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Abstract

We describe a new instance-based learning algorithm
called the Boundary Forest (BF) algorithm, that can be
used for supervised and unsupervised learning. The al-
gorithm builds a forest of trees whose nodes store previ-
ously seen examples. It can be shown data points one at
a time and updates itself incrementally, hence it is nat-
urally online. Few instance-based algorithms have this
property while being simultaneously fast, which the BF
is. This is crucial for applications where one needs to
respond to input data in real time. The number of chil-
dren of each node is not set beforehand but obtained
from the training procedure, which makes the algorithm
very flexible with regards to what data manifolds it can
learn. We test its generalization performance and speed
on a range of benchmark datasets and detail in which
settings it outperforms the state of the art. Empirically
we find that training time scales as O(DNlog(N)) and
testing as O(Dlog(N)), where D is the dimensionality
and N the amount of data.

Introduction
The ability to learn from large numbers of examples, where
the examples themselves are often high-dimensional, is vi-
tal in many areas of machine learning. Clearly, the ability
to generalize from training examples to test queries is a key
feature that any learning algorithm must have, but there are
several other features that are also crucial in many practical
situations. In particular, we seek a learning algorithm that is:
(i) fast to train, (ii) fast to query, (iii) able to deal with arbi-
trary data distributions, and (iv) able to learn incrementally
in an online setting. Algorithms that satisfy all these prop-
erties, particularly (iv), are hard to come by, however they
are of immediate importance in problems such as real time
computer vision, robotic control, and more generally, prob-
lems which involve learning from and responding quickly to
streaming data.

We present here the Boundary Forest (BF) algorithm that
satisfies all these properties, and as a bonus, is transparent
and easy to implement. The data structure underlying the BF
algorithm is a collection of boundary trees (BTs). The nodes
in a BT each store a training example. The BT structure can
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be efficiently queried at query time and quickly modified
to incorporate new data points during training. The word
“boundary” in the name relates to its use in classification,
where most of the nodes in a BT will be near the boundary
between different classes. The method is nonparametric and
can learn arbitrarily shaped boundaries, as the tree structure
is determined from the data and not fixed a priori. The BF
algorithm is very flexible; in essentially the same form, it
can be used for classification, regression and nearest neigh-
bor retrieval problems.

Related work
There are several existing methods, including KD-trees
(Friedman, Bentley, and Finkel 1977), Geometric Near-
neighbor Access Trees (Brin 1995), and Nearest Vector trees
(Lejsek, Jónsson, and Amsaleg 2011) that build tree search
structures on large datasets (see (Samet 2006) for an exten-
sive bibliography). These algorithms typically need batch
access to the entire dataset before constructing their trees,
in which case they may outperform the BF, however we
are interested in an online setting. Two well known tree-
based algorithms that allow online insertion are cover trees
(Beygelzimer, Kakade, and Langford 2006) and ball trees.
The ball tree online insertion algorithm (Omohundro 1989)
is rather costly, requiring a volume minimizing step at each
addition. The cover tree, on the other, has a cheap online
insertion algorithm, and it comes with guarantees of query
time scaling as O(c6logN) where N is the amount of data
and c the so-called expansion constant, which is related to
the intrinsic dimensionality of the data. We will compare to
cover trees below. Note that c in fact depends on N as it is
defined as a worse case computation over the data set. It can
also diverge from adding a single point.

