Vision, Modeling, and Visualization (2013)
Michael Bronstein, Jean Favre, and Kai Hormann (Eds.)

Transfusive Weights for Content-Aware Image Manipulation

Kaan Yiicer'

Alexander Sorkine—Hornung2

Olga Sorkine—Hornung:,r1

I'ETH Zurich 2Disney Research, Zurich

Abstract

Many image editing operations, such as colorization, matting or deformation, can be performed by propagating
user-defined sparse constraints (e.g. scribbles) to the rest of the image using content-aware weight functions.
Image manipulation has been recently extended to simultaneous editing of multiple images of the same subject or
scene by precomputing dense correspondences, where the content-aware weights play a core role in defining the
sub-pixel accurate image warps from source to target images. In this paper, we expand the range of applications for
content-aware weights to the multi-image setting and improve the quality of the recently proposed weights and the
matching framework. We show that multiple images of a subject can be used to refine the content-aware weights,
and we propose a customization of the weights to enable easily-controllable interactive depth segmentation and
assignment, image matting and deformation transfer, both in single- and multi-image settings.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation

1 Introduction

Content-aware weight functions are a fundamental tool for
image processing and manipulation applications. In such
applications, the user defines constrained regions on the im-
age, usually in form of scribbles or points, and scalar weight
functions are computed around these constraints. The weight
functions have their maximum value of 1 at the constraints
and fade out to 0 away from the constraints, varying smoothly
inside coherent image regions and falling off sharply at strong
edges, which makes them “content-aware”. Such weights are
used to propagate operations on a small set of scribbles to the
entire image, usually by linearly interpolating their effects.
Colorization of black&white images [LLWO04], tonal adjust-
ments [LFUS06], matting, segmentation and compositing
of images/objects [LLWO06, FFL10, MB95] all fall into this
category. Spatially varying weights have also been used for
extracting novel information out of single images with the
help of user interaction, e.g. depth maps [WLF*11,GSCO12].

With the ever-expanding digital image collections, it is
of interest to simultaneously process multiple images of the
same subject, taken from different viewpoints, under different
illumination conditions and possibly with non-rigid deforma-
tions, like facial expressions. Recent research leverages the in-
trinsic coherence between images for automatic propagation
of local [HIDF10, YJHS12] and global [HSGL11, HSGL13]
edits to multiple views. Global editing on multiple images can
be achieved by computing and generalizing sparse correspon-
dences [HSGL11]. For simultaneous local editing of multiple
images or video frames, an important part of the problem
is finding correct dense mappings between different views
[HIDF10, RAKRF08, LJH10]. In this context, the recently
proposed transfusive image manipulation (TIM) [YJHS12]
enables local editing of multiple images by computing a sub-

(© The Eurographics Association 2013.

pixel accurate mapping between multiple views of a given
object or region of interest. TIM uses special content-aware
weight functions to define a warp from a source image to a
given target, where local affine transformations are linearly
blended into a global warp by the weight functions and opti-
mized using the Lukas-Kanade (LK) framework [LK81].

We observe that the weight functions proposed in TIM,
which have been demonstrated to work with automatically
sampled point constraints, can be combined with a scribble-
based user interface. Hence, they can serve as a tool for a
variety of other image manipulation applications apart from
matching, such as matting, image deformation, depth segmen-
tation and depth assignment. These applications require the
content-aware weights to be adjusted according to the partic-
ular interactive setting. Further, the TIM matching framework
enables to apply such manipulations to multiple images si-
multaneously, and even to refine the content-aware weights
themselves, allowing us to infer better weights based on multi-
ple images of the same scene. We notice that the assumptions
on the required properties of the weight functions previously
made by TIM are too strong, and by relaxing them and intro-
ducing a more sophisticated execution of the LK optimization
we can improve the generated correspondences.

The contributions of this paper are: (i) We improve the
image correspondence framework of TIM, relaxing the as-
sumptions on the underlying weight functions and transfor-
mations, which leads to better matching warps; (ii) we show
how the content-aware weight functions can be refined based
on multiple images of the same scene, making the weights
more suitable for image manipulation applications; (iii) we
propose single- and multi-image matting, multi-image defor-
mation and depth assignment applications, all based on the
improved, transferrable weights. For the depth assignment

K. Yiicer & A. Sorkine-Hornung & O. Sorkine-Hornung / Transfusive Weights for Content-Aware Image Manipulation

application, we show how minimal user input can be incor-
porated into the weights using inequality constraints, which
allows for easy, controllable depth segmentation.

