
StreetMap - Mapping and Localization on Ground Planes using a
Downward Facing Camera

Xu Chen1, Anurag Sai Vempati1,2, and Paul Beardsley1

Abstract— This paper describes a system to map a ground-
plane, and to subsequently use the map for localization of a
mobile robot. The robot has a downward-facing camera, and
works on a variety of ground textures including general texture
like tarmac, man-made designs like carpet, and rectilinear
textures like indoor tiles or outdoor slabs. Such textures provide
a basis for measuring relative motion (i.e. computer mouse
functionality). But the goal here is the more challenging one of
absolute localization.

The paper describes a complete working pipeline to build
a globally consistent map of a given ground-plane and subse-
quently to localize within this map at real-time. Two algorithms
are described. The first is a feature-based approach which is
general to any ground plane texture. The second algorithm
takes advantage of the extra constraints available for common
rectilinear textures like indoor tiling, paving slabs, and laid
brickwork. Quantitative and qualitative experimental results
are shown for mapping and localization on a variety of ground-
planes.

I. INTRODUCTION

Localization is a key functionality for mobile robots,
and it is achieved in diverse ways. A well-established and
powerful approach is to use SLAM or offline reconstruction
to generate a map, which can be registered to a canonical
coordinate frame if needed, and to subsequently localize
against the map via 2D data (camera images) or 3D data
(laser, depth sensor). Alternatively an external camera setup
in the environment can track the object of interest. Common
wireless technology for localization includes GPS and D-
GPS for outdoor use, or Ultra Wideband (UWB) for spaces
that have been instrumented with UWB anchor tags.

These approaches are challenged by our application in
which a social robot is deployed amongst humans, indoors
or outdoors. The crowd is dynamically changing and, during
busy periods, it can be sufficiently dense to block lateral-
facing sensors on the robot from viewing the fixed surround-
ings, or to block a view of the robot from an external camera
setup. UWB localization also ceases to operate in dense
crowds, while GPS is not suitable for our scenario because
it does not work indoors.

This motivates the work in this paper, in which the robot
has a downward-facing camera and localizes off imagery of
the ground-plane. Our target workplaces are regular and even
ground planes suitable for walking or wheeled platforms,
indoors or outdoors, hence we assume the robot moves in a

1Xu Chen was at the time of this work with, and Anurag Sai Vempati
and Paul Beardsley are with, Disney Research Zurich, Stampfenbachstrasse
48, 8006, Zurich, Switzerland. xuchen@student.ethz.ch

2Anurag Sai Vempati is with the Autonomous Systems Lab at ETH
Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland.

2D world. The first step is offline, traversing the full deploy-
ment area, and creating a globally consistent 2D map of the
ground-plane. Subsequently, an online system matches live
camera imagery to the map, and thereby does localization.
There are two cases for online localization - (a) the robot
starts at an arbitrary position on the map and initializes its
location automatically by place recognition, (b) the ground-
plane texture is too ambiguous for place recognition, due to
for example repeated carpet design or tiling. In this case,
the starting location of the robot is supplied a priori - for
example, the robot starts in a pre-defined location, or it has
multiple sensor modalities, and other sensors like vision and
wireless are at least periodically providing a location estimate
as the crowd density changes.

The system is demonstrated on ground textures that cover
a large variety of real-world scenarios. For indoor scenes -
tiled floors and carpets. For outdoor scenes - paving slabs,
laid brickwork, and tarmac. In fact, two separate algorithms
are described. The first algorithm is the most general and
is feature-based. The second algorithm has been developed
specifically for rectilinear textures, and takes advantage of
the constraints that are available when localizing on a tiled
floor, paving slabs, or laid brickwork.

The contributions of the work are:
• A case study of an end-to-end pipeline for mapping

a ground-plane and subsequently localizing within it,
demonstrated on a variety of ground-plane textures.

• A demonstration of feature-based localization for the
challenging case of tarmac, to demonstrate the power
of the approach.

• A demonstration of the benefits of using constraints aris-
ing from rectilinear texture, for both the map generation
and online localization stages.

In the remainder of the paper, Section II describes re-
lated work, Section III describes the feature-based approach,
Section IV covers the line-based approach that utilizes con-
straints arising from rectilinear texture, and Section V gives
experimental results.