Tree-based methods can be divided into those that rely on
calculating metric distances between points to move down
the tree, and those that perform cheaper computations. Ex-
amples of the former include cover trees , ball trees and the
BF algorithm we present here. Examples of the latter include
random decision forests (RFs) and kd trees (Friedman, Bent-
ley, and Finkel 1977) . In cases where it is hard to find a
useful subset of informative features, metric-based methods
may give better results, otherwise it is of course preferable to
make decisions with fewer features as this makes traversing
the trees cheaper. Like other metric-based methods, the BF



can immediately be combined with random projections to
obtain speedup, as it is known by the Johnson-Lindenstrauss
lemma (Johnson and Lindenstrauss 1984) that the number of
projections needed to maintain metric distances only grows
as log(D) as the data dimensionality D grows. There has
been work on creating online versions of RFs (Kalal, Matas,
and Mikolajczyk 2009) and kd trees. In fact, kd trees typi-
cally scale no better than brute force in higher than 20 di-
mensions (Muja and Lowe 2009) , but multiple random kd
trees have been shown to overcome this difficulty. We will
compare to offline RFs and online random kd trees (the latter
implemented in the highly optimized library FLANN (Silpa-
Anan and Hartley 2008)) below.

The naive nearest neighbor algorithm is online, and there
is extensive work on trying to reduce the number of stored
nearest neighbors to reduce space and time requirements
(Aha, Kibler, and Albert 1991). As we will show later, we
can use some of these methods in our approach. In particu-
lar, for classification the Condensed Nearest Neighbor algo-
rithm (Wilson and Martinez 2000) only adds a point if the
previously seen points misclassify it. This allows for a com-
pression of the data and significantly accelerates learning,
and we use the same idea in our method. Previous algorithms
that generate a tree search structure would have a hard time
doing this, as they need enough data from the outset to build
the tree.

The Boundary Forest algorithm
A boundary forest is a collection of nT rooted trees. Each
tree consists of nodes representing training examples, with
edges between nodes created during training as described
below. The root node of each tree is the starting point for all
queries using that tree. Each tree is shown a training example
or queried at test time independently of the other trees; thus
one can trivially parallelize training and querying.

Each example has a D-dimensional real position x and a
“label” vector c(x) associated with it (for retrieval problems,
one can think of c(x) as being equal to x, as we will ex-
plain below). For example, if one is dealing with a 10-class
classification problem, we could associate a 10-dimensional
indicator vector c(x) with each point x.

One must specify a metric associated with the positions
x, which takes two data points x and y and outputs a real
number d(x, y). Note that in fact this “metric” can be any
real function, as we do not use any metric properties, but
for the purpose of this paper we always use a proper metric
function. Another parameter that one needs to specify is an
integer k which represents the maximum number of child
nodes connected to any node in the tree.

Given a query point y, and a boundary tree T , the algo-
rithm moves through the tree starting from the root node, and
recursively compares the distance to the query point from
the current node and from its children, moving to and re-
cursing at the child node that is closest to the query, unless
the current node is closest and has fewer children than k, in
which case it returns the current node. This greedy proce-
dure finds a “locally closest” example to the query, in the
sense that none of the children of the locally closest node
are closer. Note that the algorithm is not allowed to stop at

a point that already has k children, because it could poten-
tially get a new child if the current training point is added.
As we will show, having finite k can significantly improve
speed at low or negligible cost in performance.

Algorithm 1 The Boundary Tree (BT) algorithm
associated data
rooted tree - the ith node has position xi and label vector
c(xi)
ε the real threshold for comparison of label vectors
d the metric for comparing positions
dc the metric for comparing label vectors
k the maximum number of children per node (k > 1)

1: procedure BTQUERY(y)
2: input y the query position
3: output node v in Boundary Tree.
4: start initialize v at the root node v0
5: do
6: defineAv to be the set of nodes consisting of the chil-

dren of v in the Boundary Tree
7: if the number of children of v is smaller than k then

add v to Av end if
8: let vmin = argminw∈Av

d(w, x), i.e. the node in Av
that is closest to y (choose randomly from any ties)

9: if vmin = v then break end if
10: v ← vmin
11: end do
12: return v
13: end procedure

