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Abstract— We present an aerial robotic platform for remote
tree cavity inspection, based on a hexacopter Micro-Aerial
vehicle (MAV) equipped with a dexterous manipulator. The goal
is to make the inspection process safer and more efficient and
facilitate data collection about tree cavities, which are important
for the conservation of biodiversity in forest ecosystems. This
work focuses on two key enabling technologies, namely a vision-
based cavity detection system and strategies for high level
control of the MAV and manipulator. The results of both
simulation and real-world experiments are discussed at the end
of the paper and demonstrate the effectiveness of our approach.

I. INTRODUCTION

Aerial robots are gaining significant attention in the re-
search community thanks to their ability to reach inaccessible
areas for humans and the possibility to operate in hazardous
environment. Aerial robots have proven great potential in
many relevant applications such as infrastructure inspection
[1]–[3], surveillance and security [4], assistance in natural
disasters [5] and crop monitoring [6]. The range of possible
applications is extended further by integrating robotic ma-
nipulators into aerial robotic systems which enables them to
interact with the environment [7], [8].

In this paper, we propose an aerial robotic platform for tree
cavity inspection, based on a hexacopter Micro Aerial Ve-
hicle (MAV) equipped with a dexterous manipulator. Within
the scope of this work, tree cavity inspection is defined as
the problem of (a) detecting a cavity aperture using a depth
sensor, (b) hovering in front of the aperture, (c) inserting
a stereo camera mounted on an end-effector on a robot
manipulator into the cavity and (d) capturing images of
the cavity for offline 3D reconstruction. Figure 1 shows a
schematic of such a platform and the inspection process.

Tree cavities are used by a multitude of animal species,
including birds, mammals and beetles, for shelter, nesting or
larval development and their importance for the conservation
of biodiversity in forest ecosystems is widely recognized.
However, in managed forests, trees with low economic value,
which are often those with cavities or those prone to their for-
mation, are routinely removed. Consequently, their number
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Fig. 1: A MAV equipped with a dexterous manipulator performing
a tree cavity inspection using a depth sensor to detect the cavity and
a close-up view of the end-effector of the manipulator fitted with a
stereo camera being inserted into a cross section of the cavity.

has dramatically decreased in the last century and many cav-
ity dependent species are currently highly endangered. Many
researchers now call for an increased conservation effort
regarding tree cavities [9]–[12]. To maximize the efficiency
in terms of conservation and minimize the associated eco-
nomic costs, there is need to better understand tree cavities
and the characteristics that make them ecologically valuable.
However, large scale studies and detailed data, especially
about their genesis and dynamic (from small cavity to big
cavity with mold), are rare [9], [11]. Usually, tree cavities
are observed from the ground using binoculars, resulting in
superficial information, by climbing the tree and manually
inspecting the inside of the cavity with an endoscopic camera
or by using inspection cameras mounted on a telescopic pole.
Drawbacks of the latter two methods are the heaviness and
bulkiness of the required equipment (ladder or telescopic
pole), the very basic image quality, that cannot be used for
any metric observations (e.g., dimension and volume of the
cavity) and that many trees are too unstable to be climbed.
Tree cavity inspection by means of an aerial robot has the
potential to solve all these problems, by being safer, more
time-efficient and able to gather highly detailed data.

This work focuses on cavities built by woodpeckers. These
are the most common type of cavities in managed forests,
since woodpeckers excavate a new breeding cavity every
year and such trees are increasingly maintained by forest
managers. They have circular or elliptical apertures (usually
with a diameter of 3-12 cm) and a deep hollow inside space
as shown by the cross section of a tree cavity in Figure 1.



