
“Sweet-Spot”: Using Spatiotemporal Data to Discover and Predict 
Shots in Tennis

Xinyu Wei1, Patrick Lucey2, Stuart Morgan3 and Sridha Sridharan1

Queensland University of  Technology1, Disney Research Pittsburgh2, Australian Institute of  Sport3 
Email: xinyu.wei@connect.qut.edu.au, patrick.lucey@disneyresearch.com, stuart.morgan@ausport.gov.au, s.sridharan@qut.edu.au 

Abstract

In this paper, we use ball and player tracking data from “Hawk-Eye” to discover unique player styles and 
predict within-point events. We move beyond current analysis that only incorporates coarse match 
statistics (i.e. serves, winners, number of shots, volleys) and use spatial and temporal information which 
better characterizes the tactics and tendencies of each player.  Using a probabilistic graphical model, we 
are able to model player behaviors which enables us to: 1) find the factors such as location and speed of 
the incoming shot which are most conducive to a player hitting a winner (i.e. “sweet-spot”) or cause an 
error, and 2) do “live in-point” prediction - based on the shots being played during a rally we estimate 
the probability of the outcome of the next shot (e.g. winner, continuation or error). As player behavior 
depends on the opponent, we use model adaptation to enhance our prediction. We show the utility of 
our approach by analyzing the play of  Djokovic, Nadal and Federer at the 2012 Australian Tennis Open.

1   Introduction

In Rafael Nadal’s recent biography [1], he candidly describes his strategy against Roger Federer as, “If I have to  hit the 
ball twenty times to Federer’s backhand, I’ll hit it twenty times, not nineteen. If I have to wait for the rally to stretch  to ten shots or 
twelve or fifteen to bide my chance to hit a winner, I’ll wait. There are moments when you have a chance to go for a winning drive, but you 
have a 70% chance of succeeding; you wait five shots more and your odds will have improved to 85%... That’s the plan. It’s not a 
complicated plan. You  can’t  even call it a tactic, it’s so simple. I play the shot  that’s easiest for me and he plays the one that’s harder for 
him - I mean, my left-handed drive against his right-handed backhand. It’s just a question of  sticking with it...”  

Despite the simplicity of his tactic, what is compelling is Nadal’s probabilistic mindset of maximizing the chance of 
a winner or waiting to force an error. Motivated by this insight, in this paper, we use ball and player tracking 
information from Hawk-Eye [2] to model a player’s behavior based on a myriad of spatiotemporal variables (e.g. 
shot location, speed, angle, number of shots, feet location). We use a probabilistic graphical model to determine the 
combination of variables which maximizes a player’s chance of hitting a winner from the incoming shot. We call 
this analysis “sweet-spot”, and we also use it find the combination of variables which frequently lead to an error - a 
method which can be used to highlight a player’s tactics and also their strengths and weaknesses.

Our work differs from current tools used to analyze tennis matches such as IBM’s Slamtracker [3], which only 
incorporate coarse match statistics (i.e. serves, winners, number of shots, volleys), and typically lack rich spatial and 
temporal information. This is despite that fact that ball and player tracking technology has become commonplace at 
major tennis tournaments to aid in officiating and broadcast visualization. Our approach also allows us to do live 
“in-point” prediction - where given the previous shots during a rally we can predict the outcome of the current 
shot. As tennis is an adversarial game, the behavior of a player is heavily conditioned on the behavior of the 
opponent. To model specific opponent tendencies, we employ a model adaptation technique which greatly improves 
the predictive power.