2 Related work

‘We briefly review recently proposed content-aware weights
and dense image alignment methods relevant to our approach.

Content-aware weights. Central to image manipulation
tools is the computation of scalar weight functions, or in-
terpolation bases, anchored at constrained image regions,
for example scribbles. As surveyed e.g. in [LAAOS, FFL10],
the weights are usually the solutions of a harmonic PDE,
Lw = 0, constrained so that the weight value is 1 on a particu-
lar scribble and O on all others. L is an image-based, weighted
Laplace matrix. Depending on the application, this matrix
is constructed locally (sparse L) or globally (dense L). In
case of a global construction, L can capture the similarity
between distant pixels, resulting in weight functions with
global support that can be used for editing parts of images
that are spatially disjoint [FFL10]. The L matrix can also be
filled in by using local similarity between neighboring pixels,
which leads to local information flow to nearby pixels. These
can be used for methods like colorization [LLWO04], tonal
adjustment [LFUSO06] or edge-aware multiscale image de-
composition [FFLS08]. TIM [YJHS12] uses the higher-order
bi-Laplacian L? to get C' smoothness of the weights at the
constraints (single points in their case); the content-aware
bi-Laplacian is obtained from the discrete metric of the image
manifold. The resulting weight functions have been shown
to work with automatically sampled control handles, and we
demonstrate how they can be used with user interaction.

Content-aware weights can be combined with sparse user
input to assign depth values to images (e.g. for 2D-to-3D con-
version) [GSCO12, WLF*11,SSJ*10]. User interaction has
been used in form of absolute or relative input: In absolute
depth labeling [GWCO09, WLF*11], the user marks absolute
depth values for parts of images, and these are propagated to
unknown parts using content-aware weights. Relative depth
ordering can be inferred from a single user [SSJ*10], where
simple relations are used to create smooth depth transitions,
or from crowd sourcing [GSCO12], where the results of basic
ordering tasks are gathered and used to augment a Laplace
equation to compute depth maps. We show how TIM weights
can be efficiently combined with a low number relative con-
straints to solve ordering problems with minimal user input.

Image alignment. To transfer edits or other image infor-
mation (e.g. mattes) to new views of a scene, correspondence
between the different images need to be estimated. If the
input is in form of dense frames of a video, it is possible to
use optical flow techniques [LLW04, RAKRF08, BWSS09],
which track dense features, but these can only be used with
small image displacements. Other methods are appropriate for
sparse image sets where displacements can be larger. Some
use machine learning to detect and label features without
computing pixel-accurate correspondence [BLDA11]. Par-
tial, non-rigid correspondences can be used to transfer global
color or blur edits between images [HSGL11], or to globally
optimize color consistency across images [HSGL13], but they
cannot be used for precise, localized editing due to poten-
tial holes in the registration. Sub-pixel accurate continuous

199
199

Figure 1: Weight functions for different image resolutions
and factors Y (Eq. (1)) in a matting application. The fore-
ground and background weights have been computed from the
two user-provided scribbles. The top row images have been
processed at 20% of the resolution of the bottom row. From
left to right: y = 0 (no content-awareness), Y = 0.15 (weak
content-awareness), Y = 15 (strong content-awareness).

matching can be done with feature matching on local pla-
nar patches [HJIDF10], or more generally using controllable
image warps, as in TIM [YJHS12]. TIM parameterizes a non-
rigid warp by a few affine transformations, linearly blended
using content-aware weights; the parameters are optimized us-
ing an efficient variant of the Lucas-Kanade [LK81] method
to obtain accurate matching. TIM makes assumptions on the
properties of the weights and the resulting deformations, lim-
iting its usability in challenging settings. We show how these
assumptions can be lifted by improving the image alignment
optimization, leading to better quality of correspondences.
The computed matchings lead to the ability of symmetrical
computations between different views, as was done before in
optical flow [ADPS07] for small image displacements. We
show how symmetry can be exploited for large displacements
to refine the extracted image information like mattes.

3 Fundamentals of transfusive image manipulation

The original transfusive image manipulation [YJHS12] (TIM)
approach for finding a mapping between a source and a target
image consists of two central components, which we briefly
recap here before describing our contributions. Please see
[YJHS12] for details.