The contributions of this paper are two key enabling
technologies for the tree cavity inspection robotic platform,
firstly a vision-based system for the detection of cavities
of previously unknown size and secondly a strategy for
high level control of the MAV and robot manipulator. The
system runs semi-autonomously - an initial user input starts
the autonomous cavity detection and a pilot manually flies
the vehicle to a starting position approximately in front of
the cavity, before switching to autonomous control. A more
sophisticated system would handle obstacle avoidance of tree
branches when approaching a cavity to avoid the need for
manual piloting, but this was outside the scope of this work.

The remainder of the paper is organized as follows:
Section II describes the system and the tree cavity inspection
procedure. The cavity detection algorithm and high level
control strategies are detailed in Section III. In Section IV,
we discuss a comparison between three candidate sensors
to perform the cavity detection and the proposed solution is
evaluated in simulation and real–world experiment. Finally,
Section V summarizes and concludes the paper.

II. SYSTEM DESCRIPTION

A. Hardware

The MAV used in this project is the AscTec Neo hexa-
copter [13]. It comes equipped with an inertial measuring
unit (IMU) and an on-board computer with an Intel Core
i7-5557U dual-core 3.1 GHz processor and 8 GB RAM,
running Linux with ROS. Figure 2 shows a Neo hexacopter
platform fitted with the additional sensor suite intended for
the tree cavity inspection application.

This includes the Visual-Inertial Sensor (VI-Sensor)
developed by the Autonomous Systems Lab (ASL) at ETH
Zurich and Skybotix AG [14]. This sensor, provides stereo
images tightly coupled with a high quality IMU, which will
be used for the robot’s pose estimation.

The CamBoard pico flexx from pmdtechnologies [15],
a time-of-flight 3D camera, has been installed for cavity
detection and is henceforth referred to as detection sensor.
It is small (68x17x7.25 mm), has a range of 0.1-4 m, a
resolution of 224x171 px and a frame rate of up to 45 fps.

A dexterous 3 degrees of freedom parallel robot manipu-
lator is attached to the bottom of the body of the vehicle. For
this work, the manipulator’s pitch is fixed, which restricts
its movement to a plane. The exact configuration of the
manipulator is shown in Figure 6b.

An end-effector was designed for this application [16] and
attached rigidly to one link of the manipulator. It includes
AWAIBA’s NanEye stereo camera [17] (2.2x1.0x1.7 mm),
an LED light and a laser, which allows the use of either
stereo vision or structured light for 3D reconstruction. It can
be rotated inside the cavity around 2 perpendicular axes (yaw
and pitch) using servo motors to allow the sensors to capture
the complete interior of the cavity.

B. Software

The software architecture is shown in Figure 3 and is
comprised of 3 parts: cavity detection, control and GUI.
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Fig. 2: The hardware comprised of an AscTec Neo hexacopter MAV,
a VI-Sensor, a CamBoard pico flexx time-of-flight 3D camera, a
parallel robot manipulator and an end-effector fitted with a NanEye
stereo camera, an LED light, a laser and servo motors.

All computations of the cavity detection and control run in
real time on board the MAV, avoiding communication latency
issues in these key parts of the system. The GUI runs on an
external processor (e.g., a laptop) to allow the user to interact
with the tree cavity inspection process. It communicates with
the MAV via WiFi, receiving information of the system’s
current state and sending back user commands. All software
components that are novel contributions of this paper are
marked in yellow in Figure 3. They are implemented in C++,
using ROS [18], QT [19], OpenCV [20] and PCL [21].

C. Coordinate systems

Figure 3 illustrates the different coordinate frames used
by the system. The world frame W is fixed to the starting
position and orientation of the robot, with its z-, y- and x-axes
pointing up, left and forward respectively. The vehicle frame
V is rigidly attached to the robot base and has the same axis
convention as the world frame. The detection sensor’s camera
frame C has a fixed position and orientation relative to the
body frame and its origin is at the center of the detection
sensor. Its z-, y- and x-axes are pointing forward, right and
down respectively. The manipulator frame M has its origin
at the base of the manipulator and its z-, y- and x-axes are
pointing up, forward and right respectively.

