameter bounds. Similar metrics are used in [Hoffman et al. 2013;
Teh et al. 2008; Wang et al. 2011] for evaluating model fitness. It is
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probability of the state w;“’ in path pattern S. q is the variational
distribution. For a testing data segment, per-state log likelihood:
H,- p(w?"\Ctmm, w;’bs) is computed. When training the model,
we plot per-state log likelihood and stop the optimization when it
becomes stable.

4.2 Inference Based Similarity Metric

In addition to extracting path patterns, we would also like to pro-
pose a metric for measuring similarities between datasets, so that
a quantitative similarity can be computed for simulation v.s sim-
ulation, real data vs. simulation or even real data vs. real data.
Since our model can compute path patterns for two datasets, a
naive approach is to use some commonly used metric such as KL-
divergence or even plain Euclidean distance between pairs of pat-
terns. However, we can easily end up with two sets of different
sizes. And comparing two sets of probabilistic distributions is not
a well-defined problem. Another seemingly good idea would be to
only compare the top n patterns from both pattern sets. However, it
is unfair because the patterns are weighted differently within their
sets. And the choice of n is unclear. A more elegant metric is
needed to compare two datasets.

We know that to evaluate model fitness on dataset A, we would use
a test data segment from A. This model fitness also implies that
if dataset B has similar path patterns to A, then the data from B
should also give a good likelihood in Equation 1. In this way, we
can compute per-state predictive likelihood of B given A:

lik(B|A) = p(w"°| A, w). )

Here we replace Ctrqin in Equation 1 with A. Both the observed
data w°®* and the held-out data w"° are from B instead of A. This
metric resolves the two concerns mentioned above.

In addition, since our patterns are Multinomials, it is always pos-
sible to do pair wise comparison such as KL-divergence and Root
Mean Squared Error if needed.

5 Path Pattern Abstraction

To show the generality and robustness of our method, we apply it to
both simulated datasets as well as real data from various scenarios
with different features on different noise levels. We also compare
our methods with existing approaches and discuss performance. All
our patterns are color-coded in the various figures, with different
colors represent orientation as in Figure 1 where color intensities
show probabilities.

5.1 Simulation Datasets

Real data exhibits both global and local features, caused by the
fact that pedestrians tend to plan their paths through an environ-
ment based on external factors such as entrances, exits and personal
goals, but they are often deflected from their paths due to the neces-
sity to avoid members of a crowd. In simulations, different types
of simulation algorithms are used to model local steering behaviors
and global path planning strategies. We explore the effects of these
algorithms separately by first varying local steering methods while
minimizing the impact of the global path planning. Then we fix the
steering behavior and vary the global path planning strategies.

5.1.1 Local Steering

We choose four steering algorithms that are representative of com-
monly used methods: MOUQ9 [Moussaid et al. 2009] is a recent
version of Helbing’s social force model; PETTO9 [Pettré et al.
2009] is a velocity obstacle method based approach similar to RVO;
ONDREJ10 [Ondfej et al. 2010] uses bearing angle to avoid colli-
sions; and PARISO7 [Paris et al. 2007] solves steering in velocity
space. Many other methods exist, such as potential fields, fluid
based, hybrids, foot-step planning, but our goal is not to analyze ev-
ery possible approach, but to demonstrate how our method can cap-
ture the differences produced by different reactive steering meth-
ods.

We set up a bi-directional flow experiment to show our analysis for
local steering behaviors. Two rectangular areas are placed at the
top and bottom of a scene (Figure 5) and two groups of agents are
created. For one group, agents are randomly generated in one area
with randomly selected destinations in the other area, thus avoiding
any complex global path planning. For the other agent group, we
switch the generation and destination areas. This forces both agent
groups to use steering behaviors in order to avoid the others. Each
simulation lasts for around 25 minutes and involves 20000 agents.