14: procedure BTTRAIN(y,c(y))
15: input
16: position y
17: label vector c(y)
18: start vmin = BOUNDARYTREEQUERY(y)
19: if dc(c(y), c(vmin)) > ε then
20: create node vnew in Boundary Tree with position y

and label c(y)
21: add edge from vmin to vnew
22: end if
23: end procedure

Once each tree has processed a query, one is left with a
set of nT locally closest nodes. What happens next depends
on the task at hand: if we are interested in retrieval, then
we take the closest of those nT locally closest nodes to y as
the approximate nearest neighbor. For regression, given the
positions xi of the locally closest nodes and their associated
vector c(xi) one must combine them to form an estimate for
c(y). Many options exist, but in this paper we use a Shepard
weighted average (Shepard 1968), where the weights are the
inverse distances, so that the estimate is

c(y) =

∑
i c(xi)/d(xi, y)∑
i 1/d(xi, y)

. (1)

For classification, as described above we use an indicator
function c(x) for the training points. Our answer is the class



Algorithm 2 The Boundary Forest (BF) algorithm
(see algorithm 1 for definition of subroutines called here)
associated data
Forest of nT BTs: BF = {BT1, . . . , BTnT

}
all BTs have same associated d, dc, ε, k
E the estimator function that takes in a position x, a set of
nT nodes vi consisting of positions and label vectors, and
outputs a label vector E(x, v1, . . . , vnT

)
initialization
start with nT training points, at positions y1, . . . , ynT

and
with respective labels c(y1), . . . , c(ynT

).
Call BFINITIALIZATION(y1, c(y1), . . . , ynT

, cnT
)

1: procedure BFQUERY(y)
2: input position y
3: start
4: for i from 1 to nT
5: vi = BTi.BTQUERY(y)
6: end for
7: return E(y, v1, . . . , vnT

)
8: end procedure

9: procedure BFTRAIN(y,c(y))
10: input
11: position y
12: label vector c(y)
13: start
14: for i from 1 to nT
15: call BTi.BTTRAIN(y, c(y))
16: end for
17: end procedure

18: procedure BFINITIALIZATION(y1,c(y1),. . .,ynT
,cnT

)
19: input
20: positions y1, . . . , ynT

21: label vectors c(y1), . . . , c(ynT
)

22: start
23: for i from 1 to nT
24: set position of root node of BTi to be yi, and its label

vector c(yi)
25: for j from 1 to nT
26: if i 6= j then call BTi.BTTRAIN(yj , c(yj))
27: end for
28: end for
29: end procedure

corresponding to the coordinate with the largest value from
c(y); we again use Shepard’s method to determine c(y).
Thus, for a three-class problem where the computed c(y)
was [0.5, 0.3, 0.2], we would return the first class as the es-
timate. For regression, the output of the BF is simply the
the Shepard weighted average of the locally closest nodes
xi output by each tree. Finally, for retrieval we take the node
x∗ of the locally closest nodes xi that is closest to the query
y.

Given a training example with position z and “label” vec-
tor c(z), we first query each tree in the forest using z as
we just described. Each tree independently outputs a locally
closest node xi and decides whether a new node should
be created with associated position z and label c(z) and
connected by an edge to xi. The decision depends once
again on the task: for classification, the node is created if
c(xi) 6= c(z). For regression, one has to define a threshold
ε and create the node if |(c(xi) − c(z)| > ε. Intuitively, the
example is added to a tree if and only if the current tree’s
prediction of the label was wrong and needs to be corrected.
For retrieval, we add all examples to the trees.

If all BTs in a BF were to follow the exact same proce-
dure, they would all be the same. To decorrelate the trees,
the simplest procedure is to give them each a different root.
ConsiderBF = {BT1, . . . , BTnT

}, a BF of nT trees. What
we do in practice is take the first nT points, make point i the
root node of BTi, and use as the other nT − 1 initial train-
ing points for each BTi a random shuffling of the remaining
nT − 1 nodes. We emphasize that after the first nT training
nodes (which are a very small fraction of the examples) the
algorithm is strictly online.