II. RELATED WORK

A. Monocular SLAM and Visual Odometry in a 3D Scene

In recent years, great advances have been witnessed in the
area of visual SLAM and odometry. Two main divisions are
appearance-based [1], [2] and feature-based [3]. Appearance-
based methods obtain the relative transformation between
frames by minimizing a photometric error while feature-
based approaches first extract and match feature points in



the images and then minimize a re-projection error. For the
task of re-localization, feature-based method is favored due
to the efficiency of bag of words retrieval algorithm [4] and
its robustness against changes in lighting and scene. Feature-
based approaches can be further divided based on the type of
correspondences. One way is to directly estimate the funda-
mental matrix or homography via 2D-2D correspondences.
Another is to first triangulate 3D points and estimate the
camera projection matrix via 2D-3D correspondences. In
this work we deal specifically with planar ground surfaces
as viewed by a downward facing camera. Owing to the
inherent 2D nature of the scene, robust camera tracking can
be achieved by using 2D-2D correspondences, and there is
no need to work in 3D, incurring unnecessary computation
plus uncertainty in the depth estimation.

B. Downward Facing Camera for Localization

To the best of our knowledge [5] is the first work propos-
ing to use downward facing camera for localization. They use
a prebuilt map mosaic and track the camera pose along the
map based on visual appearance. Later works such as [6]–
[8] and [9] use similar approaches for visual odometry based
on feature correlation, template tracking or ICP. Our system
differs from these previous works in its ability to build a
globally consistent map and to localize globally within the
map, which is important for ground robots’ localization.

C. Line-based Localization

Grounds with salient linear patterns are a common occur-
rence in man-made environments. There have been several
works that use lines for localization. [10] treat lines detected
by a Line Segment Detector (LSD) [11] as local landmarks
and use them for localization and mapping. However, accord-
ing to our experiments, boundary lines in some cases lack
distinctiveness which causes LSD to fail. In [12] the authors
use lanes on the road to estimate camera pose. However, they
only consider the simple case where lines are sparse and are
always visible. Our method is shown to work on a variety
of ground textures with more challenging linear patterns of
varying densities.

III. FEATURE BASED SYSTEM

The texture on some common ground surfaces, e.g. like
the ones shown in Fig. 1, actually provide rich and distinct
information which enables reliable image matching and
retrieval. The feature based system exploits this information
to first incrementally build a globally consistent map of
the ground-plane during an exploration phase and then to
localize within it at real-time.

The map for the feature based system is represented as
a set of images together with their corresponding camera
poses C. As illustrated in Fig. 2, during the mapping process
the global poses of individual images C are determined
by accumulating relative transformation T from the local
tracking thread and performing a global optimization when
an area is revisited. Frame-to-frame homography is used
to determine relative camera poses as the camera explores

new areas. In parallel, a relocalization routine matches every
incoming image with the images already existing in the map.
The relative transformation between the matched pair is then
estimated and is used together with the global pose of the
matched image to determine the camera pose for new image.

With a prebuilt map, global initialization and relocalization
can be performed by retrieving the most similar map frames
to the current camera frame with bag of words algorithm
[4] and estimating their relative transformation. For some
artificial ground textures with repeating patterns, e.g. indoor
carpet, a rough initial position needs to be manually provided
to resolve the ambiguity for global initialization. Potentially,
other sensors such as UWB could also provide such infor-
mation. The global relocalization is performed every few
frames to save computation, and the camera poses in-between
are obtained by accumulating the relative motion between
successive frames.

(a) Laid brickwork (b) Tarmac road sur-
face

(c) Indoor textured
tiles

Fig. 1: Common ground textures that are handled by our
system.

Fig. 2: Pipeline of the feature-based mapping process. For an
incoming image, its relative transformation to the previous
image is estimated with the tracked features. Loop closure is
detected through feature matching. Relative transformations
from the local tracking thread and the loop closure thread
are fused using a pose graph.

A. Relative Transformation from Homography

Since the camera looks downward at the ground, we
assume the only object in the scene is the planar ground,
hence the relative transformation between images can be
fully described by a homography.

