
Trajectory-based Probabilistic Policy Gradient
for Learning Locomotion Behaviors

Sungjoon Choi and Joohyung Kim

Abstract— In this paper, we propose a trajectory-based rein-
forcement learning method named deep latent policy gradient
(DLPG) for learning locomotion skills. We define the policy
function as a probability distribution over trajectories and train
the policy using a deep latent variable model to achieve sample
efficient skill learning. We first evaluate the sample efficiency of
DLPG compared to the state-of-the-art reinforcement learning
methods in simulated environments. Then, we apply the pro-
posed method to a four-legged walking robot named Snapbot
to learn three basic locomotion skills of turn left, go straight,
and turn right. We demonstrate that, by properly designing two
reward functions for curriculum learning, Snapbot successfully
learns the desired locomotion skills with moderate sample
complexity.

I. INTRODUCTION

Designing the locomotion skills of a legged robot requires
significant domain knowledge as well as engineering. To al-
leviate the cumbersomeness of the manual design, a number
of studies including [1]–[3] focus on learning the locomotion
skills from trial and error. However, such methods are also
likely to require sufficient domain knowledge in that they
often predetermine the structure of a policy to optimize a
small number of parameters.

In this paper, we focus on learning the locomotion skills
of a four-legged walking robot named Snapbot [4] with less
domain knowledge on gait optimization. Throughout this
paper, we aim to address following questions:

1) How can we effectively teach locomotion skills to
a real physical robot without leveraging simulated
environments?

2) How can we train the policy function for quadruped
locomotion with less assumptions on the structure of
the policy function?

The first question directly stems from using Snapbot, a
reconfigurable legged robot which can have up to six legs
with three different types. Modeling system dynamics of
different configurations for the sake of incorporating a simu-
lated environment is a daunting process. Furthermore, while
some studies [5], [6] focused on reducing the gap between
simulations and real world experiments, they often focus on
manipulation tasks with less contact between a robot and the
ground.

The second question is related to the main objective of the
study of investigating the learned locomotive behaviors of
Snapbot with less domain knowledge as possible. A number
of existing learning-based methods for locomotion using a
real physical robot often predefine the structure of a policy

Sungjoon Choi and Joohyung Kim are with Disney Re-
search, 521 Circle Seven Drive, Glendale, CA 91201, USA.
{sungjoon.choi,joohyung.kim}@disneyresearch.com

and try to learn the parameters of the policy function [1],
[2]. On the contrary, we try to mitigate such manual design
choices and let the policy function to directly model the joint
trajectories.

To this end, we present a policy gradient method, named
deep latent policy gradient (DLPG), that optimizes a stochas-
tic policy function for locomotion tasks. In particular, the
policy function is defined as a conditional probability dis-
tribution over joint trajectories given a context input. We
believe that modeling the policy function to directly define
the trajectory distribution, rather than determining a reactive
action given a state, plays an important role in achieving
the sample efficiency. To properly train the stochastic policy
function with a high-dimensional output space (a trajectory
space), we utilized a deep latent variable model (DLVM) [7]
where we also show the effectiveness of the DLVM in the
experimental section.

We first evaluate the sample efficiency of DLPG compared
to the state-of-the-art reinforcement learning methods [8], [9]
on two locomotion tasks in simulated environments. Then,
we apply DLPG to learn locomotion skills using Snapbot.
In particular, we present curriculum learning to effectively
learn more complex behaviors of turn left, go straight, and
turn right, by using two reward functions with different levels
of difficulties. On the contrary, naive training with a single
reward function fails to achieve the desired skills.

Our main contributions of this paper are twofold: One is
to present a trajectory-based policy gradient method, DLPG,
and show its sample efficiency in simulated environments.
The other is to demonstrate that curriculum learning is crucial
for achieving satisfactory locomotive performances when
using Snapbot with moderate sample complexity.

The structure of this paper is organized as follows: Section
II discusses related work and the proposed method for
learning locomotion skills is presented in Section III. Our
experimental results using both simulations and Snapbot
are shown in Section IV followed by discussion and future
directions in Section V.

II. RELATED WORK

Learning locomotion skills for a robot or an animated
character can be roughly categorized into two groups by
the parameterization of the policy function. The first group
of studies pre-defines the structure of the policy function
and find a relatively small number of parameters (usually
less than 10), whereas the other group learns the policy
function with less assumptions, e.g., a mapping between
current observation to joint torques.

