Story Version Control and Graphical Visualization for

Collaborative

Fabio Ziind
ETH Zurich
fabio.zund @inf.ethz.ch

Mubbasir Kapadia
Rutgers University
mubbasir.kapadia@rutgers.edu

Room Entrance
Pme /\
N Rodm Storage
P /_e\ = R@"Q
o otion Green
~ |Asteria N\
- Pam@an:e .
= . Adephagia cw@
Ghost Infi \/
sodfetBiron "
& —~
Paifting Dihing
=)
== W4
Compner] NN

Story Authoring

Steven Poulakos
Disney Research Zurich
steven.poulakos @disneyresearch.com

Robert W. Sumner
ETH Zurich/Disney Research Zurich
robert.sumner @inf.ethz.ch

Figure 1: Collaborative story authoring in the visual editor, graph-based story visualization, and playing back an animated story.

ABSTRACT

This paper presents a story version control and graphical visualiza-
tion framework to enhance collaborative story authoring. We propose
a media-agnostic story representation based on story beats, events,
and participants that describes the flow of events in a storyline. We
develop tree edit distance operations for this representation and use
them to build the core features for story version control, including
visual diff, conflict detection, and conflict resolution using three-way
merge. Our system allows authors to work independently on the
same story while providing the ability to automatically synchronize
their efforts and resolve conflicts that may arise. We further enhance
the collaborative authoring process using visualizations derived from
the version control database that visually encode relationships be-
tween authors, characters, and story elements, during the evolution
of the narrative. We demonstrate the efficacy of our system by inte-
grating it within an existing visual storyboarding tool for authoring
animated stories, and additionally use it to collaboratively author
stories using video and images. We evaluate the usability of our
system with two user studies. Our results reveal that untrained users
are able to use and benefit from our system. Additionally, users are
able to correctly interpret the graphical visualizations and perceive
them to benefit collaboration during the story authoring process.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CVMP 2017, December 11-13, 2017, London, United Kingdom

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.

ACM ISBN 978-1-4503-5329-8/17/12...$15.00
https://doi.org/10.1145/3150165.3150175

CCS CONCEPTS

¢ Human-centered computing — Visualization systems and tools;
* Computing methodologies — Graphics systems and interfaces;

KEYWORDS

story authoring, collaboration, visualization, story version control

ACM Reference Format:

Fabio Ziind, Steven Poulakos, Mubbasir Kapadia, and Robert W. Sumner.
2017. Story Version Control and Graphical Visualization for Collaborative
Story Authoring. In CVMP 2017: 14th European Conference on Visual
Media Production (CVMP 2017), December 11-13, 2017, London, United
Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3150165.3150175

1 INTRODUCTION

Stories pervade our daily lives. They document our histories, they
educate us, they entertain us, and they inspire us. The maturity in
connected platforms for content authoring and sharing has led to a
paradigm shift where traditional consumers are now active content
creators. In this connected setting, collaboration naturally plays a
central role in the narrative authoring process for media produc-
tions. However, current authoring tools are not explicitly designed
for collaborative authoring and suffer from two primary limitations.
First, without native support for collaboration, authors must explic-
itly communicate with one another to manually synchronize their
content and resolve conflicts. Second, understanding the overall pro-
gression of contributions and the relationships to creative content
in a collaborative setting with multiple authors is nearly impossible
due to inherent complexities in such a setup. As a result, patterns in
authoring procedures that might enhance collaborative creativity are
difficult to find.

https://doi.org/10.1145/3150165.3150175
https://doi.org/10.1145/3150165.3150175
https://doi.org/10.1145/3150165.3150175

CVMP 2017, December 11-13, 2017, London, United Kingdom

Our research enhances collaborative story authoring by providing
a Story Version Control (SVC) and graphical visualization framework
(Figure 1). Our system allows authors to work independently on the
same story while providing the ability to automatically synchronize
their efforts and resolve conflicts that may arise. Additionally, we
provide visualization tools that extract and visualize information
from the version control database to convey the creative intent of au-
thors, their contributions to the story over the course of its evolution,
and their relationships with characters and other authors. Together,
these capabilities enhance collaborative authoring and provide mean-
ingful insights into the creative process.