To estimate the homography, SURF features [13] are
used. For evaluating the transformation between successive
images, feature correspondences are obtained through Lucas-
Kanade tracking [14]. A homography is also used in the



case of loop closure. SURF features are firstly detected and
extracted, and then matched through nearest neighbor search
in the descriptor space. First to second ratio test is used to
further filter outliers. Once the correspondence is established,
the homography between the current and retrieved image is
estimated by minimizing the reprojection error in a RANSAC
fashion. The homography can be represented as

H = R +
tnT

d
(1)

where R = RxRyRz is a rotation matrix representing
the relative camera rotations around the x, y, and z-axis re-
spectively. t = [tx, ty, tz]

T represents the relative translation,
n = [nx, ny, nz]

T is the plane normal and d is the distance
between the image plane and the ground plane.. As shown
in [15] for a given H there could be up to eight sets of
{R, t,n} satisfying Equation (1) . While four pairs among
them can be eliminated by assuming that two cameras always
locate on the same side of the plane. The rest four possible
solutions are induced by ambiguity in the normal direction
of the plane. In our case, the normal direction of the ground
plane is fixed, therefore a unique set of {R, t,n} can be
obtained, hence the relative transformation T = [R|t] is
solved.

B. Global Optimization and Loop Closure Detection

The drift is an inevitable problem in SLAM which be-
comes even more severe in the downward facing setup
due to the small field of view and any non-flatness of
the terrain. The small field of view limits the number of
features per image which in-turn increases the sensitivity to
the noise in the position of feature points. The non flatness
of the terrain violates the assumption of homography, hence
impacts the accuracy of relative motion estimation. Pose
graph optimization [16] is a common and effective method
to reduce drift. Camera poses C are represented as nodes in
the graph and the relative transformations T between frames
are edges.

To construct the graph, the transformations from the
current image to its previous image and to its spatially
overlapped images (on loop closure) are estimated. The
spatially overlapping images are detected by retrieving the
most similar images (in terms of number of feature corre-
spondences) among all the previous images while eliminating
the recently visited ones. The retrieved images are then
verified by geometric check, and given that they pass the
check, the transformations from the current image to each
of them are evaluated and added to the graph.

Every time a loop closure is detected, all the existing poses
in C are updated by minimizing the following error.

C = arg min
C

∑
i

∑
j

‖Ci −CjTij‖2 (2)

where Tij is the relative pose between the image pair
(i, j).

We use the Gauss-Newton implementation in the open-
source framework g2o [17] for the optimization. After
traversing the whole mapping area and optimizing the com-
plete pose graph, keyframes and their poses are stored as the
map.

IV. LINE BASED SYSTEM

Besides the feature points, straight lines are also common
patterns on some grounds in the form of brick boundaries
and can also be used for localization. This is especially
interesting on grounds with no sufficient feature points, e.g.
texture-less tiles and paving slabs (Fig. 3). In the scope of
this work we only consider the structure where lines are
rectilinear, but extension to other patterns is possible. Using
the rectilinearity assumption allows us to impose priors on
the map that enable for globally consistent map building and
drift correction without the need for loop closures.

We assume that the camera remains the same height above
the ground and its image plane is parallel to the ground plane.
Given a camera that is oblique to the ground plane, it is
straightforward to rectify the imagery to a fronto-parallel
view. Under these assumptions the camera pose can be
represented by three parameters [xc, yc, φc] where x and y
are its position and φ is its yaw angle.

The map for the line based system is represented as a set
of lines on the 2D ground plane. Each line is parametrized by
four parameters [φw, γw, pw1 , p

w
2 ]. φ denotes the orientation

of the line. Under our rectilinearity assumption it can only
take either 90 if the line is parallel to the y-axis or 0 if
parallel to the x-axis. If φ = 90, γ denotes the position of
the line on the x-axis and [p1, p2] defines the range of the
line along y-axis. Otherwise γ is the position on the y-axis
and [p1, p2] is the range along x-axis. These parameters are
defined in a global world frame, hence the superscript w.

In both mapping and localization phase, lines are first
detected and parametrized by the position of its two end-
points (xc1, y

c
1) and (xc2, y

c
2) in the camera coordinate frame

(denoted by superscript c). Then the lines are transformed
into the world frame and matched with existing map lines.
The discrepancy between the detected lines and their corre-
sponding map lines is used to correct the pose estimation of
the camera. During mapping, the detected lines are used to
update the map while during localization phase the map is
fixed.

On some grounds where the brick boundaries are sparse,
it could happen that no boundary is observed for several
frames, and as a result camera pose can’t be determined. In
another case where the bricks are too dense, the data associ-
ation could suffer from ambiguity. An Inertial Measurement
Unit (IMU) can be used to solve both these problems.
Therefore, we fuse the measurement from lines and the data
from an IMU together using an Extended Kalman Filter
(EKF).