2   Methodology

Since Intille and Bobick’s seminal work on football play recognition over a decade ago [4], numerous efforts have 
concentrated on using probabilistic methods to model spatiotemporal data to aid in the analysis and prediction of 
plays in sport [5-8]. Even though notable, the lack of tracking data to adequately train models has limited its 
widespread use. Recently however, the release of STATS SportsVU data for basketball has enabled interesting 
analysis of shots and rebounding [9-10]. For soccer, researchers have characterized team behaviors in the English 
Premier League using ball-motion information across an entire season using OPTA data [11]. 
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In this paper, we use a Bayesian Network (BN) framework to model player behavior using ball and player tracking 
information.  BN’s are a type of probabilistic model that allow  us to construct a single compact model that captures 
the varying properties of a rally.  To facilitate this work, we used Hawk-Eye [2] data from the Men’s draw  of the 
2012 Australian Open. The Hawk-Eye data contains ball trajectories  and player foot position over time. An example 
of the data is illustrated in Figure 1. This rich set of data allows us to see which variables (or combination of 
variables) increase the likelihood a player will hit a winner or commit an error1  - which in essence suggests a player’s 
strengths and weaknesses. The genesis of a player’s behavior can be described by a number of underlying variables, 
such as: shot speed, shot location, player position, opposition position, number of shots in rally and identity or rank 
of opposition (e.g. Federer, or top 10 rank). Except for the identity of the opponent, all of these factors or variables 
vary temporally which makes this problem an ideal candidate for a BN. Additional factors such as: set number/
length of match, environment conditions (e.g. hot, humid, cold or windy), specific match context (e.g. game/set/
match/break point), court surface (e.g. grass, hard-court, clay) would no doubt enhance the predictive power of our 
model, however, as we increase the number of variables the demands on the amount of training data required to 
train our BN exponentially increases. For this work, we specifically modeled the winners and errors associated with 
the top 3 seeds at the tournament (Novak Djokovic, Rafael Nadal and Roger Federer) as they had the most data and 
it also allowed us compare the different styles of play. The respective opponents and outcomes of the matches used 
in this study are shown in Table 1. 
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1 Due to the ambiguity in differentiating between forced and unforced errors from the data directly, we label both these errors into a single 
category. We found due to the different characteristics of  these errors - two discriminant modes for each error type resulted. 

Player A foot 
movement

Player B 
serves

Player B foot
movement 

Impact point of
incoming shot

Winner

Figure 1. The Hawkeye data contains both the ball trajectory information as well as the player feet movement 
information. In this example, player B serves the ball to player A who then hits a winner back to player B. 

Player Stat RoundRoundRoundRoundRoundRoundRoundPlayer Stat

1st 2nd 3rd 4th Qtr Semi Final

Djokovic Opp Lorenzi Giraldo Mahut Hewitt Ferrer Murray NadalDjokovic

Score 6-2,6-0,6-0 6-3,6-2,6-1 6-0,6-2,6-1 6-1,6-3,4-6,6-3 6-4,7-6,6-1 6-3,3-6,6-7,6-1,7-5 5-7,6-4,6-2,6-7,7-5

Nadal Opp Kuznetsov Haas Lacko Lopez Berdych Federer DjokovicNadal

Score 6-4,6-1,6-1 6-4,6-3,6-4 6-2,6-4,6-2 6-4,6-4,6-2 6-7,7-6,6-4,6-3 6-7,6-2,7-6,6-4 7-5,4-6,2-6,7-6,5-7

Federer Opp Kudryavtsev Beck Karlovic Tomic Del Potro Nadal -Federer

Score 7-5,6-2,6-2 walkover 7-6,7-5,6-3 6-4,6-2,6-2 6-4,6-3,6-2 7-6,2-6,6-7,4-6 -

Table 1. Shows the opponent and outcome for the Djokovic, Nadal and Federer at the 2012 Australian Open. 



3   Modeling Player Behavior

To model player behavior we first have to construct an accurate model of how a point is played. At a coarse level, a 
point consists of three game states: 1) the initial state (i.e. the serve), 2) the middle state (i.e. the rally which can 
consist of many shots), and 3) the end state. Given that there was no ace or double fault, the end-point state 
consists of either player A or player B hitting a winner or an error. A depiction of our point model is given in 
Figure 2(a), which shows that we have six possible point-states after the serve {z5,...,z10} and the transition 
probabilities between different states is given by ai,j. Given that our observation or feature vector xT contains 
information about the incoming shot (i.e. location, speed, angle, player’s feet position, number of shots in rally etc.), 
and we know the previous state zT-1 (i.e. player A or player B returned the ball), using our model topology shown in 
Figure 2(b), we can infer the probability of next state zT being a returning shot, winner or error by using Bayes’ law 
as                                                                          . This expression describes a dynamic Bayesian Network (DBN), 
where the next state is conditioned on the previous state, but seeing that there is only one possible state for the 
returning shot and we observe this (otherwise the point is over), we can simplify this into a Bayesian Network (BN),  
which yields: 