PARISO7 ONDREJ10

PETTO9 MOU09
' 3
. |
| |
_ - h‘ t _ B - - E

Figure 5: Top path patterns from the data created by four repre-
sentative local steering algorithms

Snapshots of the simulation data can be found in the supplemental
material. Figure 5 shows the top path patterns computed. Intu-
itively, we can see that PARISO7 does not give prominent patterns
meaning the crowd is spreading out all the time. ONDREJ10 tends
to give stable flows compared to other methods. And PETT09 and
MOUQ9 are in the middle because their patterns are slightly more
concentrated than PARISO07, but less so than ONDREJ10. PARIS07
looks more similar to PETT09 and MOUQ9 than ONDREIJ10. This
visualization thus facilitates a qualitative understanding of the be-
haviours generated using different local steering mechanisms. Later



Figure 6: Trajectories created by three global path planning algo-
rithms: Navmesh, Roadmap and PoField
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Figure 7: Top path patterns from the data created by three global
path planning algorithms: Navmesh, Roadmap and PoField

we will see how we can also quantitatively compare them with each
other.

5.1.2 Global Path Planning

In this experiment, we fix our local steering model [van den Berg
et al. 2011] and vary the global path planning methods to test our
analysis model. The environment is a square with several obstacles
in the middle. We set up a generation area at the top and desti-
nation area at the bottom. Also, we recycle 64 agents over and
over again to generate 400 second data. Three global path plan-
ning methods, Navigation mesh [Snook 2000], Roadmap [Latombe
1991] and Potential Field [Khatib 1985] are used here, referred as
Navmesh, Roadmap and PoField. Trajectories are generated using
Menge [Curtis et al. 2014] (Figure 6) and the top patterns found are
shown in (Figure 7).

The top patterns of all three methods are down-going flows as ex-
pected but they spread out within the environment in slightly dif-
ferent ways. In addition to these high probability patterns, other
patterns are also learned and we do find other colors, albeit with
much smaller weights. These patterns occur when agents get com-
pletely blocked so they start to walk in other directions to find their
way out.

5.2 Real Datasets

In addition to simulation data, we also show experimental results
computed on two real datasets. The first dataset is a 6 minute video
clip of 967 pedestrians in a park recorded by a mid-distance camera
in a park. We manually annotate the trajectories so that we have
relatively complete trajectories with very little noise.

The second dataset consists of 19999 tracklets recorded in New
York Grand Central Terminal by a far distance camera [Zhong
et al. 2015] (downloaded from http://www.ee.cuhk.edu.hk/ xg-
wang/grandcentral.html). The trajectories are computed based on
moving pixels and contain only partial and noisy tracklets, thus
demonstrating the robustness of our method.

' a b

Figure 8: Park dataset: (a) Projected trajectories, (b) Annotated
trajectories overlaid on a frame from the video. Red dots are cam-
eras.

5.2.1 Park

All trajectories and some data segments are shown in Figure 8. To
train the model, the truncation numbers for J, I, L and K (param-
eters explained in the supplementary material) are set to 10, 15, 4
and 20 respectively. The training took 0.58 hours and Figure 9 Ref-
erence shows some high-weight patterns. There are several major
flows learned from the data. One is the flow going from 3 to 2 (Ref-
erences b and j). They mainly differ in whether they go through the
narrow corridor along the bottom or not. Another up-going flow is
Reference f from 3 to 1. The major down-going flows are from 2 to
3 (magenta and yellow). These paths are also observed in the data.

5.2.2 Train Station

The whole area is a square with each dimension approximately S0m
long. We discretize the domain into 1x1 meter grids and set J, I,
L and K (parameters explained in the supplementary material) to
10, 15, 3 and 20. The training took 1.83 hours. Some patterns are
shown in Figure 1.

In Figure 1, e is the major up-going flow and d is the major down-
going flow. Both are observed in the data. The right-going flow
shown in Figure 1 ¢ is another major flow observed in the data.
Interestingly, the left-going flow pattern (yellow) is not very promi-
nent. After looking at the data, we found that since it shares bound-
aries with green and magenta, some of the left-going flows are cap-
tured in Figure 1 d and e instead.

5.3 Comparison with previous approaches

We empirically compare our SVI method with Gibbs sampling in
[Wang et al. 2009] on the train station dataset. Due to the nature
and stochasticity of these two methods, it is hard to compare them
in one standard setting. So we run our method until it converges,
then run Gibbs sampling for various times to compare the results.