Note that due to the ambiguity of lines, the line based
system cannot provide the global position, but only the
position within one tile of brick. Also drift correction is
not performed explicitly via loop closures, but implicitly



via nearest neighbor line matching. Consequently, an initial
guess is necessary to initialize the system during run-time
localization. Similar to the initialization of feature-based
system on repeating patterns, the initial pose of the camera
can be provided either manually or potentially with the aid
of other sensors.

(a) Outdoor laid
brick

(b) Outdoor paving
slabs

(c) Indoor white
tiles

Fig. 3: Boundary lines commonly observed from the view of
a downward-facing camera.

A. Line segment detection and Parametrization

Hough transform [18] is a common option for line detec-
tion. However in our case the prior knowledge about the line
pattern can be exploited to make the detection more robust
and accurate, which cannot be incorporated in the Hough
transform. Therefore we use sequential RANSAC instead
and incorporate the prior knowledge to reject impossible line
model proposals at early stage.

The line detection process is defined as following. Firstly,
the edge image is extracted using a Canny edge detector [19].
A line model is then proposed by fitting a small subset of
the edge points. It is then checked whether the fitted line
satisfies the prior knowledge about the structure. The prior
knowledge includes:

• Rectilinearity: new line must be nearly parallel or
orthogonal to already accepted lines in the same image.

• Brick size: the gap between new line and accepted lines
must be larger than the smallest possible brick size.

If the proposed line satisfies the above constraints, it is
then scored by the number of points lying in its neighbor.
After reiterating this procedure for a certain number of times,
the line with the highest score is accepted if its score is
above a certain threshold. Once a line is accepted, all points
supporting this line are removed from the edge image and
the above procedure is repeated. If no line with sufficient
score can be fitted, the algorithm terminates.

After lines are detected, their endpoints need to be de-
termined. For each intersection point resulting from the
line fitting, it will be checked whether the two intersecting
lines have supporting edge points on either sides. If it’s
not the case for a intersecting line, the intersection point
is determined as an endpoint of that line. If a line extends to
the image boundary, then the intersection of the line and the
boundary is regarded as an endpoint. Note that in the latter
case, the end point might be updated as more information of
that particular line is available in successive frames.

B. Data Association and Map Management

Detected lines first needs to be projected into the world
coordinate frame and transformed into the map line repre-
sentation for data association. This transformation from the
detected endpoints of a line [xc1, y

c
1, x

c
2, y

c
2] to the map line

representation [φw, γw, pw1 , p
w
2 ] is given by

φw = arg min
φw∈{0,90}

∥∥∥∥φwc + arctan(
yc2 − yc1
xc2 − xc1

)− φw
∥∥∥∥ (3)

∆φ = φw − arctan(
yc2 − yc1
xc2 − xc1

) (4)[
xwi
ywi

]
=

[
cos(∆φ) − sin(∆φ)
sin(∆φ) cos(∆φ)

] [
xci
yci

]
, i = 1, 2 (5)

γw =

{
xw1 , if φw = 90

yw1 , otherwise
(6)

pwi =

{
ywi , if φw = 90

xwi , otherwise,
(7)

where xwc , ywc and φwc are the current camera pose in the
world coordinate frame.

After lines are transformed into the world frame, they can
be matched to the lines in the map and the lines in a candidate
pool via nearest neighbor search within a certain range in the
parameter space. The candidate pool is a buffer preventing
outliers from being added to the map. If matched to a map
line, a pose innovation can be calculated to update the EKF. If
matched to a candidate line, the confidence in that candidate
increases by one. A candidate line is added into the map
when its confidence is above a certain threshold or is deleted
if it has not been matched for certain number of frames.
Finally if no match can be found for a detected line, it is
added into the candidate pool. This pipeline is illustrated in
Fig. 4.