For the algorithm just described, we find empirically that
query time scales as a power law in the amount of data N
with a power α smaller than 2, which implies that train-
ing time scales as N1+α (since training time is the integral
of query time over N ). We can get much better scaling by
adding a simple change: we set a maximum k of the number
of children a node in the BF can have. The algorithm can-
not stop at a node with k children. With this change, query
time scales as log(N) and training time as Nlog(N), and
if k is large enough performance is not negatively impacted.
The memory scales linearly with the number of nodes added,
which is linear in the amount of dataN for retrieval, and typ-
ically sublinear for classification or regression as points are
only added if misclassified. We only store pointers to data
in each tree, thus the main space requirement comes from a
single copy of each stored data point and does not grow with
nT .

The BF algorithm has a very appealing property which we
call immediate one-shot learning: if it is shown a training
example and immediately afterwards queried at that point, it
will get the answer right. In practice, we find that the algo-
rithm gets zero or a very small error on the training set after
one pass through it (less than 1% for all data sets below).

A pseudo-code summary of the algorithm for building
Boundary Trees and Boundary Forests is given in Algo-
rithms 1 and 2 respectively.



Scaling properties
To study the scaling properties of the BF algorithm, we now
focus on its use for retrieval. Consider examples drawn uni-
formly from within a hypercube in D dimensions. The qual-
itative results we will discuss are general: we tested a mix-
ture of Gaussians of arbitrary size and orientation, and real
datasets such as MNIST treated as a retrieval problem, and
obtained the same picture. We will show results for a uni-
formly sampled hypercube and unlabeled MNIST. Note that
we interpret raw pixel intensity values as vectors for MNIST
without any preprocessing, and throughout this paper the
Euclidean metric is used for all data sets. We will be present-
ing scaling fits to the different lines, ruling out one scaling
law over another. In those cases, our procedure was to take
the first half of the data points, fit them separately to one
scaling law and to the one we are trying to rule out, and look
at the rms error over the whole line for both fits. The fits we
present have rms error at least 5 times smaller than the ruled
out fits.

(a) (b)

Figure 1: Retrieval accuracy for a BF with k = 50 and
nT = 10 or 50 receiving data from (a) a uniformly sampled
100 dimensional hypercube, (b) MNIST. The x-axis gives
the number of training examples N . The y-axis shows the
fraction f such that the BF has 99% chance of outputting an
example that is within the fN closest training examples to
the query. Shown are a few plots for different values of the
number of trees nT , and the maximum number of children
k per node, in the BF . The retrieval accuracy improves as
a power law with N , with a power that depends on the data
set.

Denote by N the number of training examples shown to
a BF algorithm using nT trees and a maximum number of
children per node k. Recall that for retrieval on a query point
y, the BF algorithm returns a training example x∗ which is
the closest of the locally closest nodes from each tree to the
query. To assess the performance, we take all training exam-
ples, order them according to their distance from y, and ask
where x∗ falls in this ordering. We say x∗ is in the f best
fraction if it is among the fN closest points to y. In Fig. 1
we show the fraction f obtained if we require 99% proba-
bility that x∗ is within the fN closest examples to y. We
see that the fraction f approaches zero as a power law as the
number of training examples N increases.

Next we consider the query time of the BF as a function
of the number of examples N it has seen so far. Note that
training and query time are not independent: since train-
ing involves a query of each BT in the BF, followed by
adding the node to the BT which takes negligible time, train-
ing time is the integral of query time over N . In Fig. 2 we

(a) (b)

Figure 2: Query time per tree of a BF with ten trees after hav-
ing been exposed to N examples, in units of metric compar-
isons between the query and nodes per tree, for two datasets:
(a) data uniformly distributed in the 100 dimensional hyper-
cube; (b) MNIST treated as a retrieval problem. We observe
that once the root node has k children, the scaling changes
from being power law to logarithmic. Note that where we
indicate logarithmic scaling, this scaling is only valid after
the line departs from the k = ∞ line. The power law when
k = ∞ depends on the data set. For MNIST, k > 60 is
equivalent to k =∞, because no node hits the k = 60 limit.
If the data set were larger, for any finite k one would eventu-
ally see the behavior switch from power law to logarithmic.
The results vary very little for different BFs obtained using
shuffled data.