D. Cavity inspection procedure

The robot is first flown manually, helped by the robot
position controller, to a starting point where the cavity is in
the field of view of the detection sensor. This can be verified
by looking at this sensor’s depth image in the GUI.

The user then clicks on this depth image to mark a seed
point that belongs to the tree trunk. This starts the cavity
detection algorithm, which first analyzes the depth image to
measure the 3D position of the cavity in frame C (see Section
III-A). It then analyzes the detection sensor’s point cloud to
refine this measurement and estimate the cavity’s normal.
(see Section III-B).

Next, a Kalman filter uses the measured cavity position
and the robot pose to generate a continuous estimate of the
cavity position in frame V (see Section III-C).
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Fig. 3: The software architecture and the defined coordinate frames for the system.

The robot pose in frame W is estimated using a Robust
Visual Inertial Odometry (ROVIO) algorithm, based on the
VI-Sensor [22]. This is further fused with the MAV’s IMU
data using a Multi Sensor Fusion (MSF) approach [23].

Once the GUI shows that the cavity has been successfully
detected, the user can activate the auto controller. Subse-
quently, the high level controller autonomously navigates the
MAV to hover directly in front of the cavity entrance at a
distance of 0.5 m, by sending commands to the robot position
controller. Finally, the user can activate the manipulator
controller, which autonomously generates commands to the
robot manipulator interface to extend it to insert the end-
effector in the cavity (see Section III-D).

The inverse kinematics derived for this manipulator config-
uration are used to transform a desired end-effector position
command to angle commands for the 2 manipulator servo
motors (see Section III-E).

The robot’s position controller is a linear Model Predictive
Controller (MPC). Using the full state estimate feedback and
considering the vehicle dynamics, it provides attitude and
thrust reference for the low level controller running on the
autopilot provided by the MAV manufacturer. A disturbance
observer estimates external forces and moments, such that the
linear MPC can compensate for disturbances such as wind.

III. TREE CAVITY INSPECTION

A. Depth image analysis
Figure 4 displays a simulated color image and a depth

image from a simulated detection sensor, showing a tree
cavity1 and the different image processing steps performed

1We use an image from simulation to better illustrate the concepts used,
without being distracted by increased noise.

(a) Color image. (b) Depth image. (c) Segmentation.

(d) Binarization. (e) Contours. (f) Detection.

Fig. 4: Simulated color image and depth image from a simulated
detection sensor, showing a tree cavity and the different image
processing steps performed to detect the 3D position of the cavity.

to detect the tree trunk and the 3D position of the cavity.
First, the user marks a point in the depth image that

belongs to the tree trunk (red point in Figure 4b), to create a
seed point ps = [xs, ys, zs]

T , where xs and ys are the image
coordinates of the marked point and zs is its depth value.

Segmentation: Then the image is segmented by depth
information using K-means clustering with a fixed K (Figure
4c). The cluster with the centroid closest to ps is assumed to
be the cluster representing the tree, Ctree (drawn in pink in
Figure 4c). Clusters that are closer to Ctree than a threshold
tt (drawn in shades of blue in Figure 4c) are merged with
Ctree to complete the tree cluster. Additionally, we assume
that the centroid with the smallest depth always belongs to
the cluster representing the robot manipulator Cman. Clusters



that are closer to Cman than a threshold tm are merged with
Cman to complete the manipulator cluster (drawn in red in
Figure 4c). Cman and Ctree are merged to form a final tree
cluster Ctm, which avoids any breaks in the tree cluster due
to obstruction by the manipulator cluster.

Binarization: A binary image is created based on whether
an image point belongs to Ctm and small holes are closed by
applying the morphological operations dilation and erosion
(Figure 4d).

Contour extraction: Contours are extracted from the
binary image using OpenCV’s contour detection algorithm
[24] (Figure 4e), which also provides the hierarchical rela-
tionships of the contours. The contour containing ps and not
surrounded by another contour, is determined to be the tree
contour. Any of its children, i.e. all contours contained within
the tree contour, are considered potential cavities.