First, the source image I; is adaptively sampled by au-
tomatically placing a small number of control points C in
the image. For each C, a weight function wy, is computed,
which grabs a locally similar image region surrounding the
control point while stopping at strong image edges. This re-
sults in a soft segmentation of the source image, where every
pixel p has an associated weight value wy(p) for each Cy.
In the second step, an affine transformation 7} is computed
for each control point, such that mapping each pixel by a
weighted linear combination M(p) = Y/_ | wi(p) Ty p aligns
corresponding regions in the source image /s and a target
image Ir. Once aligned using this procedure, edits applied to
I; can be automatically applied to /; as well. Both algorithm
components are explained in more detail below.

3.1 Content-aware weights

The weight functions wy in TIM are computed by associating
with each image pixel a 5D feature vector

V()C,y) — (.X, Vs Y'l(xvy)7 Y'a(xvy)v y-b(x,y)), (1)

(© The Eurographics Association 2013.

K. Yiicer & A. Sorkine-Hornung & O. Sorkine-Hornung / Transfusive Weights for Content-Aware Image Manipulation

924nog

source image

WIL

target image

sinQ

Figure 2: The limitations of the TIM alignment framework prevent it from correctly recovering the deformations between the
source and the target image. The TIM optimization gets stuck in a local minimum, leading to excessive deformations of the
applied image edits (middle row). Our method alleviates this problem, resulting in correct and smooth edit propagations (lower
row), as evident in the close-ups. All images via flickr. Opera de Vichy by Nicolas Ledez, bird by shutter4l, plane by Denis

Dervisevic and dog by Mike Baird.

consisting of the 2D pixel position, its color in the CIELAB
color space, and a weighting factor y. The weights wy are
then computed by minimizing a bi-Laplacian energy subject
to interpolation constraints at the control points Cy, partition-
of-unity, and positivity:

argmin Yj' %fl (Awy)? dxdy (2)

wi, k=1,...m

s.t. Wk|C[:8kl7 kl=1,....m 3)

Yisiwi(p) =1 vpel 4
0<wi(p)<1, k=1,....m, Vpel (5)

Content-awareness is achieved by taking A as the Laplace-
Beltrami operator of the image viewed as a 2-manifold em-
bedded in the above 5D feature space.

As also noted in [JS12], it is straightforward to employ the
same optimization procedure for computing content-aware
weight functions for more general image editing tasks. For
instance, for scribble-based colorization or matting applica-
tions, each set of user-provided scribbles simply becomes
a constrained region Cy. Figure 1 shows a matting example
where the user placed one scribble on the foreground and one
on the background region of the input image. The images
on the right show a comparison of how different choices of
v and different image resolutions influence the sensitivity
of the weight functions wy to image content. Unless stated
otherwise, we always use Yy = 15 in our experiments.

3.2 Image alignment

As mentioned above, the original TIM approach defines the
per-pixel mapping M between I; and I; as a weighted sum
of transformations M (p) = Y71 wi(p) T p. The transfor-
mations 7; are optimized to minimize the color mismatch
function ¢ between the source and the re-mapped target image

arg/\r/lnin Yper, 0 (M(p)), Is(p))- ©)

(© The Eurographics Association 2013.

To solve this problem, the iterative Lucas-Kanade method
[BMO04] is used, which at each iteration computes an update
step for the affine transformations, AT}, and then requires the
following warp update:

M) Xy [@) T(we@)AT) |)

One problem in computing this update is that the inversion of
the inner term does not necessarily lie in the linear subspace
of the underlying deformation model anymore, i.e., it can no
longer be expressed as a linear combination of some affine
transformations with weights wy. In the TIM approach this
problem is resolved with a number of strong assumptions
about the properties of the weight functions and the update
of transformations, so that the inner sum can be replaced by
a single transformation:

M) < [m@nAR) e ®

While this approximate solution was sufficiently robust for
the editing tasks shown in [YJHS12], we demonstrate in the
following section that the underlying assumptions may be
violated in more challenging scenarios.

4 Generalized transfusive image manipulation

In the following, we present a new solution to the image align-
ment optimization, which leads to more robust matching of
images. We then introduce two extensions to the weight com-
putation, which enable multi-image refinement of weights
and the definition of relative constraints, with applications to
matting and depth map creation.