We address several challenges in developing our version control
and visualization framework. First, we present a tree-based, media-
agnostic story representation based on story beats, events, and par-
ticipants that describes the flow of events in a storyline. Given this
representation, we develop tree edit distance operations to compute
the distance between two stories as well as edit operations needed to
transform one story to another. With this foundation, we build the
core features for SVC, including visual diff tools, conflict detection,
and conflict resolution using three-way merge operations.

In addition to developing the base functionality for svc, we
further demonstrate that the data within the story-oriented version
control database holds great potential to enhance the collaborative
authoring process through visual representations of story evolution.
We propose three types of visualizations that span story content
and author participation. First, story-centric visualizations repre-
sent either character or author involvement in story progression.
Second, relationship visualizations depict the connectivity between
authors, characters, and story elements. For example, co-authors
may observe the characters an author most frequently edits. Finally,
meta-relationship visualizations characterize the correlation between
authors based on their interactions with story characters or story
events. Two authors whose edits frequently include the same charac-
ter may have a strong meta-relationship.

We demonstrate our Version Control System (VCS) and informa-
tion visualization tools on collaboratively authored stories using an
animation synthesis engine. To show the media-agnostic nature of
our method, we further show stories based on raw images and video.
We validate the efficacy of our tools with a user study in which teams
of authors collaboratively created novel stories. Additionally, users
are able to correctly interpret visualizations to extract meaningful in-
formation and perceive it to be a useful tool to promote collaboration
in storytelling.

2 RELATED WORK

Story Authoring. From cave paintings to modern day storyboards [5]
and comics [10], telling stories with pictures has evolved to be more
expressive and dynamic. Digital Storytelling has come to represent
a variety of multimedia formats (e.g. video, still images, animation
and audio) that enable people to share personalized stories. The flex-
ibility offered by digital formats, makes it easier to experiment with
the interaction between sequences of visual information, deriving
new meaning for individual multimedia elements based on montage.

Technology also evolves to support story creation. Emergent
forms of storytelling are enabled by technologies that guide the
temporal ordering of shots, sequences, and scenes based on attributes

F. Ziind et al.

including characters, emotions, themes, and story structure [14].
Artificial intelligence, in the form of automated planners, can also
support consideration of cinematic actions and scene composition of
those actions [7] as well as maintaining consistency between shots
and enable shot reuse [12].

Interactive narrative systems, which allow users to interact with
the story world and hence become part of the narrative, are grow-
ing into applications in education, training, and entertainment [13].
Visual authoring tools such as CANVAS [8] leverage computer-
assistance to visually author and synthesize multi-character anima-
tions from sparsely specified narrative events. Our system enables
authors to specify a sequence of narratively significant elements of
multimedia content to generate stories in a media-agnostic way.

The continued evolution of web technologies has enabled more

participatory and collaborative forms of content production. Early
observations of collaborative writing in scientific communities have
observed that the process of collaborative writing is a dynamic pro-
cess with continuous negotiations related to both the written content
as well as roles and responsibilities between the co-authors [2].
Our system aims to support the collaborative process by facilitating
awareness of story contents and author participation.
Version Control Systems. A VCS aims at maintaining a revision
history and at facilitating and supporting collaboration between
users. We refer the reader to the survey paper on model version-
ing approaches [1], which describes various version control models
and approaches in detail. Like modern vCS used for code version-
ing, such as SVN! and Git?, svc implements an optimistic control
mechanism with three-way merging.

vCs for other domains have been developed in recent years.
MeshGit [4] and skWiki [16] are prime examples for non-traditional
systems. They implement version control for editing meshes and for
editing multimedia projects, respectively. At the core, they define an
edit distance in that particular domain and provide version control
functionality such as, checkout, commit, and update to the user, that
operates on the repository based on an edit distance. MeshGit de-
fines the mesh edit distance as a measure of dissimilarity between
meshes, which can be used to transform a mesh into another mesh.
skWiki expresses the edit distance between two media as a set of
transformation operations, represented in domain specific language.
We introduce a VCS in the domain of stories. In contrast to MeshGit
and skWiki, we define an abstract domain representation for stories
and remain media-agnostic such that any form of story (e.g. based
on animation, video, or comics) is compatible with the system.
Information Visualization. Humans perceive visual attributes very
well, which motivates the mapping of different data to visual at-
tributes such as color, size, and proximity [9]. Information visual-
ization is a cognitive activity facilitated by visual representations,
which make it possible to explore relationships, to confirm hypoth-
esis on data relationships, and to aid the construction of cognitive
models [9]. Our aim is to leverage our data representations and
customize the visualization capabilities of existing tools to provide
intuitive representations of information about the collaborative au-
thoring process.