Ellipse fitting: Ellipses are then fitted, in the least-squares
sense, to all these children, as woodpecker cavities are always
circular or elliptical. This can potentially produce a large
number of ellipses, so heuristic filtering is used to select
relevant ellipses. They need a minimum width and height
(usually between 3-10 cm) and the ratio between width and
height cannot be too large. Any ellipses along the very edge
of the tree contour are also rejected, since those are most
likely to be false positives. Finally, only the ellipse with the
largest area Emax is selected, since it is least likely to result
from noise. Figure 4f shows the tree contour in blue, Emax

in green and the center of Emax in red.
Detection: The center pe = [ximg, yimg]

T of Emax in
image coordinates, together with the average depth of the
tree cluster zavg and the intrinsic camera parameters is used
to calculate a 3D real world position of the tree cavity pc =
[xreal, yreal, zreal]

T in camera frame C.
This is repeated for each subsequent depth image frame,

with the only difference that a new seed point ps must be
computed at the start. We calculate the moments of the tree
contour found in the previous frame to find its center of
mass mc. mc is selected as a new seed point if its depth is
within a threshold td to the depth of the previous seed point.
Otherwise, the immediate neighborhood of mc is searched
for a point with similar enough depth. The frame is skipped
if no new seed point can be found.

B. Cavity detection refinement in the point cloud

Figure 5 displays a point cloud from a simulated detection
sensor, showing a tree cavity2 and the different processing
steps for cavity detection refinement.

3D space is partitioned into an octree data structure based
on the points in the point cloud generated by the detection
sensor. The octree allows us to efficiently determine the
points that lie within a certain bounding box. We take
advantage of this to both refine the measurement of the 3D
position of the tree cavity and determine its normal.

First, we find the maximum fitting cuboid inside the cavity
(green cuboid in Figure 5a), to determine with increased

2Again, we use a point cloud from simulation to better illustrate the
concepts used, without being distracted by increased noise.

(a) Maximum fitting cuboid. (b) Cavity neighborhood.

(c) Fitted plane. (d) Cavity point and normal.

Fig. 5: Point cloud from a simulated detection sensor, showing a
tree cavity and the different processing steps performed to refine the
detection of the 3D position of the cavity and compute its normal.

certainty the area that is free to insert the end-effector (Emax

might have been slightly over fitted) and the depth of the
cavity. We start with a cuboid centered around the measured
position of the tree cavity pc (red point in Figure 5a) and
then iteratively query whether there are any points in an
ever increasing cuboid (in positive and negative x and y
direction and positive z direction) until a maximum number
of inlier points is reached. If the maximum fitting cuboid is
smaller than the space necessary for inserting the complete
end-effector, this cavity position measurement is rejected,
otherwise the center (xb, yb) of this maximum fitting cuboid
is used to update the measurement with a better estimate
pc = [xb, yb, zreal] (green point in Figure 5a).

Next, the cavity neighborhood points (pink points in
Figure 5b) are extracted by querying for all the points lying
within a cuboid surrounding pc (green point in Figure 5b)
and larger than the maximum fitting cuboid in x and y
direction (pink cuboid in Figure 5b). The z coordinate of the
cavity position now equals the average depth of the cavity
neighborhood points zb instead of the average of all the
points of the tree. The new cavity position measurement in
camera frame C is pc = [xb, yb, zb] (red point in figure 5b).

Finally the normal of the cavity N is estimated based on
the assumption that the immediate area of the trunk bordering
the cavity is approximately planar. A plane is fitted through
the cavity neighborhood points (pink plane in Figure 5c) and
its normal is assumed to be N (red arrow in Figure 5c).