plot the query time (measured in numbers of metric com-
parisons per tree, as this is the computational bottleneck for
the BF algorithm) as a function of N , for examples drawn
randomly from the 100-dimensional hypercube and for un-
labeled MNIST. What we observe is that if k = ∞, query
time scales sublinearly in N , with a power that depends on
the dataset, but smaller than 0.5. However, for finite k, the
scaling is initially sublinear but then it switches to logarith-
mic. This switch happens around the time when nodes in the
BT start appearing with the number of children equal to k.

To understand what is going on, we consider an artificial
situation where all points in the space are equidistant, which
removes any from the problem. In this case, we once again
have a root node where we start, and we will go from a node
to one of its children recursively until we stop, at which point
we connect a new node to the node we stopped at. The rule
for traversal is as follows: if a node has q children, then with
probability 1/(q+1) we stop at this node and connect a new
node to it, while with probability q/(q+1) we go down one
of its children, all with equal probability 1/(q + 1).

The query time for this artificial tree is (2N)0.5 for large
N (plus subleading corrections), as shown in Fig. 3 (a). To
understand why, consider the root node. If it has q − 1 chil-
dren, the expected time to add a new child is q. Therefore
the expected number of steps for the root node to have q
children scales as q2/2. Thus the number of children of the
root node, and the number of metric comparisons made at
the root grows as

√
2N (set q =

√
2N ). We find that nu-

merically the number of metric comparisons scales around
1.02
√
2N , which indicates that the metric comparisons to

the root’s children is the main computational cost. The rea-
son is that the root’s children have ∼ N1/4 children, as can
be seen by repeating the previous scaling argument. If, on
the other hand, we set k to be finite, initially the tree will



Figure 3: Scaling of the query time of the artificial BT de-
scribed in the text, where the BF connects a training exam-
ple to a node or goes down to one of its children all with
equal probability. (a) shows the the query time of the artifi-
cial BT as a function of the amount of training examples N ,
for different values of the maximum number of children k.
We see that for finite k, the scaling of query time is initially
N0.5 but eventually switches to logarithmic, at a time that
grows with increasing k. Indeed, this time coincides with
the point where the root has the maximum number k of chil-
dren. In (b) the power law α of the scaling of query time
for k = ∞, which then scales as Nα, is shown as a func-
tion of data dimensionality D, for a BT trained on examples
drawn uniformly from the D-dimensional unit hypercube.
As D →∞, α→ 0.5. We can understand the limit D →∞
by realizing in that limit the BT behaves like the artificial
BT.

behave as though k was infinite, until the root node has k
children, at which point it builds a tree where the query time
grows logarithmically, as one would expect of an approxi-
mately balanced tree with k children or less per node.

In data sets with a metric, we find the power law when
k = ∞ to be smaller than 0.5. Intuitively, this occurs be-
cause new children of the root must be closer to the root than
any of its other children, therefore they reduce the probabil-
ity that further query points are closer to the root than its
children. As the dimensionality D increases, this effect di-
minishes, as new points have increasingly small inner prod-
ucts with each other, and if all points were orthogonal you do
not see this bias. In Fig. 3(b) we plot the power α in the scal-
ing O(Nα) of the query time of a BT trained on data drawn
uniformly from the D-dimensional hypercube, and find that
as D increases, α approaches 0.5 from below, which is con-
sistent with the phenomenon just described.