                                                        (1)                            

Depending on the player returning the shot, we infer the probability of {zT5, zT7, zT8}for player A and {zT6, zT9, 
zT10} for player B - and our prediction is the state, zTi, with the highest probability.  To learn a model for each player, 
we first created a shot database where each shot was labeled as either an ace, fault, continuing shot, ground stroke 
winner or ground stroke error. Given these labeled shots, we then learnt probability distribution functions (pdf ’s) 
for each variable (e.g. shot location, speed, angle, position, feet position, number of shots), which yielded a multi-
dimensional pdf for each shot type for each player. To obtain a continuous distribution for each variable 𝑥, we 
represented the probabilities as a Gaussian Mixture Model (GMM), where                                                     given 
that the GMM has the form:

                                               (2)                 

where 𝜇 is the mean, ∑ is the covariance and 𝜽 = {(w1; 𝜇1, ∑1), ... , (wM; 𝜇M, ∑M)}are the parameters of the GMM 

for M mixtures. The parameters of 𝜽 are learnt using the Expectation Maximization (EM) algorithm. It is important 
to note these parameters as they allow us to adapt to specific opponent behavior, which we describe in Section 5.  

In this paper, we are only concerned with shots within the rally (i.e. all non-serve behavior). The pdf ’s for the 
incoming shot preceding winners are shown in Figure 3. Before, we analyze these plots it is wise to revisit Figure 1 
to get a better understanding of what the different variables mean. Given the opponent has hit the ball to the player 
of interest - which we call the incoming shot - the shot impact location refers to the (x, y) location of where the ball 
lands prior to the player hitting the ball. The speed and angle of the incoming shot are also quantified. The feet 
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a point essentially consists of three game states: 1) the ini-
tial state (i.e. the serve), 2) the middle state (i.e. the rally
which can consist of many shots), and 3) the end state (i.e.
the point either ends via an ace, double fault, winner or
force/unforced error). A typical DBN consists of two parts:
an initial Bayesian network (BN) to model the initial state
and a 2TBN (2-time slice BN) to model the rally. In our
point model, we used a 2TBN to represent the rally com-
ponent and a BN for the service component of a point. A
depiction of this model is shown in Figure 2.

To learn a model for each player, we first create a shot
database where each shot is labeled as either ace, fault, con-
tinuing shot, winner or error. Given these labeled shots, we
can then learn probability distribution functions (pdfs) for
each factor (e.g. shot location, speed, angle, position etc.),
which yields a multi-dimensional pdf for each shot type for
each player. A Gaussian Mixture Model (GMM) is used to
calculate the pdf of each of these factors and the parameters
are calculated using the Expectation-Maximization (EM)
algorithm. Maybe equation of GMM here, followed by an
inference equation

For our work we used the BayesNet Toolbox [12] for
model estimation and inference. A visualization of the pdfs
of the different factors of the winners for the top 3 play-
ers is shown in Figure 3. As we can see from this figure,
each player has different tendencies. Specifically, Federers
winners tend to be hit from wider on both the forehand and
backhand compared to the others, and he also tends to be
further behind the baseline (need to check this?). From this
model, we can see the combination of factors which leads
most likely to a player hitting a winner, unforced error and
ace (or their sweet spot). This is shown in Figure 4.

p(s) (5)
↵1,2 (6)
↵2,3 (7)
↵2,4 (8)
↵1,4 (9)
↵1,5 (10)
↵2,5 (11)
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↵6,7 (13)
↵7,8 (14)
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an initial Bayesian network (BN) to model the initial state
and a 2TBN (2-time slice BN) to model the rally. In our
point model, we used a 2TBN to represent the rally com-
ponent and a BN for the service component of a point. A
depiction of this model is shown in Figure 2.