C. Kalman filter

A Kalman Filter (KF) generates a continuous estimate of
the 3D cavity position in frame V . The state xt = [xt, yt, zt]
of the KF is the 3D cavity position in robot frame at time t
and it is initialized as: x0 = [x0, y0, z0] = pc0 where pc0 is
the first measurement of the 3D cavity position in frame C



transformed to frame V . The underlying model of the KF is
given by:

xt =
Vt

Vt−1
R · xt−1 +

Vt
Vt−1

T+wt−1 (1a)

zt = xt + vt (1b)

where wt ∼ N (0,Qt) is the process noise, vt ∼ N (0,Jt) is
the measurement noise and Vt

Vt−1
R and Vt

Vt−1
T are the rotation

and translation matrix respectively from robot frame at time
t − 1 to robot frame at time t. They can be expressed in
terms of the robot pose at time t and t− 1 as follows

Vt
Vt−1

R = WVtR
−1 · W

Vt−1
R (2a)

Vt
Vt−1

T = WVtR
−1 · ( W

Vt−1
T−WVtT) (2b)

where WVtR is the rotation from frame V at time t to frame
W , which corresponds to the robot orientation at time t and
W
VtT is the translation from frame V at time t to frame W ,
which corresponds to the robot position at time t.
zt is the measurement of the 3D cavity position in frame

V and is given by

zt =
V
CR · pct +

V
CT (3a)

where VCR and VCT are the fixed rotation and translation from
frame C to frame V respectively and pct is the measurement
of the 3D cavity position in frame C at time t.

The prediction step advances the state, i.e. the estimated
cavity position in frame V , at each time step (whenever
there is new robot pose information, i.e. at 100Hz), while
the measurement step incorporates the measurement of the
cavity position from the vision-based cavity detection system
whenever one is available. This allows the system to estimate
the cavity position for several seconds even without new
vision measurements and reduces the impact of false cavity
detections. The output of the KF is a continuous cavity
position estimate in vehicle frame V at 100Hz.

D. Controller

Once the auto controller is started by the user, the high
level controller calculates the currently desired position of
the robot in frame W at each time step, using the estimated
cavity position and the desired cavity position (0.5,0,0) in
frame V and the current robot pose in frame W . With
the cavity normal transformed into frame W using the
current robot pose, the desired robot heading in frame W is
computed. The desired robot position and heading are sent
as a command to the linear MPC robot pose controller.

When the user starts the arm controller, the high level
controller also sends out commands for the desired end-
effector position in frame V , i.e. the estimated cavity position
in frame V with the addition of the depth of the cavity
in x direction, filtered trough a first order filter. They are
transformed into angle commands using inverse kinematics
and sent to the manipulator hardware interface.

(xp,yp)ipossible con guration, given

p,y(x p)i (xe,ref ,ye,ref)possible , given

(xe,ref ,ye,ref)end-e ector position reference

(xp,yp)ino possible con guration for this

nal con guration choice

(a)

(b)

Fig. 6: The manipulator configuration and a visualization of the
inverse kinematics process for a planar delta manipulator with an
end-effector.

E. Inverse Kinematics

Figure 6b shows the configuration of the robot manip-
ulator. We define the manipulator joint lengths Lj , j =
1, ..., 6, the manipulator angles qm = (q1, q2), the fixed
angle between end-effector and one manipulator link α, the
manipulator closing position c = (xp, yp) and the end-
effector position e = (xe, ye) The forward and inverse
kinematics of a planar delta manipulator have been described
in other works [25], [26]. Expanding the forward kinematics
to include the end-effector is straightforward. To expand the
inverse kinematics we use a ”brute force” method. Given a
desired end-effector position eref (blue cross in Figure 6a),
we compute the possible manipulator closing positions ci
(red points in Figure 6a) given eref as the points lying on
a semi-circle with center eref and radius L6. Increasing the
number of semi-circle points i results in higher accuracy in
exchange for higher computation time. For all ci the resulting
angles qm,i are calculated (if possible) using the known
inverse kinematics for a planar delta manipulator. Using
forward kinematics, the resulting end-effector positions ei
are calculated. Finally, the configuration with the minimal
error between ei and eref is chosen (drawn in blue in Figure
6a) with the corresponding angles qm,i.
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Fig. 7: Comparison of depth images acquired by the Intel RealSense
Camera F200 (2nd row), Intel RealSense Camera R200 (3rd row)
and pmdtechnologies CamBoard pico flexx (4th row) of the same
tree cavity at approximately 0.3m (1st column), 0.50m (2nd column)
and 1m (3rd column) while mounted on a telescopic pole on a field
trip in the forest . The first row shows a color image of the cavity
taken at the corresponding distance from the tree.