One of the preliminary work to learn structured policies
for locomotion tasks [3] utilizes particle swarm optimization

to learn the gait parameters of a biped humanoid robot.
Chernova and Veloso presented an evolutionary approach to
optimize fast forward gait motions on quadruped robots using
a Sony AIBO robot [10]. Similarly, Bayesian optimization
methods have been utilized in [11] to find appropriate gait
parameters for a bipedal walking robot. Central pattern
generators (CPGs) [12] have been widely used for designing
gaits for locomotion tasks in that using it drastically reduce
the number of parameters to represent the policy. Recent
work in [2] used contextual Bayesian optimization to find
the parameters of a CPG controller.

On the other hand, policy gradient methods [13], [14] have
also been widely used to train less-structured policies. A
stochastic policy gradient method was presented in [15] for
learning bipedal motions where the goal was to acquire a
feedback control policy for a 9 degrees of freedom system.
DeepLoco [16] proposed a hierarchical RL method where
the high level planner determines the next footstep plan and
the low level planner controls the joint torques to satisfy
the given footsteps. Sample-efficient RL for locomotion
tasks was presented in [17] by leveraging the periodicity of
the motion with a random projection to search in a low-
dimensional parameter space. Theodorou et al. proposed
Policy Improvement with Path Integrals (PI2) [18] where
the parameters are updated based on a probability weighted
average cost over the sampled trajectories. PI2 is similar to
our method in that it is stochastic RL based on trajectory
rollouts, however, it requires system dynamics with a heuris-
tic noise model. Recently, model-free PI2 and model-based
LQR with fitted linear models are combined [19] to sample-
efficiently update a time varying linear Gaussian (TVLG)
controller. However, the policy itself is still reactive.

III. PROPOSED METHOD

In this section, we present a sample-efficient reinforcement
method named deep latent policy gradient (DLPG). Unlike
the policy in existing RL methods that outputs desired
torques or target joint positions given current observations,
we design the policy to define the distribution over fixed-
length joint trajectories and further use an open-loop control
to track the resulting trajectory.

A. Defining a distribution over trajectories

Let us first introduce how we define the distribution over
trajectories. To this end, we utilize a Gaussian random path
(GRP) [20] where A GRP defines a distribution over trajec-
tories from a set of M anchoring points Da = (sa,xa) =
{(si, xi) | i = 1, 2, ... , M} where si and xi are i-th time
index and joint value, respectively. Specifically, given T
test time indices ttest = {ti | i = 1, 2, ... , T}, a Gaussian
random path P defines a mean path µP and a covariance
matrix KP .

P ∼ N (µP , KP), (1)

where

µP = k(ttest, sa)TK−1a xa, (2)

KP = Ktest − k(ttest, sa)TK−1a k(ttest, sa), (3)

k(ttest, sa) ∈ RT×M is a kernel matrix whose element is
[k(ttest, sa)](i,j) = k(ti, sj), Ka ∈ RM×M is a kernel ma-

(a)

(b)

(c)

Fig. 1: Mean paths and sampled paths of (a) original and (b)
leveraged GRPs illustrated with dotted and solid lines, re-
spectively. The shaded area indicate 2σ-confidence intervals
(95%). (c) A GRP prior for exploration.

trix of anchoring time indices whose element is [Ka](i,j) =

k(si, sj), and Ktest ∈ RT×T is kernel matrix of test time
indices whose element is [Ktest](i,j) = k(ti, tj). Since the
anchoring points and the corresponding GRP has one-to-
one correspondence, we will denote τ to represent a set of
anchoring points.

We use a leveraged kernel function [21] as it can effec-
tively be used for exploration purposes. Figure 1 illustrates
mean paths, sampled paths, and 2σ-confidence intervals with
solid lines, dashed lines, and shaded areas, respectively. One
can see that the GRP with the leveraged kernel function can
better model the distribution that approximately follows the
anchoring points as shown by the blue shaded area in Figure
1(b).

To further aid explorations at the training phase, we also
sample trajectories from a GRP with two anchoring points
at the start and the end as shown in Figure 1(c). We refer
it as a GRP prior p0(τ). This procedure of incorporating
trajectories sampled from p0(τ) at the initial training phase
resembles the ε-greedy procedure [22].