4.1 Robust warp projection

The projection of Eq. (7) back into the linear subspace us-
ing Eq. (8) assumes that a pixel is either (i) dominated by
a single weight function wy, so that other weight functions

K. Yiicer & A. Sorkine-Hornung & O. Sorkine-Hornung / Transfusive Weights for Content-Aware Image Manipulation

Figure 3: Multi-image weight refinement for matting. The
inaccurate scribbles (left) cause the weights to spill onto the
background (middle left). Our multi-view weight refinement
can automatically take additional views (right) into account
and improve the weights (middle right) without the need for
additional user interaction.

are negligible and the projection can be derived as the in-
verse of the associated transformation 7%, or that (ii) a pixel
influenced by multiple weight functions receives a similar
transformation from each of them, so that the inverse can
again be approximated by a single 7; [YJHS12]. However,
in more challenging image matching and editing scenarios,
constraints sharing common image regions may require inde-
pendent transformations, preventing the alignment algorithm
from finding a good solution, as shown in Figure 2.

We relax the above assumptions and instead project the
warp back into the linear subspace by representing the inverse
in Eq. (7) again as a weighted sum of transformations:

(agE

we(p)A¢ Vp. ©

-1
[Z We(P)ATe} ~
=1

/= (=1

The task is now to find suitable A. Using the definition of the
inverse, multiplying the transformations above should lead to
the identity transform:

{f‘,w(p)ATz} : [f‘,w(p)fv] p=pVp (10
/=1 (=1

This corresponds to an overdetermined system of linear equa-
tions with unknowns Ay which we solve in the least squares
sense. Note that this provides us with a different approxi-
mation to the inverse required to solve the image alignment
problem, without the limiting assumptions required in the
original TIM approach.

The next step is the actual application of this warp update,
which may again lie outside our linear deformation subspace.
We apply a similar idea as above and represent the warp in
Eq. (7) as

[f we(p) Tk} - {f Wé(P)Az] p~ Y wip)0ip, Vb,
k=1 /=1 i=1

and determine the unknowns Q; again via linear least squares
minimization.

As demonstrated in Figure 2, this new projection step is
more general and can handle more challenging deformations
than the original TIM approach, thanks to dropping assump-
tions regarding similarities of transformations of spatially
adjacent weight functions.

Figure 4: Multi-image weight refinement in case of occlu-
sions. In this example the user wants to ensure that a logo
placed in the orange region of the source image (left and
middle column) is not occluded when transferred to an image
from another perspective (right column). The weight refine-
ment supports the user by automatically identifying the part
of the wall that is visible in both images (center image).

4.2 Multi-image weight refinement

The quality of any method for computing content-aware
weight functions for image editing is limited by the accu-
racy of the user input and the ambiguity of colors between
different semantic regions. This is illustrated in the matting
example in Figure 3 using TIM weights where the segmenta-
tion of the shirt is compromised by inaccurate scribbles and
the color similarity of the reflection in the window. A similar
problem occurs with partial occlusions is shown in Figure 4.
However, instead of computing weights only on the source
image, the computed mappings to additional target images
can be exploited to resolve such ambiguities and improve the
weights.

The idea of our multi-image weight refinement is to resolve
such inconsistencies by computing weight functions in both
images simultaneously and then strengthening those pixels
on which both weight functions agree, while eliminating
pixels without consensus. The refinement procedure works
as follows:

1. Given a set of user-defined constraints Cy in image I5, we
first compute the content-aware weight functions wy.

2. With the warp computation of the TIM framework, we
compute warp(s) M from I; to one (or more) additional
images Ir around automatically generated control handles.

3. Using M, the constrained regions C; from I; are warped
to I;. We mark (dis)occluded pixels in the target images
and remove them from the user-defined constraints Cy.
For those warped constraints C,’(we then compute weight
functions w,'c in Iy.

4. The refined weights W (p) for a pixel p € Is can then be
computed by warping the weight functions w}, back to I
and multiplying them with the weight functions wy:

Wi (p) = w(p) wi (M (p)). (11)

Re-normalization restores the partition of unity property. The
refined weights W, are readily available in all other images I
thanks to the computed warps M.

(© The Eurographics Association 2013.