We first run the sampling for 1.95 hours and show the results in
Figure 10. We made our best effort to find informative and sim-
ilar patterns in the results. Compared to the patterns in Figure 1,
we cannot find any pattern that are as informative. Another inter-
esting difference is that patterns shown in Figure 10 are in general
more concentrated into individual grids (reflected by their intensi-
ties compared to the ones in Figure 1), and do not fully cover the
areas of the paths. We believe this is due to every state sample be-
ing given only one pattern label in sampling while in SVI each state
sample has a distribution over all patterns. Also, after 1.95 hours, a
total number of 198 patterns are learned and the number continues
to go up to 735 after running for 40 hours, clearly showing it is not
converged yet. More patterns are available in the supplementary
material.

We also compared the performance of SVI with sampling. SVI
is faster mainly because in every iteration, it uses a batch number
that is usually much smaller than the number of data segments. In
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Figure 9: Top 3 patterns for the Park dataset that cover more than
90% of weights. Each pattern is shown for 4 directions in a group (4
rows — Blue is omitted because no significant pattern found for that
direction). Column 1: Top patterns from real dataset. Columns 2-5:
Top patterns from four simulated datasets. Similarity scores using
the real data as reference are shown in the brackets next to the name
of the method. They are log likelihoods. The larger (closer to 0) the
better. At the bottom of each group, weights for corresponding pat-
terns are given. The percentages are computed by KL-divergence
between a reference pattern and a simulation pattern, then nor-
malized to 0-100. Intensity represent probability. The higher the
intensity, the higher the probability.
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Figure 10: The top pattern in different velocity domains learned by
sampling. More patterns are available in the supplementary mate-
rial.
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Figure 11: Model fitness plot with iterations. a: Train Station. b:
ONDREJI0 in Section 5.1.1.

contrast, sampling uses all of them. Figure 11 shows how quickly
our SV-DHDP converges. We show plots for two examples. For
both synthetic and real data, our model converges at between 20 to
60 iterations.

6 Similarity Analysis

In this section, we show that how our similarity metric can be used
to provide meaningful comparisons between real reference data and
simulation data.

We used the four models in Section 5.1.1 in combination with
one global path planning method [2004] to simulate the crowds
in the park and the train station. We modelled the environ-
ments by observing the videos carefully, then randomly generating
agents within the entrance areas and randomly selecting destina-
tions within the exit areas. All similarities are computed using the
real dataset as the reference. Snapshots of data segments for both
experiments are shown in the supplementary material. The simi-
larity scores for the park and train station simulations are shown in
Figure 9 and Figure 12. Some top patterns are shown in Figure 9
column 2-5 and Figure 12 column 2-5.

First we emphasize that the similarities presented here are not de-
signed to provide any kind of conclusive statement of which simu-
lator is the best. Path patterns are affected by many factors and we
did not exhaustively try all combinations of all parameter settings.
For instance, it is difficult to accurately calibrate parameters includ-
ing accurate entrances and exits, timing of arrival, the proportions
of population in different flows and so on. After first looking at the
computed patterns and scores we adjusted the entrances and exits
more carefully to ensure the best performance possible for all al-
gorithms and we speculate that the simulations could be even more
improved by adjusting timing and population density. This also
demonstrated how our metric can help to design simulations, be-
cause we can identify the key elements to adjust by looking at the
visual patterns.

To make good use of our metric for simulation, we suggest two
ways to interpret the patterns, by using Equation 2 and by comput-
ing KL-divergence between pairs of patterns to help in interpreting
the visual data.

Equation 2 shows the average likelihood of the testing data. There
are several major factors affecting the score. Firstly, the global



Reference PETT09(-35.1) ONDREJ10(-38.1)  MOU99(-41.8) _ PARIS07(-42.3)
36 71 56 73
a
43 79 59 47
b ¢ . f
96 95 99 96
c
31 38
d 60 42
51 65 66 57
e i) .
V,=0.56 V,=0.45 V,=0.38 V,=0.31 V, =0.46
f 58 83 58 89
I 88
g o2 ;60 91
h 65 920 65 89
i 99 99 95 97
j 0 18 11 15
V, =031 V, =017 V, =0.19 V, =021 V,=0.16
k 71 90 75 90
| 85 95 79 01
m 80 95 74 90
n 99 98 99 98
o 4 23 24 18
V, =0.07 V, =0.08 V, =0.09 V, =0.15 V,=0.09

Figure 12: Train Station patterns for real and simulated datasets.
The layout and scores are computed in the same way as in Figure 9.