We argue that the proper modeling of the distribution
over trajectories plays a crucial role for achieving sample
efficient reinforcement learning. As the proposed method can
maintain a multimodal distribution over the trajectory spaces,

it can effectually explore multiple potentially promising
trajectories rather than focusing on a unimodal distribution
of promising trajectories.

B. Deep Latent Policy Gradient

The goal of RL is to optimize a conditional probability
distribution of a trajectory, pθ(τ |c) that maximizes the utility
of the trajectory:

U(θ) = Eτ∼θ [R(τ, c)]

where θ is a set of learnable parameters, τ ∼ θ indicates
τ ∼ pθ(τ |c), c is the context input such as going straight,
and R(τ, c) is a reward function which is assumed to be
positive. It can be regarded as training universal policies [23].
For example, a context input c can either be a go straight
command or a turn right command. For simpler tasks without
a context input, the policy function simply becomes pθ(τ).

In this section, we present an approximate policy gradient
method using a deep latent variable model (DLVM) [7]
to properly optimize a high-dimensional output space (a
trajectory space). With importance sampling, we have

U(θ) = Eτ∼θ[R(τ, c)]

= Eτ∼θold
[
pθ(τ |s)
pθold(τ |c)

R(τ, c)

]
. (4)

Then the gradient of U(θ) with respect to θ at θold, i.e.,
∇θU(θ)|θold , becomes

∇θU(θ)|θold = ∇θEτ∼θold
[
pθ(τ |c)
pθold(τ |c)

R(τ, c)

]∣∣∣∣
θold

= ∇θEτ∼θold [log pθ(τ |c)R(τ, c)]
∣∣
θold

(5)

which is often referred to as a likelihood ratio trick [13].
Here, we use a deep latent variable model (DLVM) [7] to

optimize the policy pθ(τ |c) which is suitable for modeling
high-dimensional spaces, e.g., a trajectory space. We evaluate
the benefit of using the DLVM compared to directly using
(5) in the experimental section.

In other words, instead of directly maximizing the pθ(τ |s),
an additional latent variable z is introduced to maximize the
evidence lower bound (ELBO) of log pθ(τ |c).

log pθ(τ |c) = Ez∼φ[log pθ(τ |c)]

= Ez∼φ
[
log

pθ(τ, z|c)
qφ(z|τ, c)

qφ(z|τ, c)
pθ(z|τ, c)

]
= Ez∼φ

[
log

pθ(τ, z|c)
qφ(z|τ, c)

]
+DKL(qφ||pθ) (6)

where z ∼ φ indicates z ∼ qφ(z|τ, c) for a variational distri-
bution qφ(z|τ, c) parameterized with φ and DKL(qφ||pθ) =
DKL(qφ(z|τ, c)||pθ(z|τ, c)). The first term in (6) is called
the evidence lower bound (ELBO) as DKL(qφ||pθ) is always
non-negative. The ELBO can further be expressed as

ELBO = Ez∼φ
[
log

pθ(τ, z|c)
qφ(z|τ, c)

]
= Ez∼φ [log pθ(τ |z, c)]−DKL(qφ(z|τ, c)||p(z))

(7)
where we assume that z and c are independent, i.e., p(z|c) =
p(z). By substituting (7) into (5), we have our approximate
policy gradient method which maximizes the lower-bound of

Fig. 2: The illustration the proposed deep latent policy
gradient where c is the contextual input and τ is a set of
anchor points for defining the trajectory of a robot.

the utility function where the gradients of the utility function
w.r.t. θ and φ are derived as follows:

∇θU(θ)|θold ≈ ∇θEτEz [log pθ(τ |z, c)R(τ, c)]
∣∣
θold

(8)

∇φU(φ) ≈ −∇φEτ [DKL (qφ(z|τ, c)||p(z))R(τ, c)] (9)

where the expectations of τ and z are with respect to
pθold(τ |c) and qφ(z|τ, c), respectively.

Once we find pθ(τ |z, c) by jointly optimizing θ and φ, the
final stochastic policy function given a context input c is

pθ(τ |c) =

∫
pθ(τ |z, c)p(z)dz

where pθ(τ |c) can be approximated with a Monte Carlo
sampling i.e., pθ(τ |c) ≈ pθ(τ |ẑ, c) where ẑ ∼ p(z).