Contributions. Our work complements existing work in digital
story authoring and computational narrative by providing the tools

! https://subversion.apache.org/ 2 https://git-scm.com/

Story Version Control

CVMP 2017, December 11-13, 2017, London, United Kingdom

Repository Repository
15 r]
J< §
5 A=
& H H
r;f\/ N\ 6 casts spell on casts spell on ..
casts spell on edit story edit story
checkoutl lcheckout commit T
\::/ \:/,/“ /:} r" EK/‘ Z rII
< & (I £
Iy Ty Y
casts spell on casts spell on casts spell on ;nvesu‘gates " casts spellon ‘investigates
Author Alice Author Bob Author Alice Author Bob Author Alice Author Bob
(a) (b) (©
Repository Repository Repository

N

casts spell on

(r

(] T

lconﬂict detection & resolution, merge

B 40

J
investigates

casts spell on

casts spell on

R "

— &

DG
li;westigates casts spell on linves'(igates

Author Alice Author Bob

()

Author Bob

(e)

Author Alice Author Bob

®

Figure 2: Example scenario illustrating SvC’s workflow utilizing an optimistic versioning approach.

for story authors to seamlessly and efficiently collaborate. This is
accomplished using two important novel contributions: (1) A vCs for
stories that relies on a media-agnostic representation of stories, and
(2) Information visualization tools to help author glean meaningful
information from multi-user story authoring sessions, in an effort
to understand how the content of a story evolves and how authors
collaborate.

3 STORY REPRESENTATION

SVC assumes an abstract, tree-based, media-agnostic representation
of a story. Inspired by CANVAS [8], we define the domain knowl-
edge of a story as the set of story building blocks an author employs
to create a narrative. These building blocks are story beats, story
events, and event participants. A participant is a character or prop
object that takes part in the story in one or multiple events. An event
is a context-specific interactions between any number of participants,
where each instance of an event can have a different outcome depend-
ing on the participants. A beat combines multiple simultaneously
happening events into one unit of advancement in story time. SVC
implicitly assumes progression of time in the story as progression of
beats. Events within a beat are unsorted and happen in parallel.

A story s is represented as an ordered tree in which the story
node s = (I, {bg,by,...}) is the root node containing beat nodes b
as ordered children. A node ID I is contained in every node. A beat
node b = (I,{eg,eq,...}) contains an ordered list of event nodes.
An event node e = (I,g,{po,p1,...}) contains a signature name

g, which defines the type of event, and participant nodes p. The
participant nodes p = (I, k) are leaf nodes, they contain a participant
ID h. Figure 3 illustrates the abstract tree structure of a story.

"o\

bo

Figure 3: Tree representation of a story using story nodes s, beat
nodes b, event nodes e and participant nodes p.

We define a path Py = {ly,]},...,I;} of anode n € {s,b,e,p}
as the concatenation of node IDs I from the root node s at level
0 to node n at level k. The notation n > n’ expresses that a node
n is a descendant and lies in the sub-tree of n’. The node n is a
descendant of n’ if its path is longer |Pp| > |Py|. Finally, we use the
symbol S to denote the space of all possible stories. By using this
tree representation, we benefit from existing tree editing algorithms
to compare, modify, and merge stories.

Authoring a story requires two main tasks. First, the domain
knowledge of the story is defined by an expert. The expert defines

CVMP 2017, December 11-13, 2017, London, United Kingdom

events and participants that exist in the story world. Second, the
author creates instances of events, orders them into beats, and assigns
participants to events, in a storyboarding fashion. A screenshot of
the authoring editor is depicted in Figure 6a.