IV. EXPERIMENTS

A. Sensor comparison

The CamBoard pico flexx was chosen as detection sensor
for this application for its small size, large range and good
performance outdoors, after comparing it with 2 other depth
sensors, the Intel RealSense Camera F200 and the Intel
RealSense Camera R200 [27], on a field trip in the forest.

Figure 7 shows a comparison of depth images acquired by
all 3 sensors of the same tree cavity at different distances,
approximately 0.3m, 0.5m and 1m, while mounted on a
telescopic pole. The CamBoard pico flexx works well at all 3
distances, which represent most likely operational range for
the tree cavity inspection application. The other sensors fail
either at close or far range. Additionally the CamBoard pico
flexx is the smallest of the 3 sensors and produced results
with very little noise outdoors. Tests were done under an
overcast sky, so sunlight was not a factor in the poorer quality
results obtained from the two RealSense sensors.

B. Simulation studies

We first test our approach in the Gazebo–based simulation
environment RotorS [28]. RotorS is used to simulate a
MAV based on the provided model of the AscTec Firefly
hexacopter [13] with a VI-Sensor, a CamBoard pico flexx, a
robot manipulator with an end-effector and the environment
which the simulated MAV operates in. The latter is populated
with a realistic 3D model of a tree cavity and tree models
in the background, as shown in Figure 8.

Fig. 8: Simulation experiment setup and result.

TABLE I: MAE and SD for the estimated cavity position compared
to the ground truth from the simulation experiment.

X Y Z
MAE [m] 0.0056 0.0011 0.0079

SD [m] 0.0026 0.0014 0.0035

In the simulated scenario, the vehicle starts on the ground
1m in front of the cavity and then flies to several manually
set waypoints, where the visual of the cavity is sometimes
completely lost. Then the auto controller is started and the
MAV is navigated to hover 0.5m in front of the cavity.
Finally, the arm controller is started and the manipulator is
extended to insert the end-effector in the cavity. Figure 8
shows that the end-effector is correctly inserted in the cavity
in these experiments.

To evaluate our cavity detection approach, the estimated
cavity position is tracked during this whole scenario and
compared to the ground truth, as shown in Figure 9. In
the simulation experiments, the ground truth robot pose was
used as input for the KF instead of the pose estimated
by MSF. The red curve represents the KF estimate of the
cavity position, while the blue dots represent the measured
cavity position from vision-based detection and the black
curve shows the ground truth. The filtered position estimate
remains sufficiently accurate even if the measured position
fluctuates heavily or if there is no result from vision-based
detection at all for a certain time window (either because the
cavity was not detected correctly or was not in the field of
view of the detection sensor anymore).

The mean absolute error (MAE) and the standard deviation
of the absolute error (SD) can be found in Table I. The
MAE is below 1cm in all directions. The very low error
is partly due to using the ground truth robot pose as input



60 70 80 90 100 110 120 130 140

time [s]

0.6

0.8

1

c
o

o
rd

in
a

te
 [

m
]

X coord

60 70 80 90 100 110 120 130 140

time [s]

-0.4

-0.2

0

c
o

o
rd

in
a

te
 [

m
]

Y coord

60 70 80 90 100 110 120 130 140

time [s]

-0.5

0

0.5

1

c
o

o
rd

in
a

te
 [

m
]

Z coord

ground truth

Kalman filter estimation

measurement (from vision)

cavity is lost in vision

Fig. 9: Comparison of the estimated cavity position, the measured
cavity position from the vision-based detection and the ground truth
in frame V during the simulation experiment.