K. Yiicer & A. Sorkine-Hornung & O. Sorkine-Hornung / Transfusive Weights for Content-Aware Image Manipulation

4.3 Relative constraints

Scribble-based interfaces generally do not allow for the def-
inition of relative dependencies between scribbles. How-
ever, in applications such as scribble-based depth assign-
ment [GWCO09, WLF*11], relative constraints in form of
depth inequalities have been shown to be a very powerful
tool [SSJ*10]. For instance, it is not always clear at first
sight what absolute depth value an image region should have.
Depth differences between regions, on the other hand, are
usually easier to spot and can be helpful in computing the
weight functions. Humans are also more sensitive to relative
changes than absolute values [GSCO12], which makes rel-
ative orderings an easier task than absolute value decisions.
The flexible formulation of the weight computation allows us
to incorporate inequality constraints.

In general the inequality constraints can then be defined as

dpp <wi(p) —wi(p), VpeC, Vp'eC;, (12

where C; and C; are the image regions described by the user
scribbles and d}, s is a variable defining by how much the
weights for pixels p and p’ should differ inside these domains.
Equality constraints for pairs of pixels belonging to the same
scribble can be included similarly as

lwi(p) —wi(p)| <&, vp.p' €C;, (13)

which means that all pairs from the same constraint C; should
have similar weights. By not enforcing absolute equality
using the threshold €, we add an additional level of flexibility
for the solver during the computation of weight functions,
which prevents the often undesirable “piecewise-constant”
look of depth maps created using scribble-based interfaces.

The above, general formulation renders the problem com-
putationally too expensive due to the high connectivity in the
associated constraint graph (Figure 5 left), which depends
quadratically on the number of scribbles and pixels. However,
we can dramatically simplify this problem and the number
of constraints by adding 2 auxiliary nodes to the constraint
graph (Figure 5 middle), which reduces the complexity of the
problem while keeping the constraints identical:

PP €C, (14)
vpeG, (15)
vp'ecC;, (16)

dp.pr < wie(pr) — wi(Pr),
€ 2> |wi(p) — wi(Px)l,
&> |wi(p') — wi(pi)l,

G, O G ¢ a_, G

| » |- :foiioz. ® —t>

o o
o ®

Figure 5: Using all possible pairs of nodes as constraints
makes the minimization problem computationally too expen-
sive (left). The number of constraints can be dramatically
reduced by using auxiliary variables without changing the
original constraints (middle). The auxiliary nodes can then
be collapsed and removed (right).

(© The Eurographics Association 2013.

Figure 6: Matting examples. The two upper rows show input
images and trimaps from an evaluation database provided
by [RRW*09] (left and middle) and our matting result using
those inputs (right). In the bottom row, we captured an image
with a regular camera and an aligned infrared camera. The
similar fore- and backgrounds in the color input (left, with
scribbles) lead to visible artifacts in the matte (middle left).
We demonstrate how adding the infrared image (middle right)
simply as a sixth dimension to our feature space (see Eq. (1))
considerably improves the result (right).

where py and p,/(are the auxiliary nodes from the auxiliary set
Cy.. The auxiliary nodes can be removed by collapsing them
on one of the existing nodes pg, thereby keeping the problem
and the number of initial variables identical:

poEC, PpoEC; (I7)
vpeC, p#po, (18)
vp' eC;, p #po. (19)

dp,p/ < Wk(p()) - Wk (p6)a
e > |wi(p) — wi(po)l,
e > |we(p") —wi(po),

An important strength of this approach is that the user
can now make soft decisions about relations between scrib-
bles rather than having to assign absolute values. This is
particularly useful for depth map creation using scribble-
based interfaces. Moreover, we demonstrate in Section 5
how the multi-image refinement can further expedite the pro-
cesses by automatically transferring inequality constraints
from one image to another. The weight computation remains
a sparse quadratic programming problem which is solved
with [AAO00].

5 Applications and results

We demonstrate our framework on a number of image editing
tasks. We tested all applications on an iMac Intel Core i7
3.4GHz computer with 16GB memory.