4 STORY VERSION CONTROL

SVC utilizes the optimistic versioning paradigm [1] in which a three-
way merging is applied. Three-way merging is common in most of
today’s vCS and allows the system to identify editing operations of
authors more precisely than using raw-merge and two-way merge.

We illustrate the three-way merging authoring paradigm by an
example scenario in Figure 2 in which authors Alice and Bob are
collaboratively editing a story about a character named Horton. (a)
The authors checkout the latest revision r from the repository, which
will serve as their base revision. The current revision r contains the
story Horton casts a spell on a blue potion. (b) The authors each
make changes to the story, creating new revisions r’ and r”, respec-
tively. Alice changes the Potion Blue to a Potion Red. Bob changes
the Potion Blue to a Potion Green and the event from casts a spell
to investigates. These changes are partially overlapping (changing
the potions) and thus conflicting. (c) Alice commits her changes r’
back to the repository. (d) Bob cannot commit his changes r” to the
repository in the current state, as his base revision r is older than
the current revision r’ on the server. (¢) Instead, he is required to
first update and merge his story r”” with the latest revision r’. As
a conflict is present, SVC assists Bob in resolving the conflict and
merging his revision with the latest, thereby creating revision r*.
(f) Bob can now commit his updated revision r* to the repository.
Afterward, Alice can update her revision r’ conflict-free to the latest
revision r*.

4.1 Story Edit Distance

In svc, version control functionality such as checkout, commit,
update, and merge, is provided through tree edit operations. Tree
edit operations are employed as a representation of dissimilarity
between two stories and thus constitute the core of the repository.
The following sections describe how tree edit operations are applied
to support version control mechanisms.

Using the Robust Tree Edit Distance (RTED) [11], SVC calculates
an injective mapping ¢ : N* — N* that maps post-order node indices
in a story s € S to post-order node indices in another story s’ € S.
In the example story trees depicted in Figure 4, the mapping is
c={1—1,3—24—4}

(2)

,S 4S
| (a) VAN
3b0 o) 2b0 3l1)1
e 4 PRCE eI @
€0 2%l s 1€2 |

Figure 4: Example mapping of two story trees to illustrate (a) ig-
nored mappings, (b) rename operations, (c) remove operations,
and (d) insert operations.

F. Ziind et al.

Given a mapping, the corresponding tree operations can be syn-
thesized as follows:

(a) Mappings between equal nodes are ignored.

(b) For each mapping between a node n € s and n’ € s’ a re-
name operation is synthesized if the nodes are not equal,
that is, if their ID is not identical I # I;y. A rename operation
0™"s,Py,n’ : S — S updates the node n € s at path Py, to a
node n’.

(¢) For each node in s that is not mapped to a node in s’ ,
a remove operation is synthesized. A remove operation
0"Ms, Py : S — S removes the node n € s at path Py,

(d) For each node in s’ that has no mapping from a node in
s, an insert operation is synthesized. An insert operation
0'"s, Py, c,n’ : S — S inserts a child node n’ to the parent
node n € s at path Py, at child index c.

These three types of operations are sufficient to transform an
arbitrary story s into a new story s’ [15]. The difference between two
stories diﬁ‘(s,s’) ={00,01,...,0n} is a set of n operations o; that
express the atomic changes required to transform s into s’

4.2 Repository representation

The SvC repository stores and keeps track of all operations the
authors have performed over time. We define a story repository
R = {rp,...,ry} as an ordered list of revisions. Inspired by [16],
a revision r; = (u;,a;,b;, t;, diff;) is a tuple consisting of a unique
identifier u, an author a, a reference to a parent (base) revision
b, a time stamp ¢, and a diff diff. The repository does not store
snapshots of a story but instead accumulates the delta transformation
operations. Applying the tree edit operations in a diff iff; to the story
s;_1 from the previous revision r;_| recreates the current story s;.
Hence, recreating a specific story s; can be expressed as a function
composition series sy = diff; o diff,_; o ... o diffySp.