To learn a model for each player, we first create a shot
database where each shot is labeled as either ace, fault, con-
tinuing shot, winner or error. Given these labeled shots, we
can then learn probability distribution functions (pdfs) for
each factor (e.g. shot location, speed, angle, position etc.),
which yields a multi-dimensional pdf for each shot type for
each player. A Gaussian Mixture Model (GMM) is used to
calculate the pdf of each of these factors and the parameters
are calculated using the Expectation-Maximization (EM)
algorithm. Maybe equation of GMM here, followed by an
inference equation

For our work we used the BayesNet Toolbox [12] for
model estimation and inference. A visualization of the pdfs
of the different factors of the winners for the top 3 play-
ers is shown in Figure 3. As we can see from this figure,
each player has different tendencies. Specifically, Federers
winners tend to be hit from wider on both the forehand and
backhand compared to the others, and he also tends to be
further behind the baseline (need to check this?). From this
model, we can see the combination of factors which leads
most likely to a player hitting a winner, unforced error and
ace (or their sweet spot). This is shown in Figure 4.
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which yields a multi-dimensional pdf for each shot type for
each player. A Gaussian Mixture Model (GMM) is used to
calculate the pdf of each of these factors and the parameters
are calculated using the Expectation-Maximization (EM)
algorithm. Maybe equation of GMM here, followed by an
inference equation

For our work we used the BayesNet Toolbox [12] for
model estimation and inference. A visualization of the pdfs
of the different factors of the winners for the top 3 play-
ers is shown in Figure 3. As we can see from this figure,
each player has different tendencies. Specifically, Federers
winners tend to be hit from wider on both the forehand and
backhand compared to the others, and he also tends to be
further behind the baseline (need to check this?). From this
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most likely to a player hitting a winner, unforced error and
ace (or their sweet spot). This is shown in Figure 4.
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each factor (e.g. shot location, speed, angle, position etc.),
which yields a multi-dimensional pdf for each shot type for
each player. A Gaussian Mixture Model (GMM) is used to
calculate the pdf of each of these factors and the parameters
are calculated using the Expectation-Maximization (EM)
algorithm. Maybe equation of GMM here, followed by an
inference equation

For our work we used the BayesNet Toolbox [12] for
model estimation and inference. A visualization of the pdfs
of the different factors of the winners for the top 3 play-
ers is shown in Figure 3. As we can see from this figure,
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winners tend to be hit from wider on both the forehand and
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ponent and a BN for the service component of a point. A
depiction of this model is shown in Figure 2.
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which yields a multi-dimensional pdf for each shot type for
each player. A Gaussian Mixture Model (GMM) is used to
calculate the pdf of each of these factors and the parameters
are calculated using the Expectation-Maximization (EM)
algorithm. Maybe equation of GMM here, followed by an
inference equation

For our work we used the BayesNet Toolbox [12] for
model estimation and inference. A visualization of the pdfs
of the different factors of the winners for the top 3 play-
ers is shown in Figure 3. As we can see from this figure,
each player has different tendencies. Specifically, Federers
winners tend to be hit from wider on both the forehand and
backhand compared to the others, and he also tends to be
further behind the baseline (need to check this?). From this
model, we can see the combination of factors which leads
most likely to a player hitting a winner, unforced error and
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an initial Bayesian network (BN) to model the initial state
and a 2TBN (2-time slice BN) to model the rally. In our
point model, we used a 2TBN to represent the rally com-
ponent and a BN for the service component of a point. A
depiction of this model is shown in Figure 2.

To learn a model for each player, we first create a shot
database where each shot is labeled as either ace, fault, con-
tinuing shot, winner or error. Given these labeled shots, we
can then learn probability distribution functions (pdfs) for
each factor (e.g. shot location, speed, angle, position etc.),
which yields a multi-dimensional pdf for each shot type for
each player. A Gaussian Mixture Model (GMM) is used to
calculate the pdf of each of these factors and the parameters
are calculated using the Expectation-Maximization (EM)
algorithm. Maybe equation of GMM here, followed by an
inference equation

For our work we used the BayesNet Toolbox [12] for
model estimation and inference. A visualization of the pdfs
of the different factors of the winners for the top 3 play-
ers is shown in Figure 3. As we can see from this figure,
each player has different tendencies. Specifically, Federers
winners tend to be hit from wider on both the forehand and
backhand compared to the others, and he also tends to be
further behind the baseline (need to check this?). From this
model, we can see the combination of factors which leads
most likely to a player hitting a winner, unforced error and
ace (or their sweet spot). This is shown in Figure 4.
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a point essentially consists of three game states: 1) the ini-
tial state (i.e. the serve), 2) the middle state (i.e. the rally
which can consist of many shots), and 3) the end state (i.e.
the point either ends via an ace, double fault, winner or
force/unforced error). A typical DBN consists of two parts:
an initial Bayesian network (BN) to model the initial state
and a 2TBN (2-time slice BN) to model the rally. In our
point model, we used a 2TBN to represent the rally com-
ponent and a BN for the service component of a point. A
depiction of this model is shown in Figure 2.