As (8) and (9) are computed using the samples from
pθold(τ |c) and qφ(z|τ, c), this particular form of maximizing
the lower bound approximation with stochastic samples to
approximate the expectation can be regarded as a stochastic
successive upper-bound minimization method [24].

The distribution of the anchor points τ given the context
input and a latent vector, pθ(τ |c, z), is defined by a Laplace
distribution over a set of anchoring points with a fixed
variance, i.e.,

pθ(τ |c, z) =
1

2b
exp

(
−|τ − µθ(c, z)|

b

)
(10)

where b is set to 1, µθ(c, z) is the output of the decoder
network, and z ∼ N (0, I). One can interpret (10) as an
infinite Laplace mixture model [7]. Figure 2 illustrates the
overall flow of the proposed method.

C. Overall Algorithm

In the training phase, we first sample a context input c̃
from p(c). Then, we sample z̃ from p(z) and sample a set
of anchoring points τ̃ from pθ(τ |z̃, c̃). Both encoder and
decoder networks are updated from the sampled τ̃ and the
corresponding rewards from rollouts.

To further aid the exploration, we sample the trajecto-
ries from two different distributions, one from the GRP
prior, p0(τ) and the GRP defined from the policy network,
pθ(τ |z, c). Similar to the ε-greedy method, we gradually
decrease the ratio of sampling from p0(τ). The overall
algorithm is summarized in Algorithm 1.

Algorithm 1 Deep latent policy gradient algorithm

1: θ, φ ∼ some parameter initialization distributions
2: step = 0 and Dstep = ∅
3: for each t do
4: Sample a context input c from p(c).
5: if rand < 0.5 exp(− step

2) then
6: Sample a trajectory τ from p0(τ).
7: else
8: Sample a trajectory τ from pθ(τ |c).
9: Rollout τ and compute the reward r = R(τ, c).

10: Dstep ← Dstep ∪ {τ, r, s}
11: if t mod 50 is 0 then
12: Dtrain ← Dstep−1 ∪Dstep

13: Update θ with ∇θU(θ) in (8) using Dtrain.
14: Update φ with ∇φU(φ) in (9) using Dtrain.
15: step = step + 1 and Dstep = ∅

IV. EXPERIMENTS

We first evaluate the sample efficiency of the proposed
method on two locomotion tasks using MuJoCo simulation
environments [25]. We compare our method with proximal
policy optimization (PPO) [26], deep deterministic policy
gradient (DDPG) [9] with parameter space noise [27], and
trajectory-based REINFORCE [14]1. Then, we apply the
proposed method to Snapbot on locomotion tasks of turn
left, go straight, and turn right. In particular, we demonstrate
that the curriculum learning of two-stage learning process
using two different reward functions enables Snapbot to
successfully learn locomotion skills with a moderate number
of rollouts.

A. Learning Locomotion Skills in Simulated Environments

We test the proposed DLPG, PPO [8], and trajectory-based
REINFORCE [14] in Open AI Gym and MuJoCo [25] using
two locomotion tasks: Half cheetah and Ant-v2. The reward
of Half cheetah is min(xd/dt, 1)− 0.1

∑6
i=1 a

2
i where xd is

the x-directional displacement, dt = 0.05 is a time step, and
ai is the i-th action. The reward of Ant-v2 is min(xd/dt, 1)−
0.0001(h2d+y2d)−0.0001

∑6
i=1 f

2
exti−0.1

∑6
i=1 a

2
i+1 where

hd is a heading displacement, yd is y-directional difference,
and fexti is i-th external force. Note that we slightly modify
the reward of Ant-v2 in that the original reward does not
consider heading displacements. The Ant-v2 task is more
difficult than the Half cheetah task since it has to go forward
while heading forward. Here, we do not use a context input.

To properly evaluate the sample complexity, we fix each
episode to rollout for 5 seconds with 20Hz and compute the
sum of rewards. For Half cheetah and Ant-v2, we collect 50
and 100 episodes to perform one update, respectively.

Both encoder and decoder networks of DLPG compose of
two hidden layers with 128 units with a softplus activation
function and a 32-dimensional latent space. We use 20
anchor points per each joint trajectory whose periods, T ,

1For PPO, we use the code that showed the best performance in the
OpenAI leaderboard on Ant-v2 available at https://github.com/
pat-coady/trpo. For DDPG, we use the code from OpenAI baselines
available at https://github.com/openai/baselines.