C. Sensor Fusion with EKF

As mentioned before, an EKF is used to fuse IMU and
pose measurement from lines. For this purpose, we use an
open-source framework MSF-EKF [20]. IMU is used for the
model update step of the EKF and lines are used for the
measurement update. If a detected line is matched with a
map line, the innovation is calculated by

∆xwc = γwm − γwd , if φwd = 90 (8)
∆ywc = γwm − γwd , otherwise, (9)

where the subscript d means detected line and m for map
line. The innovation for the yaw is given by Equation (4) .
A line can only provide measurement in its lateral direction,
therefore we set the variance in the other direction to a very
large number so that the filter only updates for the lateral
direction of each line. Also this means that our system will
drift in one direction if all lines are parallel.



Fig. 4: The pipeline for the line-based mapping process.
Detected lines in current frame are first transformed into the
map line representation in the world coordinate frame and
matched with existing map lines and candidate lines. If no
match is found, a new candidate line is added. If matched
to a map line, a pose innovation is calculated and applied to
the EKF. If matched to a candidate line, the confidence in
that candidate increases. A candidate line is added into the
map after being matched for certain amount of times.

V. EXPERIMENTAL RESULTS

The experimental setup is a manually-operated trolley with
a laptop and downward-facing Intel RealSense ZR3001, as
shown in Fig. 5. The camera is mounted with its image
plane parallel to the ground plane, which is achieved by
manually adjusting the camera so that the internal accelerom-
eter registers only vertical acceleration while standing still.
The RealSense camera captures RGB images for the feature-
based and line-based systems, plus an IMU reading for the
line-based system.Since we consider 2D localization and the
z-axis of the IMU is aligned with the gravity direction, only
x- and y- accelerations and angular velocity for yaw angle
are read by the line-based system.

A. Feature-Based System

The feature-based system is tested on tarmac, indoor
textured tiles, and carpet, as shown in Fig. 6, and on laid
brickwork as shown in Fig. 12b. The system is capable
of online localization starting from a random point on the
map, by using place recognition. This was done for the
experiments on tarmac, which is a particularly challenging
texture, thus demonstrating the potential of the method to
work on other textures too.

1https://software.intel.com/en-us/realsense

Fig. 5: Experimental setup - an Intel RealSense ZR300
mounted on a manually pushed trolley.

Fig. 6: Example ground-planes used in the experiments.

1) Feature Matching: The trolley is driven in multiple
loops on a ground-plane, and the feature matching per-
formance is evaluated by the number of feature matches
between images. Three loops are done for tarmac, laid
brickwork, and indoor tiles, while forward-backward tra-
jectories are done for a corridor with carpet. Fig. 7 shows
similarity matrices between individual images for all the four
sequences. The main diagonal shows self-similarity of an
individual image (as expected) while the offset diagonals
show the peak in similarity when an area is re-visited,
indicating that loop closures can be reliably detected based
on the similarity measure. The unusual results for carpet in
Fig. 7d,7h arise from the ambiguity in matching due to the
carpet’s repeated pattern.

Explicit detection of a repeated pattern on a ground-plane
like carpet requires specific processing and is a goal for
future work. However it is also handled implicitly in our
current approach, in which there is system initialization at an
approximately known position on the ground-plane, followed
by online estimation, so that localization can be maintained
even with a repeated design.

2) Map Mosaics: Fig. 8 shows generated map mosaics
for indoor tiles, laid brickwork, and carpet. Fig. 9 shows a
larger-scale example in which a map mosaic is generated
for a parking lot. The mosaics are qualitatively correct, this
being most visible in the parking lot example.

3) Numerical Results: This section contains a quantitative
evaluation of the accuracy of the system for the parking lot
and the indoor tiles. A Leica tracker2 provides ground truth.
Because there is an unknown offset in rotation between the
coordinate frame of the Leica and the coordinate frame of
our system, estimated trajectories are aligned to the ground

2https://leica-geosystems.com/



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7: Top row: Similarity matrices D for (a) tarmac, (b) laid
brick, (c) indoor tiles, and (d) carpet, where Dij denotes the
number of matched features between frame i and frame j.
Bottom row: Binary thresholded versions, There is a strong
signal for detecting loop closure, as described in the main
text.

TABLE I: Mean Error in Position

Mean Error [m] tarmac indoor tiles
ORB-SLAM 0.1105 -

StreetMap [mapping] 0.1162 0.1098
StreetMap [online localization] 0.1298 0.1106

truth with a rigid transformation.
For comparison, ORB-SLAM [3] is used as a state-of-

the-art system. ORB-SLAM works for the parking lot, but
quickly loses tracking on laid brickwork due to the drift
along the normal direction of the ground plane, and it fails
to initialize on the indoor tiling, while our system can still
work, thanks to the incorporation of planar scene constraints
using homography and the 2D motion assumption.