Matting. The content-aware weights have been used with
point handles in [YJHS12] and with scribbles in [JS12]. They
can be further extended to work with trimaps for solving the
image matting problem, see Figure 6 top. The given back-
ground (black) and foreground (white) regions are interpreted
as two constrained regions C;,C,, and a weight function wy
is computed to segment the parts with unknown matte values.
Although our method is not optimized specifically for matting,
at the time of the submission it had an average rank of 22.7

K. Yiicer & A. Sorkine-Hornung & O. Sorkine-Hornung / Transfusive Weights for Content-Aware Image Manipulation

Figure 7: Deformations of the source object (first row) can
be transferred to other views of the same object. Here, the
forehead of the pug is shrunk and moved upwards, its eyes are
enlarged and moved closer, and the mouth region is shrunk
and rotated. The mapping between the source and the targets
is used to smoothly transfer the deformations to the targets.
Image by *christopher* via flickr.

in terms of MSE and 5.8 out of 33 in terms of connectivity
error on the evaluation database provided by [RRW*09].

The weight computation is flexible enough to incorporate
additional channels as feature dimensions (Eq. (1)), such
as infrared data, which benefits matting by better identify-
ing semantic image regions. Figure 6 (bottom) demonstrates
substantial improvement of a matte by adding infrared data.

If multiple views of the same object are available, we can
compute “multi-view” image mattes using our approach. The
trimaps or scribbles drawn on one image can be transferred
to the others and used to automatically refine the weights
computed on the source image, as described in Section 4.2.
Figure 3 demonstrates how this helps to differentiate between
fore- and background and improves the matte. Figure 4 shows
how occlusions in other views can be incorporated into the
multi-view mattes. When editing multiple images simultane-
ously, this can be effectively used to direct the user to place
important edits on parts that are visible on all available views.

Deformation transfer. Spatial warps and deformations ap-
plied to an image can also be transferred to other images of
the scene using the correspondence map M. Moreover, the

Figure 8: Left: The input image overlaid with scribbles used
for inequality constraints. Right: the resulting depth map.
Scribbles belonging to the same inequality constraint are
shown in matching colors. The strokes around each scribble
show whether they are closer to the camera (red) or fur-
ther away (blue). Observe how the inequality constraints are
fulfilled in the final result. The scribbles are thickened for
visualization purposes. Image by Christian Haugen via flickr.

linear blending formula with content-aware weights can itself
be used to define expressive deformations of the image, us-
ing user-defined “deformation handles” Cy and user-provided
transformations 7; for each handle, such as translation or
rotation. Figure 7 (top) shows a smooth, spatially-varying
warp, interactively defined in this way and applied to a source
image of a pug. We used the TIM weights with y = 0.15
for this purpose, to increase their smoothness. The deforma-
tion handles, their weights and associated transformations
can then be transferred to multiple target images using our
alignment framework, see Figure 7 (middle and bottom).

Depth assignment. The relative decisions and inequality
constraints described in Section 4.3 enable interactive gener-
ation of depth maps with minimal user input. At each step,
a new pair of scribbles are added to point out a difference
in depth values and refine the depth map. The desired depth
maps can be achieved in a low number of incremental steps,
as shown in Figures 8 and 9. If multiple views of the same
scene are available, the inequality scribbles can be automati-
cally transferred to the additional views to compute matching
depth maps there, see Figure 10. The user may only need to
adjust depth differences and to add scribbles for novel regions
that did not exist in the source image; usually few adjustments
are needed thanks to the coherence between multiple views.

As shown in [YJHS12], Figure 2, the weight functions
are rather stable over a range of different image resolutions,
hence for interactive response times we compute depth on
downsampled images. A low-resolution depth map (150 x
150) takes less then 3 seconds, whereas the time needed for a
higher resolution depth map (250 x 250) varies between 5-15
seconds depending on the number of inequality constraints.

We compare our method with StereoBrush [WLF*11] us-
ing scribbles supplied by its authors, which uses absolute
depth values as constraints to compute a depth hypothesis.
We convert their absolute scribbles to relative constraints in
Figure 11. Our depth maps exhibit higher edge-awareness, re-
sulting in sharper depth discontinuities on object boundaries
and decreased bleeding of depth values between different ob-
jects thanks to the diffusion characteristics of TIM weights.

Limitations. Transparent and highly reflective objects can-
not be extracted in our mattes or matched properly due to
the view-dependent appearance. The computation time of the
content-aware weights is a limitation due to the quadratic

(© The Eurographics Association 2013.