(a)

(b)

Fig. 3: Learning curves of the proposed and compared
methods on two different environments: (a) Half cheetah and
(b) Ant-v2 in MuJoCo.

Fig. 4: Snapshots of Ant-v2 per each second after 10 updates
(1, 000 episodes).

are 1/3 second and 1/2 second for Half cheetah and Ant-
v2, respectively. The length parameter of a kernel function
which governs the smoothness is set to 1

4T for both tasks.
The actor and critic networks of PPO have two hidden

layers where the number of the first layer units equals to the
dimension of observation multiplied by five and the number
of units in the second layer equals to the geometric mean of
the sizes of the first layer and the output layer. Both actor
and critic networks of DDPG have two hidden layers with
64 units with ReLU activations. We also implement REIN-
FORCE [14] with a GRP to model a trajectory distribution.
All configurations including a PID controller and a GRP are
identical to DLPG except the policy function is updated with
(5).

The learning curves2 of compared methods are shown
in Figure 3 where the proposed method outperforms all

2The sum of rewards are averaged over four different random seeds.

(a) (b)

Fig. 5: A localization system the track the position and heading of Snapbot.

compared methods in terms of sample efficiency with a big
margin. Specifically, when it comes to achieving 95% of the
maximum reward, the proposed method is 3.21 times faster
on Half cheetah and 17.18 times faster on Ant-v2. Figure
4 shows snapshots of Ant-v2 per each second with only
10 updates with 1, 000 episodes where we can observe that
the proposed method can effectively learn locomotion skills
with a small number of episodes. In particular, REINFORCE
shows poor performance on both tasks as it directly learns a
policy function with high-dimensional output, e.g., 160 for
Ant-v2, reflecting the benefits of a deep latent variable model.

We would like to emphasize the huge performance gap
between DLPG and REINFORCE. Intuitively speaking, RE-
INFORCE can be regarded as directly optimizing a gen-
erative model (policy) weighted by the advantage of each
sample and it is well-known that this naive approach of
directly maximizing the likelihood shows poor performances
when it comes to model a high dimensional space such
as images. On the other hand, implicit generative models
such as VAEs show superior performances on generating
high dimensional outputs using variational inference (VI) [7]
where the propose update rule also relies on VI which makes
it suitable for modeling high dimensional spaces.

B. Training Snapbot with DLPG

We apply DLPG for learning three basic locomotion skills
of turn left, go straight, and turn right using Snapbot in
Figure 5(a). We would like to emphasize that this is a
more complex problem to solve in that the policy function
should generate three different types of trajectories based on
a context input.

We generate two-second trajectories of each eight joints
with a GRP using ten anchor points from the policy network
and repeat the trajectory three times with 20Hz to compute
the reward. The number of anchor points is 80 for eight
servos (joints) with ten anchor points.

For localizing Snapbot, we install a camera on the ceiling
and estimate the current position and heading of Snapbot,
(xr, yr, θr), by detecting two circles in yellow and blue using
a Hough circle transform as shown in Figure 5(b).

We apply DLPG with two different scenarios by varying
the reward functions. In all scenarios, the context input c
is a three dimensional vector where c = [1, 0, 0] indicates
turn left, c = [0, 1, 0] indicates go straight, and c = [0, 0, 1]
indicates turn right.

Suppose [x0, y0, θ0] is the initial pose of Snapbot, dfwd,
dtotal, and ∆θ are a forward moving distance, total moving
distance, and rotated angle after three repeated cycles of a
two second trajectory, and ∆q is the maximum tracking error

αL αC αR doffset βL βC βR
Scratch 1/20 1 1/20 0 10 −1 −10
Curriculum-1 1 10 1 0 2 −1 −2
Curriculum-2 1/10 2 1/10 0 10 −1 10

TABLE I: Hyperparameters of the reward functions of dif-
ferent scenarios.

of the servo motors. We use a mm unit for displacements,
deg for rotations, and the position of a servo motor is
represented by a value between 0 and 1024.

We conduct the experiments with two different scenarios:
1) Learning from Scratch: The policy function is opti-

mized with a single-stage policy learning.
2) Curriculum Learning: The policy function is optimized

with a two-stage policy learning. In the first stage,
Snapbot is incentivized by simply going forward, and
in the second stage, high reward is given when Snapbot
moves accordingly to the given context input.