4.3 Version Control Conflicts

In a three-way merge scenario, two users try to commit their story
to the repository, both stories based on the same base revision story,
as illustrated in Figure 2. Two diffs need to be merged, that is, the
two sets of operations need to be combined. During that process,
SV detects conflicting operations and lets the authors resolve the
conflict manually using the client. Two operations are conflicting
under the following conditions:

Rename Conflict A rename operation o'*"s, P, n’ conflicts with
a rename operation 05-‘“’“5, Py, n” if both operations update the
same node n € s to a different node, n’ #n”.
Insert Conflict An insert operation 0}“557 Py, c,n’ conflicts with
an insert operation oij“ss7Pn, ¢,n” if both operations insert a
different node n’ # n” at the same child index c at the same
parent node n.
Remove Conflict A remove operation 0;°™s, P, conflicts with
any rename operation o;e“s,Pnr ,m* or insert operation
oi]?‘ss7 P,,c,n** if n’ = n holds, that is, if the latter operations
target a descendant node of n.
In the example illustrated in Figure 2 (c), Alice’s and Bob’s re-
visions ' and r” contain operations that conflict with each other.
Alice’s revision contains a rename operation changing the Potion

Story Version Control

blue to the Potion Red and Bob’s revision contains a rename opera-
tion changing the same Potion Blue to a Potion Green instead. The
other operation in Bob’s revision r” is a rename operation changing
the event casts spell on to investigates, which does not conflict with
any of Alice’s operations.

4.4 System Architecture

Figure 5 summarizes the proposed system architecture. Story reposi-
tories are centralized and persisted on a server and can be accessed
online by both story editing as well as story visualization clients.

Story Editor Story

Client Visualization Web Browser

(PC, Mobile, Web) Tool

Clients

create, checkout, download (create, checkout, ! view

commit, diff, update, repository commit, diff, update, ! graphs
resolve, log resolve, log) !

P e e m 2 2 a
1
]

S

()

>

o _— !

a

MySQL Wildfly Apache, PHP

Figure 5: SvC System Architecture. Story repositories are cen-
tralized and persisted on a server and can be accessed online by
both story editing as well as story visualization clients.

SvC Server. The sVC server, running on Ubuntu in the Amazon
Web Services cloud>, comprises a Wildfly* application that provides
a RESTful API for performing operations on the repository and
transmits json-serialized repository data. All data is persisted in a
local MySQL database’®. The Wildfly server application provides
the following JAX-RS web services: checkout, commit, diff, resolve,
update, log, full, create.

The full request is only used by the visualization tools to down-
load the entire repository including the operations in all revisions
as well as a story snapshots for each revision. Using this informa-
tion, the tools have complete freedom to visualize any aspect of the
repository.

During a checkout request for a revision ry, all sets of operations
(diffs) are applied to the empty story in order to synthesize the
requested story i = diff; odiff;_; ... odiffysp.

A diff request calculates and returns the diff of two stories. The
stories can be submitted or referred to using revision IDs.

During a commit request, a diff between the submitted story and
the story is calculated. The diff is then appended to the repository as
a new revision.

An update request from the client contains the author’s latest
story Suuihor @s well as the author’s base revision rIy,s with story
Sbase- Using the story speaq in the latest (HEAD) revision in the
repository the server calculates the diffs diffShead,Spase as well as
diffSauthor Sbase and calculates the conflicts thereof. If there are no
conflicts, the operations in diffSpead, Shase are applied to Sauhor and
the resulting story is returned to the client. If conflicts are present,