We now compare to the cover tree (CT) algorithm 1. For
fair comparison, we train the CT adding the points using
online insertion, and when querying we use the CT as an ap-
proximate nearest neighbor (ANN) algorithm (to our knowl-
edge, this version of the CT which is defined in (Beygelz-
imer, Kakade, and Langford 2006) has not been studied
previously). In the ANN incarnation of CT, one has to de-
fine a parameter ε, such that when queried with a point
p the CT outputs a point q it was trained on such that
d(p, q) ≤ (1 + ε)dmin(p) where dmin(p) is the distance
to the closest point to p that the CT was trained on. We set

1We adapted the implementation of (Crane, D.N. 2011) - which
was the only implementation we could find of the online version of
CT - to handle approximate nearest neighbor search.

ε = 10 (ε has little effect on performance or speed: see Ap-
pendix for results with ε = 0.1).

Another important parameter is the base parameter b. It
is set to 2 in the original proofs, however the original cre-
ators suggest that a value smaller than 2 empirically leads
to better results, and their publicly available code has as a
default the value 1.3, which is the value we use. Changing
this value can decrease training time at the cost of increas-
ing testing time, however the scaling with amount of data re-
mains qualitatively the same (see Appendix for results with
b = 1.1). Note that the cover tree algorithm is not scale in-
variant, while the BF is: if all the features in the data set
are rescaled by the same parameter, the BF will do the exact
same thing, which is not true of the CT. Also, for the CT
the metric must satisfy the triangle inequality, and it is not
obvious if it is parallelizable.

In Fig. 4 we train a BF with nT = 50 and k = 50, and a
CT with ε = 10 and b = 1.3 on uniform random data drawn
from the 100-dimensional hypercube. We find for this exam-
ple that training scales quadratically, and querying linearly
with the number of points N for the CT , while they scale
as Nlog(N) and log(N) for the BF as seen before. While
for the BF training time is the integral over query time, for
CT insertion and querying are different. We find that the CT
scaling is worse than the BF scaling.

Figure 4: Scaling of (a) training time and (b) query time to-
tal number of metric comparisons, for a BF with nT = 50
and k = 50 and a CT with ε = 10 and b = 1.3, for uni-
form random data in a 100-dimensional hypercube. The top
line represents the CT, and the bottom line the BF. The CT
lines were fit to a quadratic aN2 + bN + c in (a) and a
linear line aN in (b) respectively, while the BF lines fit to
a(Nlog(N)−N) in (a) and alog(N)+b in (b). For all lines
the fits were obtained using data up to N = 106.

Numerical results
The main claim we substantiate in this section is that the
BF as a classification or regression algorithm has accuracy
comparable to the K-nearest neighbors (K-NN) algorithm
on real datasets, with a fraction of the computational time,
while maintaining the desirable property of learning incre-
mentally. Since the traversal of the BF is dictated by the
metric, the algorithm relies on metric comparisons being in-
formative. Thus, if certain features are much more important
than others, BF, like other metric-based methods will per-
form poorly, unless one can identify or learn a good metric.

We compare to the highly optimized FLANN (Muja and
Lowe 2009) implementation of multiple random kd trees (R-
kd). This algorithm gave the best performance of the ones



available in FLANN. We found 4 kd trees gave the best re-
sults. One has to set an upper limit to the number of points
the kd trees are allowed to visit, which we set to 10% of the
training points, a number which led the R-kd to give good
performance compared to 1 − NN . Note that R-kd is not
parallelizable: the results from each tree at each step inform
how to move in the others.

The datasets we discuss in this section are available at
the LIBSVM(Chang and Lin 2008) repository. Note that for
MNIST, we use a permutation-invariant metric based on raw
pixel intensities (for easy comparison with other algorithms)
even though other metrics could be devised which give bet-
ter generalization performance.2 For the BF we set nT = 50,
k = 50 for all experiments, and for the RF we use 50 trees
and 50 features (see Appendix for other choices of param-
eters). We use a laptop with a 2.3 GHz Intel I7 CPU with
16GB RAM running Mac OS 10.8.5.