The total reward is a sum of four sub-rewards where each
sub-reward is defined differently with scenarios.

a) rfwd: Reward related to forward distance:

rfwd =


αL(dfwd − doffset), s = [1, 0, 0]

αC(dfwd − doffset), s = [0, 1, 0]

αR(dfwd − doffset), s = [0, 0, 1]

b) rrot: Reward related to rotation difference:

rrot =


βL∆θ, s = [1, 0, 0]

βC |∆θ|, s = [0, 1, 0]

βR∆θ, s = [0, 0, 1]

c) rmov: Total traversed distance:

rmov = 0.01dtotal

d) rtrack: Motor tracking error penalty:

rtrack = −10 max(0,∆q − 100)

where {αL, αC , αR, doffset, βL, βC , βR} is a set of hyperpa-
rameters. Hyperparameters of the different reward functions
are shown in Table I.

In all scenarios, the encoder network qφ(·) and decoder
network (policy function) pθ(·) both consist of a fully-
connect layer with two hidden layers where each hidden layer
has 256 units and tanh activations.

1) Learning From Scratch: In the Learning From Scratch
scenario, we randomly initialized a policy function and train
the policy using DLPG. The learning curves are shown in
Figure 6(a) where the running average of 50 rewards are
plotted for better visualization. Interestingly, we observe

(a)

(b)

(c)

Fig. 6: Smoothed learning curves of different configurations:
a) learning from scratch, b) curriculum learning (phase 1),
and c) curriculum learning (phase 2). The gray area indicates
the moving variance of the total reward.

that while the total reward is constantly increasing, only
the reward related to the rotation, rrot, increases whereas
the forward reward, rfwd, remains still. This is because
rotating motions are much easier to achieve compared to
forward-going motions in that forward-going motion requires
a synchronized motion such as a trot gait motion. This can
be regarded as an example of reward hacking [28] in that the
agent achieves rewards by performing suboptimal behaviors.

2) Curriculum Learning: From the observations of the
previous Learning From Scratch scenario, we design the
curriculum learning of applying a two-stage learning process
using two reward functions with different levels of difficulty.
In the first stage, a randomly initialized policy is trained with
a reward function focusing only on going forward.

Once forward going motion skills are well-trained as
shown in Figure 6(b), a second reward function that focusses
on both going straight and rotating left or right is used. While
the similar reward function is used in the learning from
scratch scenario in Section IV-B.1 and failed to properly
move forward, the final policy of the curriculum learning

(a)

(b)

(c)

Fig. 7: Snapshots of Snapbot of (a) turn left, (b) go straight,
and (c) turn right.

Fig. 8: Snapshots of go straight motions of Snapbot.

successfully generates go straight, turn left, or turn right
motions, accordingly.

Snapshots of three different motions are shown in Figure
7. When it turns right (Figure 7(c)), it shows interesting
behaviors of folding the rear-left leg to the center to locate
the rotational axis to its center of the body. Figure 8 shows
the bird’s-eye-views of Snapbot on the going straight mo-
tion. Snapbot first moves front-right and rear-left legs while
maintaining the end-tip of front-left and rear-right legs. Then,
it moves front-left and rear-right legs while maintaining
other legs. Interestingly, this resembles widely-used trot-gait
locomotion of a quadruped robot [29], [30].

Each rollout takes about 6 seconds and the total execution
times excluding a resetting phase of learning from the scratch
and curriculum learning scenarios take approximately 50
minutes and 110 minutes, respectively.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of learning locomo-
tion skills using a real physical robot and introduced deep
latent policy gradient (DLPG) where the policy function is
defined as a distribution over trajectories. We first showed the
sample efficiency of DLPG on locomotion tasks in simulated
environments. We argue that this sample efficiency came
from structured control utilizing trajectories and the deep
latent variable model which is suitable for optimizing high
dimensional generative models.

Then, we applied DLPG to learn basic locomotion skills
of turn left, go straight, and turn right using Snapbot. We
demonstrated that curriculum learning plays a significant role
in the successful training. We are currently implementing
automated initializing environments using a robotic arm
system where the initial prototype is presented in [31].

REFERENCES

[1] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty,” Annals of Mathe-
matics and Artificial Intelligence, vol. 76, no. 1-2, pp. 5–23, 2016.