To learn a model for each player, we first create a shot
database where each shot is labeled as either ace, fault, con-
tinuing shot, winner or error. Given these labeled shots, we
can then learn probability distribution functions (pdfs) for
each factor (e.g. shot location, speed, angle, position etc.),
which yields a multi-dimensional pdf for each shot type for
each player. A Gaussian Mixture Model (GMM) is used to
calculate the pdf of each of these factors and the parameters
are calculated using the Expectation-Maximization (EM)
algorithm. Maybe equation of GMM here, followed by an
inference equation

For our work we used the BayesNet Toolbox [12] for
model estimation and inference. A visualization of the pdfs
of the different factors of the winners for the top 3 play-
ers is shown in Figure 3. As we can see from this figure,
each player has different tendencies. Specifically, Federers
winners tend to be hit from wider on both the forehand and
backhand compared to the others, and he also tends to be
further behind the baseline (need to check this?). From this
model, we can see the combination of factors which leads
most likely to a player hitting a winner, unforced error and
ace (or their sweet spot). This is shown in Figure 4.
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a point essentially consists of three game states: 1) the ini-
tial state (i.e. the serve), 2) the middle state (i.e. the rally
which can consist of many shots), and 3) the end state (i.e.
the point either ends via an ace, double fault, winner or
force/unforced error). A typical DBN consists of two parts:
an initial Bayesian network (BN) to model the initial state
and a 2TBN (2-time slice BN) to model the rally. In our
point model, we used a 2TBN to represent the rally com-
ponent and a BN for the service component of a point. A
depiction of this model is shown in Figure 2.

To learn a model for each player, we first create a shot
database where each shot is labeled as either ace, fault, con-
tinuing shot, winner or error. Given these labeled shots, we
can then learn probability distribution functions (pdfs) for
each factor (e.g. shot location, speed, angle, position etc.),
which yields a multi-dimensional pdf for each shot type for
each player. A Gaussian Mixture Model (GMM) is used to
calculate the pdf of each of these factors and the parameters
are calculated using the Expectation-Maximization (EM)
algorithm. Maybe equation of GMM here, followed by an
inference equation

For our work we used the BayesNet Toolbox [12] for
model estimation and inference. A visualization of the pdfs
of the different factors of the winners for the top 3 play-
ers is shown in Figure 3. As we can see from this figure,
each player has different tendencies. Specifically, Federers
winners tend to be hit from wider on both the forehand and
backhand compared to the others, and he also tends to be
further behind the baseline (need to check this?). From this
model, we can see the combination of factors which leads
most likely to a player hitting a winner, unforced error and
ace (or their sweet spot). This is shown in Figure 4.
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a point essentially consists of three game states: 1) the ini-
tial state (i.e. the serve), 2) the middle state (i.e. the rally
which can consist of many shots), and 3) the end state (i.e.
the point either ends via an ace, double fault, winner or
force/unforced error). A typical DBN consists of two parts:
an initial Bayesian network (BN) to model the initial state
and a 2TBN (2-time slice BN) to model the rally. In our
point model, we used a 2TBN to represent the rally com-
ponent and a BN for the service component of a point. A
depiction of this model is shown in Figure 2.