We find that the BF has similar accuracy to k−NN with
a computational cost that scales better, and also the BF is
faster than the cover tree, and faster to query than random-
ized kd trees in most cases (for a CT with ε = 0.1 shown
in appendix, CT becomes faster to train but query time be-
comes even slower). The results for classification are shown
in tables A-4 and A-5.

We have also studied the regret, i.e. how much accuracy
one loses being online over being offline. In the offline BF
each tree gets an independently reshuffled version of the
data. Regret is small for all data sets tested, less than 10% of
the error rate.

The training and testing times for the classification bench-
marks are shown in Table A-4, and the error rates in Table
A-5. For more results, We find that indeed BF has similar
error rates to k-NN, and the sum of training and testing time
is a fraction of that for naive k-NN. We emphasize that the
main advantage of BFs is the ability to quickly train on and
respond to arbitrarily large numbers of examples (because
of logarithmic scaling) as would be obtained in an online
streaming scenario. To our knowledge, these properties are
unique to BFs as compared with other approximate nearest
neighbor schemes.

We also find that for some datasets the offline Random
Forest classifier has a higher error rate, and the total training
and testing time is higher. Note also that the offline Random
Forest needs to be retrained fully if we change the amount of
data. On the other hand, there are several data sets for which
RFs out-perform BFs, namely those for which it is possible
to identify informative sub-sets of features. Furthermore, we
generally find that training is faster for BFs than RFs be-
cause BFs do not have to solve a complicated optimization
problem, but at test time RFs are faster than BFs because
computing answers to a small number of decision tree ques-
tions is faster than computing distances. On the other hand,
online R-kd is faster to train since it only does single fea-
ture comparisons at each node in the trees, however since it
uses less informative decisions than metric comparisons it
ends up searching a large portion of the previously seen data

2A simple HOG metric gives the BF a 1.1% error rate on
MNIST.

(a) Data BF BF-4 R-kd CT RF
dna 0.34 0.15 0.042 0.32 3.64
letter 1.16 0.80 0.12 1.37 7.5
mnist 103.9 37.1 5.67 168.4 310
pendigits 0.34 0.42 0.059 0.004 4.7
protein 35.47 13.81 0.90 44.4 191
seismic 48.59 16.30 1.86 176.1 2830

(b) BF BF-4 1-NN 3-NN R-kd CT RF
0.34 0.15 3.75 4.23 0.050 0.25 0.025
1.16 0.80 5.5 6.4 1.67 0.91 0.11
23.9 8.7 2900 3200 89.2 417.6 0.3
0.34 0.42 2.1 2.4 0.75 0.022 0.03

35.47 13.8 380 404 11.5 51.4 625
16.20 5.2 433 485 65.7 172.5 1.32

Table 1: (a) Total training time and (b) total testing time, in
seconds, for classification benchmarks, single core. In (b)
the datasets are in the same order as in (a). BF has nT = 50,
k = 50. For 1−NN , 3−NN andRF we use the Weka(Hall
et al. 2009) implementation. RF has 50 trees, 50 features per
node. BF-4 is the same BF with 4 cores. Rkd has 4 kd trees
and can visit at most 10% of previously seen examples, and
points are added online. CT has ε = 10 and b = 1.3, and
uses online insertion. See Appendix for 10-NN, RF with 100
trees and

√
D features per node (recommended in (Breiman

2001)), andCT with b = 1.1, ε = 0.1. The datasets are from
the LIBSVM repository(Chang and Lin 2008).

Data BF OBF 1-NN 3-NN RF R-kd CT
dna 14.3 13.1 25.0 23.9 5.7 22.5 25.55
letter 5.4 5.5 5.5 5.4 7.6 5.5 5.6
mnist 2.24 2.6 3.08 2.8 3.2 3.08 2.99
pendigits 2.62 2.60 2.26 2.2 5.2 2.26 2.8
protein 44.2 41.7 52.7 50.7 32.8 53.6 52.0
seismic 40.6 39.6 34.6 30.7 23.7 30.8 38.9

Table 2: Error rate for classification benchmarks. The values
represent percentages. The offline BF algorithm does only
marginally better on average than the BF. The random kd
trees and cover tree are about the same accuracy as 1−NN .

points, which makes it slower to test. Note that our main
point was to compare to algorithms that do metric compar-
isons, but these comparisons are informative as well.