K. Yiicer & A. Sorkine-Hornung & O. Sorkine-Hornung / Transfusive Weights for Content-Aware Image Manipulation
0 _ 1

Taiaiig

Figure 9: Top row shows the scribbles incrementally added by the user to differentiate the depth levels. A red scribble describes
the image regions that should be closer to the camera. The bottom row shows how the depth map is updated after each pair of
scribbles. Note how the relative constraints are incorporated at each step to change the depth map according to the user’s needs.

The scribbles are thickened for visualization clarity. Image by Michael Jung via Wikimedia Commons.

Figure 10: The column on the left shows the source image
overlaid with scribbles and its corresponding depth map. The
inequality scribbles can be transferred to target views to
generate their depth maps, as shown on the right. Two extra
pairs of scribbles are added to label previously unseen parts.

programming step. We use the interior point solver MOSEK
[AAO00], which does not benefit from initial guesses. To re-
duce computation time, we downsample the image for the pur-
pose of weight computation, possibly leading to loss of preci-
sion and inability to detect fine details like fur and hair. Our
LK energy minimization is more costly than in the original
TIM due to the more accurate warp projection and takes 0.7
sec. compared to previous 0.2 per LK iteration on a 800 x 800
image with 11 control handles. It may still fail in dramatic
viewpoint changes as in Figure 5 of [YJHS12]. In future work
we are interested in exploring alternative numerical optimiza-
tion procedures that would efficiently support incremental
computation, e.g. when the user inputs additional scribbles.
We are also interested in finding how to effectively update
the warps with the refined weights in an iterative process.

(© The Eurographics Association 2013.

6 Conclusions

We proposed a framework for alignment, simultaneous edit-
ing and deformation of multiple images of a scene using
smooth, content-aware weight functions, resulting in a diverse
multi-image manipulation toolset. We enhanced the dense
alignment framework of TIM [YJHS12] by relieving their
particular assumptions on the behavior of the weight func-
tions and local deformations, thereby increasing the method’s
applicability. We proposed multi-image weight refinement,
making the content-aware weight functions more suitable,
e.g., for matting when multiple images are available. Our new
(in)equality constraints enable incorporating user-defined re-
lations into the weights, useful for depth map computation.

We see the advantage of our method in its unified mathe-
matical foundation: variational optimization of content-aware
weights and non-rigid alignment. This single scaffold can
be used in a variety of single and multi-image applications;
once the weights are available on the source image, they
can be used for different purposes ranging from matting to
multi-image deformation transfer. We hope that the ideas
and applications in this paper will inspire new tools to solve
different vision and graphics problems at once.

Acknowledgements

We are grateful to Alec Jacobson for insightful discussions
and the authors of StereoBrush [WLF*11] for sharing their
input data for comparisons.

References

[AAOO] ANDERSEN E. D., ANDERSEN K. D.: The MOSEK inte-
rior point optimizer for linear programming: an implementation of
the homogeneous algorithm. In High Performance Optimization.
Kluwer Academic Publishers, 2000, pp. 197-232. 5, 7

[ADPSO7] ALVAREZ L., DERICHE R., PApADOPOULO T.,
SANCHEZ J.: Symmetrical dense optical flow estimation with
occlusions detection. Int. J. Comput. Vision 75, 3 (2007). 2

K. Yiicer & A. Sorkine-Hornung & O. Sorkine-Hornung / Transfusive Weights for Content-Aware Image Manipulation

Source Image +
scribbles

Stereobrush
Scribble Propagation

Our Results

Figure 11: Top row: input images and scribbles; second row: depth maps computed by StereoBrush [WLF*11]; third row: our
depth maps, computed using relative constraints. Our algorithm respects image edges and decreases bleeding of depth values to
the background or nearby pixels. Note that we show the scribble propagation results of StereoBrush computed using Levin’s
weights [LLW04], and not their final disparity maps, which use additional ingredients, to allow for a fair comparison.