To learn a model for each player, we first create a shot
database where each shot is labeled as either ace, fault, con-
tinuing shot, winner or error. Given these labeled shots, we
can then learn probability distribution functions (pdfs) for
each factor (e.g. shot location, speed, angle, position etc.),
which yields a multi-dimensional pdf for each shot type for
each player. A Gaussian Mixture Model (GMM) is used to
calculate the pdf of each of these factors and the parameters
are calculated using the Expectation-Maximization (EM)
algorithm. Maybe equation of GMM here, followed by an
inference equation

For our work we used the BayesNet Toolbox [12] for
model estimation and inference. A visualization of the pdfs
of the different factors of the winners for the top 3 play-
ers is shown in Figure 3. As we can see from this figure,
each player has different tendencies. Specifically, Federers
winners tend to be hit from wider on both the forehand and
backhand compared to the others, and he also tends to be
further behind the baseline (need to check this?). From this
model, we can see the combination of factors which leads
most likely to a player hitting a winner, unforced error and
ace (or their sweet spot). This is shown in Figure 4.
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tial state (i.e. the serve), 2) the middle state (i.e. the rally
which can consist of many shots), and 3) the end state (i.e.
the point either ends via an ace, double fault, winner or
force/unforced error). A typical DBN consists of two parts:
an initial Bayesian network (BN) to model the initial state
and a 2TBN (2-time slice BN) to model the rally. In our
point model, we used a 2TBN to represent the rally com-
ponent and a BN for the service component of a point. A
depiction of this model is shown in Figure 2.

To learn a model for each player, we first create a shot
database where each shot is labeled as either ace, fault, con-
tinuing shot, winner or error. Given these labeled shots, we
can then learn probability distribution functions (pdfs) for
each factor (e.g. shot location, speed, angle, position etc.),
which yields a multi-dimensional pdf for each shot type for
each player. A Gaussian Mixture Model (GMM) is used to
calculate the pdf of each of these factors and the parameters
are calculated using the Expectation-Maximization (EM)
algorithm. Maybe equation of GMM here, followed by an
inference equation

For our work we used the BayesNet Toolbox [12] for
model estimation and inference. A visualization of the pdfs
of the different factors of the winners for the top 3 play-
ers is shown in Figure 3. As we can see from this figure,
each player has different tendencies. Specifically, Federers
winners tend to be hit from wider on both the forehand and
backhand compared to the others, and he also tends to be
further behind the baseline (need to check this?). From this
model, we can see the combination of factors which leads
most likely to a player hitting a winner, unforced error and
ace (or their sweet spot). This is shown in Figure 4.
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(b)
Figure 2. (a) The model of a point in tennis - given player B serves the ball and it is not an ace or double fault, 
player A returns the ball back to player B and the rally ensues until player A or B hits a winner or an error. (b) The 
probability of the ith point-state at time T, zTi , given the current observation xT and previous state zT-1, can be 
calculated using the sum and product rule (gray nodes are observed and clear nodes are hidden). The state with 
the highest probability is our in-point prediction. 



location refers to the respective location of each player at the moment the incoming shot impacts the court. In this 
work we did not differentiate between ground-strokes, volleys and smashes as the multiple modes within the GMM 
encodes this information as these strokes have different speed and impact location profiles  (this will be obvious 
after the next couple of sentences).  In terms of unique player characteristics, these plots make for some interesting 
analysis. First of all, it can be seen that Federer tends to hit his winners from balls that land closer to boundary 
widths of the court compared to Djokovic and Nadal, which may allow  him to generate more angle on his winning 
strokes. It is also evident that Federer tends to stroke more winners from volleys than Djokovic and Nadal, which 
can be inferred from the his foot location on striking the winners.  Furthermore, in comparison to Djokovic and 
Nadal, Federer frequently hits winners from further inside the baseline while his opponents are pressed significantly 
deeper behind their own baseline.  Many of Nadal’s winners are characterized by his opponents playing from their 
left side (the backhand side for right-handed players), which may indicate his preference for backhand rallies.  In 
contrast, Djokovic tends to stroke winners while his opponent is positioned more to the right-handed forehand 
(albeit more subtly). The shot speed profiles also indicate that Federer and Djokovic achieve a number of winners 
via over-head smashes, which may be inferred by the small peaks at the upper end of the speed spectrum. The 
combination of variables in a rally that are most likely to lead to a winner for any specific player, the “sweet-spot”, 
can be visualized such as the examples seen in Figure 4. In terms of general trends, when we compare the winners 
(left) to the errors (right), we can see that the impact location of the incoming shot is much deeper as well as 
significantly more quicker.
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Figure 3. The probability distribution functions (pdf ’s) of  winners for Djokovic (D), Nadal (N) and Federer (F) in 
the 2012 Australian Open with respect to various variables.  
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Figure 4. “Sweet-Spot” - these visualizations show  the incoming shot that gives the highest probability of (left) 
hitting a winner, and (right) causing an error - these shots are hit deeper and with more pace.  
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 4   In-Point Prediction