Fig. 10 shows estimated trajectories for the system in
the parking lot, both in mapping mode and during online
localization, compared with ORB-SLAM and ground truth.
Fig. 11 shows the estimated trajectory for the system in
mapping mode on the indoor tiling, compared with ground
truth. Good agreement is evident for both ground-planes.

Mean errors are given in Table I. The online localization
accuracy is slightly worse than mapping accuracy because,
during the mapping, the trajectory is globally optimized via
pose graph. Additionally any error in the map propagates to
online localization.

In summary, our system is in good agreement with ground
truth, is comparable to ORB-SLAM when the latter is
operational, and is capable of handling more varied ground
textures than ORB-SLAM.

B. Line-Based System

The line-based system is tested on three types of ground-
plane - paving slabs, laid brickwork, and indoor tiles, as
shown in Fig. 12. Two types of quantitative measurement are
reported in Table II. Firstly, for paving slabs and indoor tiles,
the size of each tile is measured by hand and used as ground
truth to evaluate the accuracy of the generated map. (For

(a) indoor tiles (b) laid brickwork

(c) carpet

Fig. 8: Map mosaics for indoor tiles, laid brickwork , and
carpet. The diameters of the circular trajectories are about
3m, and the full length of the trajectory on carpet is about
7m. Qualitative evaluation can be done by zooming on the
tile or brickwork mosaics to inspect the rectilinearity of lines.

(a) scene (b) mosaic

Fig. 9: A parking lot with tarmac ground, and its map. The
dimensions of the area is about 8x8m.

laid brickwork, the elements are not very regular in size and
positioning, and the same evaluation cannot be performed).
Secondly, the amount of drift is measured on loop closure
once the platform has returned to its start position.

C. Computation and Storage Requirement

We report the processing time and storage requirement of
both systems, running on a laptop with an Intel i7 CPU.
Feature-based re-localization takes on average 91ms per
frame. In our experiments we perform such re-localization
every 6 frames, and keep track of the pose in between by
accumulating estimated relative motion, which takes 10ms
per frame. To store the map, namely the keyframes and poses,



-4 -3 -2 -1 0 1 2

x[m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

y
[m

]

Trajectories on Tarmac

Ground Truth

ORB-SLAM[mapping]

StreetMap[mapping]

StreetMap[re-localization]

Fig. 10: Trajectories estimated by ORB-SLAM, our system
in mapping mode and our system in localization mode along
with the ground truth on the parking lot with tarmac. All
three methods produce similar trajectory estimations which
match well with the ground truth.

TABLE II: Mean Error in Position

Tile Size Error[m] Drift (x,y) [m]
Paving slabs 0.038± 0.0106 (0.049, 0.041)

Laid brickwork - (0.012,0.005)
Indoor tiles 0.0005± 0.0033 (0.019,0.020)

for the tarmac parking lot in Fig. 9 space of 418 MB is
required.

The processing time for the line-based system depends on
the complexity of the rectilinear pattern. For sparse pattern
like indoor tiles in Fig. 12 it takes 4ms per frame. For dense
laid brickwork it takes 19ms per frame. The map for the
indoor tiles illustrated in Fig. 12 takes up 606 Byte only,
thanks to the compact representation of the map as a set of
lines.

VI. CONCLUSION

This paper has described a system for mapping a ground
plane, and doing localization off the ground map, on a mobile
robot with a downward-facing camera. The approach has the
advantages of being purely onboard, working indoors or out-
doors, and it is not affected by the presence of a surrounding
human crowd. The latter is a particular motivation for this
work, since a social mobile robot mingling in a crowd may
experience periods of being densely encircled by humans,
and this adversely affects both lateral-facing sensors and
wireless technology like UWB. Experimental results showed
the system working on a variety of challenging ground
textures including tarmac and specular tiles.

As future work, we will study the robustness of the two
systems against condition changes, e.g. different illumination

-6 -5 -4 -3 -2 -1 0 1 2

x[m]

3

4

5

6

7

8

9

y
[m

]

Trajectories on Textured Tile

Ground Truth

StreetMap

Fig. 11: Trajectory estimated by our system in mapping mode
and the ground truth on the indoor tiles. In general, the
estimation matches well with the ground truth.