[BLDA11] BErRTHOUZOZ F., L1 W., DONTCHEVA M.,
AGRAWALA M.: A framework for content-adaptive photo
manipulation macros: Application to face, landscape, and global
manipulations. ACM Trans. Graph. 30,5 (2011), 120. 2

[BM04] BAKER S., MATTHEWS I.: Lucas-Kanade 20 years on: A
unifying framework. Int. J. Comput. Vision 56, 3 (2004), 221-255.
3

[BWSS09] BAI X., WANG J., SIMONS D., SAPIRO G.: Video
snapcut: robust video object cutout using localized classifiers.
ACM Trans. Graph. 28, 3 (2009). 2

[FFL10] FARBMAN Z., FATTAL R., LISCHINSKI D.: Diffusion
maps for edge-aware image editing. ACM Trans. Graph. 29, 6
(2010). 1,2

[FFLS08] FARBMAN Z., FATTAL R., LISCHINSKI D., SZELISKI
R.: Edge-preserving decompositions for multi-scale tone and
detail manipulation. ACM Trans. Graph. 27, 3 (2008). 2

[GSCO12] GINGOLD Y., SHAMIR A., COHEN-OR D.: Micro
perceptual human computation. ACM Trans. Graph. 31,5 (2012).
1,2,5

[GWCO09] GUTTMANN M., WOLF L., COHEN-OR D.: Semi-
automatic stereo extraction from video footage. In Proc. ICCV
(2009). 2,5

[HIDF10] HASINOFF S. W., JOZWIAK M., DURAND F., FREE-
MAN W. T.: Search-and-replace editing for personal photo collec-
tions. In Proc. ICCP (2010). 1,2

[HSGL11] HACOHEN Y., SHECHTMAN E., GOLDMAN D. B.,
LiScHINSKI D.: Non-rigid dense correspondence with applica-
tions for image enhancement. ACM Trans. Graph. 30, 4 (2011).

>

[HSGL13] HACOHEN Y., SHECHTMAN E., GOLDMAN D. B.,
LISCHINSKI D.: Optimizing color consistency in photo collec-
tions. ACM Trans. Graph. 32,4 (2013). 1,2

[JS12] JACOBSON A., SORKINE O.: A Cotangent Laplacian for
Images as Surfaces. Tech. Rep. 757, ETH Zurich, April 2012. 3,
5

[LAAO8] Li1Y., ADELSON E. H., AGARWALA A.: ScribbleBoost:
Adding classification to edge-aware interpolation of local image
and video adjustments. Comput. Graph. Forum 27, 4 (2008). 2

[LFUSO06] LISCHINSKI D., FARBMAN Z., UYTTENDAELE M.,
SZELISKI R.: Interactive local adjustment of tonal values. ACM
Trans. Graph. 25, 3 (2006). 1,2

[LJHI0] L1Y., JuT., HU S.-M.: Instant propagation of sparse
edits on images and videos. Comput. Graph. Forum 29, 7 (2010).
1

[LK81] LucAsB.D., KANADE T.: An iterative image registration
technique with an application to stereo vision. In International
Joint Conference on Artificial Intelligence (1981). 1,2

[LLWO04] LEVIN A., LISCHINSKI D., WEISS Y.: Colorization
using optimization. ACM Trans. Graph. 23,3 (2004). 1,2, 8

[LLWO06] LEVIN A., LISCHINSKI D., WEISS Y.: A closed form
solution to natural image matting. In Proc. CVPR (2006). 1

[MB95] MORTENSEN E. N., BARRETT W. A.: Intelligent scissors
for image composition. In Proc. ACM SIGGRAPH (1995). 1

[RAKRFO8] RAV-ACHA A., KOHLI P., ROTHER C., FITZGIB-
BON A. W.: Unwrap mosaics: a new representation for video
editing. ACM Trans. Graph. 27,3 (2008). 1, 2

[RRW*09] RHEMANN C., ROTHER C., WANG J., GELAUTZ M.,
KoOHLI P., ROTT P.: A perceptually motivated online benchmark
for image matting. In Proc. CVPR (2009). 5, 6

[SSJ*10] SYKORA D., SEDLACEK D., JINCHAO S., DINGLIANA
J., COLLINS S.: Adding depth to cartoons using sparse depth
(in)equalities. Computer Graphics Forum 29,2 (2010). 2, 5

[WLF*11] WANG O., LANG M., FREI M., HORNUNG A.,
SMOLIC A., GROSS M.: StereoBrush: interactive 2D to 3D con-
version using discontinuous warps. In Proc. Symp. Sketch-Based
Interfaces and Modeling (2011). 1,2,5,6,7, 8

[YJHS12] YUCER K., JACOBSON A., HORNUNG A., SORKINE
O.: Transfusive image manipulation. ACM Trans. Graph. 31, 6
(2012). 1,2,3,4,5,6,7

(© The Eurographics Association 2013.