In order to validate our player models we conducted a series of experiments to measure the accuracy of next-stroke 
predictions at any point in a rally - which we call “in-point prediction”. As we are only interested in the non-service 
behavior of a player (i.e. no ace or double fault), “in-point prediction” refers to predicting whether the next shot is 
either: i) a winner, ii) an error, or iii) a return (i.e. continuation of the point). For our experiments, we generated 
player models for Djokovic, Nadal and Federer and tested these models on two matches, Nadal vs Federer (semi-
final) and Djokovic vs Nadal (final). To make sure there was no overlap between training and testing data, for the 
Federer and Djokovic models, we trained the models on all their matches except those against Nadal. Similarly for 
Nadal, we created two models: the first we tested against Djokovic and trained on all the other matches he played in, 
the second we tested against Federer and again trained it all other matches.  As there are many more continuing 
shots than winners or errors, the overall agreement between correctly classified shots can skew  the results. To 
counter this we used the receiver-operator characteristic (ROC) curve, which plots the hit-rate against the false 
positives. From these curves, we used the area underneath the ROC curve (AUC) to assess performance. The AUC 
ranges from 0.5 (pure chance) to 1.0 (ideal classification). In Table 2(a), we show the aggregate shot prediction 
performance for winners and errors.  

As can be seen from the results, the impact location of the incoming shot was the best single predictor of a winner, 
while the feet location was the second best predictor.  When combining factors together, speed + impact location 
and feet location gave the best, which makes sense after our analysis in the previous section. Even though the 
performance improves, the overall predictive power of winners is still quite poor but the lack of opponent modeling 
can explain this (we look at this in the next section). It is  also interesting to note that the number of shots in the 
rally diminishes the performance. As the variance of this variable is very high, coupled with the fact that we have 
relatively fewer examples that errors, it is probable that we have severely under trained this  variable which can 
explain the noisy results. For errors, a similar trend is observed with the best predictor gaining a AUC of 76.09% 
which is much higher than the winner rate of  68.52%.

5   Opponent Modeling 

As the models used in the previous section do not model specific opponent behavior, this represents an obvious 
area of improvement as the behavior or tactics of a player are heavily dependent on the opponent and the court  
surface (e.g. Nadal’s behavior in a match against another “base-liner” such as Djokovic on a clay-court is likely to be 
a poor predictor of his behavior against “serve-and-volleyer” Federer on a grass court). Obviously, the best model 
of future performance is going to be one that is trained on data which has the same conditions (i.e. same opponent, 
court-surface etc.). However, this is problematic as obtaining enough data to adequately train a model is extremely 
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(a) Universal Background Model 

Shot Variable

Prediction Accuracy (AUC)Prediction Accuracy (AUC)(a) Universal Background Model 

Shot Variable Winner Errors

Speed 52.49 61.63

Angle 54.13 54.76

# Shots in Rally 55.51 59.61

Feet Location 61.27 60.94

Impact Location 65.29 59.76

Speed +Angle 55.51 58.75

Speed + Impact Location 63.62 61.12

Speed + Impact Loc + # Shots 60.04 60.39

Speed + Impact Loc + Feet Loc 68.52 76.09

Speed + Impact Loc + Feet Loc  
+ # Shots

57.83 68.60

(b) Adapted Model

Shot Variable

Prediction Accuracy (AUC)Prediction Accuracy (AUC)(b) Adapted Model

Shot Variable Winner Errors

Speed 56.45 62.65

Angle 60.36 54.47

# Shots in Rally 60.30 68.21

Impact Location 70.30 63.29

Speed +Angle 58.67 57.74

Speed + Impact Loc 77.28 71.85

Speed + Impact Loc + # Shots 65.41 70.94

Table 2. (a) Performance of our player models for predicting winners and errors using a “one-versus-everyone-
else” or UBM model. (b) Adapting the player models to specific opponents yields better performance (N.B. there 
was no feet location data in our adaptation data - hence the absence of  those results.) 