(a) (b) (c)

Fig. 12: Top row: Three common types of ground-plane
- paving slabs, laid brickwork, and indoor tiles. Bottom
row: Generated maps with explicit element boundaries. Blue
and red lines are boundary lines detected in the current
camera view, where the blue ones are those successfully
matched with map lines and the red lines are those without
corresponding map lines. Dimensions for the mapped areas
are 3-6m.

during mapping and localization, and also their effectiveness
with general camera viewpoints, e.g. oblique camera, for
more flexible mounting choices. Two systems - for general
texture, and for rectilinear texture - are studied separately
in this work for scientific evaluation, however they could be
potentially integrated for better performance. For instance
when both types of landmarks are present, the feature-based
system can substitute the IMU used in the line-based system
to resolve ambiguity. Although the system has been shown
to work on varied ground textures, it would be interesting to
further investigate techniques for generality e.g. deep features
or image patches.

REFERENCES

[1] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct
monocular visual odometry,” in IEEE International Conference on



Robotics and Automation (ICRA), 2014.
[2] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct

monocular SLAM,” in ECCV, September 2014.
[3] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM

system for monocular, stereo and RGB-D cameras,” IEEE Transac-
tions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[4] D. Gálvez-López and J. D. Tardós, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, October 2012.

[5] A. Kelly, “Mobile robot localization from large-scale appearance
mosaics,” The International Journal of Robotics Research, vol. 19,
no. 11, pp. 1104–1125, 2000.

[6] N. Nourani-Vatani and P. V. K. Borges, “Correlation-based visual
odometry for ground vehicles,” J. Field Robot., vol. 28, no. 5, pp.
742–768, Sep. 2011. [Online]. Available: http://dx.doi.org/10.1002/
rob.20407

[7] H. Fang, M. Yang, R. Yang, and C. Wang, “Ground-texture-based
localization for intelligent vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 10, no. 3, pp. 463–468, Sept 2009.

[8] R. Gonzalez, F. Rodriguez, J. L. Guzman, C. Pradalier, and R. Sieg-
wart, “Combined visual odometry and visual compass for off-road
mobile robots localization,” Robotica, vol. 30, no. 6, p. 865878, 2012.

[9] I. Nagai and K. Watanabe, “Path tracking by a mobile robot equipped
with only a downward facing camera,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sept 2015, pp.
6053–6058.

[10] R. Gomez-Ojeda, F.-A. Moreno, D. Scaramuzza, and J. Gonzalez-
Jimenez, “PL-SLAM: a Stereo SLAM System through the Combina-
tion of Points and Line Segments,” arXiv preprint arXiv:1705.09479,
2017.

[11] R. G. von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall, “LSD:
A fast line segment detector with a false detection control,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32,
no. 4, pp. 722–732, April 2010.

[12] T. K. Xia, M. Yang, and R. Q. Yang, “Vision based global localization
for intelligent vehicles,” in 2006 IEEE Intelligent Vehicles Symposium,
2006, pp. 571–576.

[13] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-
up robust features (SURF),” Comput. Vis. Image Underst., vol.
110, no. 3, pp. 346–359, Jun. 2008. [Online]. Available: http:
//dx.doi.org/10.1016/j.cviu.2007.09.014

[14] J. Shi and C. Tomasi, “Good features to track,” in 1994 Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, Jun
1994, pp. 593–600.

[15] E. Malis and M. Vargas, “Deeper understanding of the homography
decomposition for vision-based control,” INRIA, Research Report
RR-6303, 2007. [Online]. Available: https://hal.inria.fr/inria-00174036

[16] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, winter 2010.

[17] R. Kmmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in 2011 IEEE
International Conference on Robotics and Automation, May 2011, pp.
3607–3613.

[18] R. O. Duda and P. E. Hart, “Use of the Hough transformation to
detect lines and curves in pictures,” Commun. ACM, vol. 15, no. 1,
pp. 11–15, Jan. 1972. [Online]. Available: http://doi.acm.org/10.1145/
361237.361242

[19] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. PAMI-8,
no. 6, pp. 679–698, Nov 1986.

[20] S. Lynen, M. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A robust
and modular multi-sensor fusion approach applied to mav navigation,”
in Proc. of the IEEE/RSJ Conference on Intelligent Robots and Systems
(IROS), 2013.