Fig. 10: Sequence from the real-world experiment.
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Fig. 11: Comparison of the estimated cavity position, the measured
cavity position from the vision-based detection and the ground truth
in frame V during the real-world experiment.

TABLE II: MAE and SD for the estimated cavity position compared
to the ground truth from the real-world experiment.

X Y Z
MAE [m] 0.0302 0.0381 0.0321

SD [m] 0.0205 0.0372 0.0088

in the KF. We can still conclude that our proposed approach
effectively gives an accurate and continuous estimate of the
cavity position and performs satisfactory enough that we can
move on to real-world experiments.

C. Experimental evaluation

Real-world experiments, with the aerial robot platform
described in II-A, were conducted to further evaluate the
performance of the proposed cavity inspection platform. The
experiments were conducted in an indoors flying room and
we used a model of a tree cavity carved from wood at
the Swiss Federal Institute for Forest, Snow and Landscape
Research (WSL) The robot manipulator could not yet be
tested at the time.

Figure 10 shows a sequence from the experiment, with a
view of the GUI showing the cavity detection in the depth
image and point cloud. The MAV is first flown up manually
and then the user starts the cavity detection by setting a seed
point in the depth image to indicate the tree trunk. Once it
is clear that the cavity has been successfully detected, the
auto controller is activated and the MAV autonomously flies
to the cavity and hovers 0.5m in front of it.

The experiments show that the cavity is successfully
detected and the MAV is able to hold its position in front of
the cavity entrance for several minutes.

Figure 11 shows a comparison of the KF cavity position
estimate (red curve) with the measured cavity position from



the vision-based detection (blue dots) and the ground truth
(black curve). Although the ground truth is, in this case, only
an approximation calculated by transforming the approxi-
mately known position of the cavity in world frame W to
frame V , using the estimated robot pose, since no real ground
truth information was available. The MAE and SD for the
real world experiments can be found in Table II. The MAE
is below 4cm in all directions. However, the ground truth is
an approximation, therefore the error needs to be regarded
critically. Still, we can observe that again the cavity position
estimate smoothly follows the ground truth even if there is
no result from the vision-based detection at all for a certain
time window. Also, the cavity position is quickly corrected
again after there were a lot of false positives, e.g., in the very
beginning of the experiment, when the MAV is still quite far
away from the cavity.

Hence, we can conclude that our approach is able to
provide relatively accurate position estimates in real-time.

V. CONCLUSIONS

We have presented an aerial robotic platform for au-
tonomous remote tree cavity inspection, based on a hexa-
copter MAV equipped with a dexterous manipulator. The
full goal of the project is to detect a tree cavity, hover in
front of the cavity, insert an end-effector fitted with a stereo
camera, and capture data for offline 3D reconstruction of
the cavity. This paper has focused on the problem of cavity
detection and provided strategies for high level control of the
MAV and robot manipulator with minimal user intervention.
Simulation experiments show that our approach is able to
accurately detect a cavity, navigate the MAV to hover in front
of it and insert the end-effector safely. We have carried out
real-world experiments to show that accurate cavity detection
is possible in real time on board the MAV.

The next stage of the work is to experiment with the
manipulator and end-effector using the wooden model of a
cavity in an indoors flying room with an external motion
capture system (VICON) for better control. This should be
followed by outdoor experiments on natural trees.

This paper demonstrates the potential for autonomous
aerial robots to support conservation research and offer
faster information collection than is possible with manual
fieldwork.
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