[2] B. Yang, G. Wang, R. Calandra, D. Contreras, S. Levine, and K. Pister,
“Learning flexible and reusable locomotion primitives for a micro-
robot,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1904–
1911, 2018.

[3] C. Niehaus, T. Röfer, and T. Laue, “Gait optimization on a humanoid
robot using particle swarm optimization,” in Proc. of the Workshop on
Humanoid Soccer Robots, 2007, pp. 1–7.

[4] J. Kim, A. Alspach, and K. Yamane, “Snapbot: a reconfigurable legged
robot,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017.

[5] M. Yan, I. Frosio, S. Tyree, and J. Kautz, “Sim-to-real transfer
of accurate grasping with eye-in-hand observations and continuous
control,” in Advances in neural information processing systems (NIPS),
2017.

[6] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” arXiv
preprint arXiv:1710.06537, 2017.

[7] D. Kingma, “Variational inference & deep learning: A new
synthesis,” Ph.D. dissertation, 2017.

[8] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez,
Z. Wang, A. Eslami, M. Riedmiller et al., “Emergence of locomotion
behaviours in rich environments,” arXiv preprint arXiv:1707.02286,
2017.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[10] S. Chernova and M. Veloso, “An evolutionary approach to gait learning
for four-legged robots,” in International Conference on Intelligent
Robots and Systems, vol. 3. IEEE, 2004, pp. 2562–2567.

[11] R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisen-
roth, “Manifold gaussian processes for regression,” arXiv preprint
arXiv:1402.5876, 2014.

[12] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: a review,” Neural networks, vol. 21, no. 4, pp.
642–653, 2008.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[14] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in Proc.
of the International Conference on Intelligent Robots and Systems.
IEEE, 2006, pp. 2219–2225.

[15] R. Tedrake, T. W. Zhang, and H. S. Seung, “Stochastic policy
gradient reinforcement learning on a simple 3d biped,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
vol. 3. IEEE, 2004, pp. 2849–2854.

[16] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 41,
2017.

[17] K. S. Luck, J. Campbell, M. A. Jansen, D. M. Aukes, and H. B. Amor,
“From the lab to the desert: fast prototyping and learning of robot
locomotion,” Proceedings of Robotics: Science and Systems, 2017.

[18] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” Journal of Machine
Learning Research, vol. 11, no. Nov, pp. 3137–3181, 2010.

[19] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, and
S. Levine, “Combining model-based and model-free updates for
trajectory-centric reinforcement learning,” in Proc. of the International
Conference on Machine Learing, 2016, pp. 1050–1059.

[20] S. Choi, K. Lee, and S. Oh, “Gaussian random paths for real-
time motion planning,” in Proc. of the International Conference on
Intelligent Robots and Systems. IEEE, 2016, pp. 1456–1461.

[21] ——, “Robust learning from demonstration using leveraged Gaussian
processes and sparse constrained opimization,” in Proc. of the IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
May 2016.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[23] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value
function approximators,” in International Conference on Machine
Learning, 2015, pp. 1312–1320.

[24] M. Razaviyayn, M. Sanjabi, and Z.-Q. Luo, “A stochastic successive
minimization method for nonsmooth nonconvex optimization with ap-
plications to transceiver design in wireless communication networks,”
Mathematical Programming, vol. 157, no. 2, pp. 515–545, 2016.

[25] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine
for model-based control,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 5026–5033.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[27] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen,
T. Asfour, P. Abbeel, and M. Andrychowicz, “Parameter space noise
for exploration,” in International Conference on Learning and Repre-
sentation (ICLR), 2018.

[28] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete problems in ai safety,” arXiv preprint
arXiv:1606.06565, 2016.

[29] Y. Fukuoka, H. Kimura, and A. H. Cohen, “Adaptive dynamic walking
of a quadruped robot on irregular terrain based on biological concepts,”
The International Journal of Robotics Research, vol. 22, no. 3-4, pp.
187–202, 2003.

[30] N. Kohl and P. Stone, “Policy gradient reinforcement learning for
fast quadrupedal locomotion,” in Proc. of International Conference
on Robotics and Automation (ICRA), vol. 3. IEEE, 2004, pp. 2619–
2624.

[31] S. Ha, J. Kim, and K. Yamane, “Automated deep reinforcement
learning environment for hardware of a modular legged robot,” in
International Conference on Ubiquitous Robots, 2018.