path planning has a great influence. One example is Figure 12
(a):Reference where a wide flow can be seen going from the bot-
tom to the right. In the simulation, only PETTO09 roughly captures
it which contributes to its score. In addition, the relative numbers
of agents on each path pattern also influences the similarity. Fig-
ure 12 (a):PARISO7 has several flows that are not seen in the real
data pattern. After watching the video, we found that there are only
a few people walking on these paths but the simulation assigned a
large number of agents to them, thus contributing to the low score of
PARISO7. Next, in Figure 12, all simulations other than PARIS07
tend to form narrower paths than the real data, whereas in the park
simulation, some of them are wider than the real data such as Fig-
ure 9 (b):ONDREJ10. Some of them are about the same width
such as Figure 9 (f):MOUQ9 and some of them are too narrow such
as Figure 9 (b):MOUOQ9. The path width is affected by the simu-
lation method itself as well as the number of agents on that path
too. Finally, when it comes down to a single path, some models
tend to form prominent patterns more than others, as seen in the
bi-directional flow example. This also contributes to the scores.
In addition, the weights are used for two purposes: analysis and
comparison. Within a single dataset, the weights reflect the rela-
tive likelihoods of each path pattern. For instance, the likelihood of
observing an agent on Figure 9(a):Reference is more than twice as
that on Figure 9(e):Reference, indicated by their respective weights
vo = 0.57 and v; = 0.21. For comparison, the weights are also con-
sidered by Equation 2.

Aside from Equation 2, the user might want simply focus on some
pattern similarities. This can be computed by KL-divergence be-
tween pairs of patterns. In both Figure 9 and Figure 12, each pat-
tern is given a score comparing itself with the corresponding pattern
in the reference. We normalize the values to 0-100, where bigger is
better. The results of this metric may sometimes seem contradictory
with the previous one because the focus is different. For instance,
in Figure 9, ONDREJ10 has the lowest similarity score. But for
KL-divergence similarity, its first three patterns outperforms other
datasets. This means we were able to reproduce some major flows
faithfully in the reference data by ONDREJ10, but it does not do
well on capturing the other sub-dominant flows. However, if the
user just wants to reproduce the major flows, then ONDREJ10 is
going to be a good option in this case. PETT09 and MOUQ9 also
capture good flows in the second group. So they might be the choice
if those flows are to be reproduced. For the KL-divergence metric,
the weights are less meaningful because it can be applied on any
pair of patterns from different datasets depending on the applica-
tion.

Overall, the two metrics here focus on different aspects of the data.
The similarity score gives overall performance, which is the per-
state likelihood. The KL-divergence similarity emphasizes more
on visual similarities. Together, they provide enriched information
for different use cases.

7 Conclusions and Future Work

We propose a new perspective for comparing crowd data. We
present a non-parametric hierarchical Bayesian model to automati-
cally extract a desirable set of patterns. Also, we propose a similar-
ity metric for comparison.

Our metric is environment-based. The main reason is the reference
data is almost always affected by the environment in real-world
applications. When only local flow patterns are needed, our met-
ric still works well as shown in the bidirectional flow example. A
global shift of flows will give low scores but we argue that they can
always be aligned if a rotation/translation invariant comparison is
needed.



Our method has some inherent limitations. Firstly, our method does
not directly measure individual trajectories thus does not reflect in-
dividual visual similarities. Our patterns are reflections of informa-
tion on a higher level than individual trajectories. Secondly, it does
not capture temporal information such as changes of patterns over
time. Lastly, our truncation-based stochastic variational inference
is sensitive to the initialization even if the stochasticity in gradient
helps to some extent. In our experiments, we did grid search to find
out good initializations.

One future direction will be an extension of the current model into
a dynamic model. Currently, all data are considered at once. But
in real situations, the path patterns and their respective weights
can change over time. To capture this effect, a dynamic model
is needed. Another direction is introducing pattern merge and
delete during optimization to find better solutions. To use our met-
ric to guide simulation more automatically, we could use patterns
as guiding flows for crowd simulation to improve the scores by
methods such as [Berseth et al. 2014]. Currently, we only capture
flows;although individual trajectories may also influence perceptual
realism. A good direction is to try to capture information on both
levels. Finally, we would like to add social activity and environ-
mental information such as talking and pouring a cup of coffee so
that it becomes a behavior pattern model. We believe it will further
help simulating realistic crowds with diverse behaviors.
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