difficult as players may only play each other a couple of times a year and this is often on different surfaces. A 
method to resolve this issue is to employ adaptive model techniques, such as are commonly used in speech and 
speaker verification tasks [13]. Unlike the standard approach of maximum-likelihood training of a model, adaptive 
models “adapt” the parameters of an initial model or Universal Background Model (UBM) to held-out data which is 
indicative of the test data. To do this, our held-out data consisted of two matches from previous tournaments which 
were the nearest examples to the Australian Open conditions in our library: 1) Djokovic vs Nadal at a previous hard-
court tournament, and 2) Federer vs Nadal at a previous grass court tournament.  Using this adaptation technique 
(see Appendix A for full description of technique), we were able to greatly improve the prediction performance for 
winners from 68.52% to 77.28% - as can be seen in Table 2(b).  As the held-out data did not contain feet location of 
the players, we were constrained to only using the ball trajectory information which can explain the diminished 
performance for predicting errors. Again, the number of shots in the rally had a similar impact, which suggests that 
this variable is undertrained. When adapting the player models, we found that the court surface had a significant 
impact on performance. For example, when we adapted our Nadal vs Djokovic model to a match these played on a 
clay surface the performance greatly dropped which suggest that the court surface as a large impact on how a match 
is played (which is a commonly held belief).  

From these experiments it can be seen that reasonable “in-point prediction” can be obtained from using 
spatiotemporal data. An obvious application of this work can be seen within a broadcast environment, where this 
type of approach can be used for real-time (or close to real-time) analysis. The idea is, given we have the trajectory 
information about the incoming shot - we can not only give a prediction of the most likely outcome of the shot but 
we can also give a prediction of the position where we think the shot will go. In terms of in-depth analysis, we can 
determine whether the shot played was within the expected distribution of the player or fell outside. If it fell outside 
our expectation this “anomalous” behavior could then trigger some further analysis of  the shot. 

6   Summary and Future Work

Rich sources of player and ball tracking data are emerging in sports such as tennis, which are well suited to novel 
analyses using probabilistic graphic models.  In this paper, we employed a Bayesian framework to build a stroke-by-
stroke model that is predictive of the outcome of individual points in top level tennis matches.  This analysis creates 
novel insights to the playing styles of individual players, and in particular, we identify the “sweet-spot” for three of 
the top male tennis players in the world.  Our modeling approach demonstrates superior performance using 
adaptive techniques, which allow  greater sensitivity by tuning the model to specific match parameters such as court 
surface.  These results are insightful for coaches hoping to discover critical points of strength and weakness in 
opponents.  Furthermore, the dynamic and intuitive nature of the analysis has excellent potential to enhance the in-
game viewer experience for spectators.

As noted by Nadal, tennis may be thought of as a very fast moving chess match, where players systematically 
maneuver their opponent into a position of weakness before attempting to win the point. Therefore, it is important 
in future work to extend the scope of model parameters to include deeper analysis of the sequence of strokes that 
ultimately lead to a winning shot.  Analysis of that type requires exponentially larger data sets, however, the 
popularity of  technologies such as Hawk-Eye means that “big data” modes of  analysis will become more feasible.
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A   Appendix A - Model Adaptation

Given that we want to train a specific model between two players, but do not have enough to adequately train the 
model, we can use a method which is widely used in speech and speaker recognition communities called “model 
adaptation” [13].  The core idea behind model adaptation is to “adapt” the parameters of an initial model or 
Universal Background Model (UBM) to a held-out or “adaptation” dataset which should be indicative of want we 
can expect to see in the test data.  So given the initial model parameters or UBM parameters,  𝜽UBM = {(w1; 𝜇1, 

∑1), ... , (wM; 𝜇M, ∑M)}, we can find the parameters of the held-out matches 𝜽Adapt = {(w1; 𝜇1, ∑1), ... , (wM; 𝜇M, ∑M)}. 
We then update the parameters of  the UBM by using the following equations:  

                                                                                                                      
(3)

where                      are the new parameters of the adapted model, and                               are used to control the 
balance between old and new  estimates for weights, means and covariances. This is a form of regularization, which 
guarantees improved generalization. 
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