Conclusion and future work
We have described and studied a novel online learning algo-
rithm with empirical Nlog(N) training and log(N) query-
ing scaling with the amount of data N , and similar perfor-
mance to k −NN .

The speed of this algorithm makes it appropriate for ap-
plications such as real-time machine learning, and metric
learning(Weinberger, Blitzer, and Saul 2006). Interesting fu-
ture avenues would include: combining the BF with random
projections, analyzing speedup and impact on performance;
testing a real time tracking scenario, possibly first passing
the raw pixels through a feature extractor.
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Supplementary Information to “The
Boundary Forest Algorithm for online
supervised and unsupervised learning”

Datasets information

Data NC D Ntrain Ntest

dna 3 180 1,400 1,186
letter 26 16 10,500 5,000
mnist 10 784 60,00 168.4
pendigits 10 16 7,494 3,498
protein 3 357 14,895 6,621
seismic 3 50 78,823 19,705

Table A-1: Information about the datasets in the main text.
NC is the number of classes, D the number of features,
Ntrain the number of training examples, andNtest the num-
ber of test examples. All come from the LIBSVM reposi-
tory(Chang and Lin 2008).

Additional results for k −NN and RF

(a) Data RF − 100

dna 1.023
letter 6.2
mnist 365
pendigits 2.9
protein 48.8
seismic 332

(b) Data RF − 100 10−NN

dna 0.03 2.45
letter 0.44 3.9
mnist 0.76 182
pendigits 0.09 1.8
protein 0.56 217
seismic 2.1 18.4

Table A-2: (a) Total training time and (b) total testing time,
in seconds, for classification benchmarks, single core.RF−
100 has 100 trees, and number of features per node equal
to [
√
D], i.e. the number of features of the dataset rounded

to the closest integer (the value recommended by (Breiman
2001). The datasets are from the LIBSVM repository(Chang
and Lin 2008).

Data RF − 100 10−NN

dna 6.3 17.3
letter 5.4 7.54
mnist 3.15 3.26
pendigits 3.6 2.7
protein 32.7 46
seismic 26.3 36

Table A-3: Error rate for classification benchmarks. The val-
ues represent percentages.

Additional results for CT

(a) Data CT (1.1, 10) CT (1.3, 0.1) CT (1.1, 0.1)

dna 0.08 0.126 0.085
letter 0.28 0.23 0.26
mnist 18.84 177.75 18.34
pendigits 0.0037 0.0029 0.0029
protein 23.89 44.81 23.22
seismic 115.22 191.09 105.52

(b) Data CT (1.1, 10) CT (1.3, 0.1) CT (1.1, 0.1)

dna 0.31 0.297 0.53
letter 1.01 0.85 0.92
mnist 369.9 430.8 398.5
pendigits 0.007 0.005 0.005
protein 56.45 57.21 73.34
seismic 227.8 208.6 256.6

Table A-4: (a) Total training time and (b) total testing
time, in seconds, for classification benchmarks, single core.
CT (b, ε) is a cover tree with base parameter b and approx-
imate nearest neighbor parameter ε (see main text). The
datasets are from the LIBSVM repository(Chang and Lin
2008).

Data CT (1.1, 10) CT (1.3, 0.1) CT (1.1, 0.1)

dna 24.87 25.46 24.7
letter 5.92 5.44 5.44
mnist 2.97 3.09 3.09
pendigits 90.4 90.39 90.39
protein 52.23 52.74 52.74
seismic 38.84 40.75 40.76

Table A-5: Error rate for classification benchmarks. The val-
ues represent percentages.