3 https://aws.amazon.com/ * http://wildfly.org/ > http://www.mysql.com/

CVMP 2017, December 11-13, 2017, London, United Kingdom

they are sent to the client. The client presents the conflicts to the
author in a visual fashion and, for each pair of conflicting operations,
lets the author resolve each conflict by deciding which author’s op-
erations should be used. It is possible that operations from the same
author are dependent from each other. A dependency exists between
an operation o (n,-) on node n and another operation o’ (n’,-) on
node n’ if 0 (n,) is a rename or an insert operation and n’ > n holds.
After each resolved conflict, the client applies the same decision for
all dependent remaining conflicts. For instance, author Alice inserts
a new event and a participant into a beat. These operations conflict
with Bob’s operation to remove the entire beat. Alice is resolving
the conflicts. Her operation that inserts the participant depends on
the operation that inserts the event and thus cannot be chosen in-
dependently. If Alice decides to keep her operation that inserts the
participant, the client would automatically decide to keep as well the
operation that inserts the event. After all conflicts have been resolved,
the client sends a resolve request back to the server containing a
decision for each conflict. The server then applies each selected
operation in the conflicting operations pairs as well as the remaining
non-conflicting operations in diffShead,Sbase and diffSauthor; Sbase tO
the base story spase and sends the resulting story back to the client.
Story Editor Client. The Unity-based® story editor client applica-
tion extends an existing animated story authoring framework [8]. It
provides an intuitive interface and employs a storyboarding para-
digm for authoring stories. Storyboard images serve as event objects
and portrait images serve as participant objects. The story is authored
by arranging participants, events, and beats in the 2-D screen space.
The authoring editor is extended with a UI for performing version
control tasks and visualizing story differences. After an update as
well as when diffing two revisions, changed events and participants
are highlighted using different colors. Figure 6a depicts a screenshot
of the editor while an author is working on a story.
Story Visualization Tools. The Gephi’ visualization platform was
extended to connect to the SVC server’s API and load the repository
data structure. Using the full request, an entire repository including
all operations and a story snapshot for each revision is constructed
on the server and downloaded. The user can trim the repository to
visualize only a specific interval of revisions. Gephi is specialized in
graph-based visualizations and provides the user with a variety of
statistical metrics and filters. A screenshot of the standalone graph
visualization tool is depicted in Figure 6b. Various types of graphs,
as described in Section 5, can be generated and explored by the user.
Additionally, we provide a website, which lets the author generate
a predefined subset of graphs offered in the standalone visualization
tool. This website targets users who decide to relinquish the features
offered by Gephi but instead prefer a faster and simpler solution to
explore graph visualizations of their stories.

5 GRAPHICAL VISUALIZATION FOR
COLLABORATIVE STORY AUTHORING

Collaboratively authored stories serve as a multi-dimensional space
of interconnected information. When we author stories collabora-
tively, it is valuable to explore the stories through different lenses. In
this section we explore such different perspectives. Our dimensions
are authors, revisions, participants, beats, and events. Each slice of

S https://unity3d.com/ 7 https://gephi.org/

CVMP 2017, December 11-13, 2017, London, United Kingdom

S

2

Update || Commit Commit || To' || Using reposiar tore
Log

F. Ziind et al.

B oepnicaz

Node Corrg.
BT utor Convbuton paricpsntnlvenent o
7 Rearsve Author Colorg ToRevsion 0B

entiame (7] EventPartcpants

¥ presets.. Reset

(b)

Figure 6: Story Version Control client applications. (a) The SvC Story Editor Client providing an intuitive drag-and-drop interface
for authoring stories by arranging beats, events, and participants. A version control Ul is integrated. (b) The Gephi-based story

visualization tool with integrated SVC connectivity.

information characterizes valuable insights into the evolution of the
story, characters, authors, and their relations, and is a precursor to
facilitating collaboration.

Graphs offer intuitive visual metaphors to convey this informa-
tion, where each of the dimensions can be assigned a visual attribute,
such as node color, node size, or edge width. Different graphs can
be constructed by varying visual attributes and aggregating dimen-
sions. To illustrate different types of graphs, Figure 7 (left) depicts a
simple repository containing three revisions from three authors, Al-
ice, Bob, and Charlie. Purple highlighting indicates inserted events
and participants while orange highlighting indicates changed events
and participants since the last revision. Remove operations are not
visualized. We refer to this exemplary repository in the following
sections while introducing the graphs supported by SvC.
Story-Centric Graph. In a story-centric graph, beat and event nodes
form the graph layout, as depicted in Figure 7 (a). Author contri-
bution is aggregated over a revision interval and displayed inside
the nodes as pie charts. Contributions are calculated recursively to
include edits to events and participants within the beat. The story at
the last value of the revision interval is visible. This graph visualizes
the length, number of beats, as well as the width, number of parallel
events, of a story. Figure 7 (a) illustrates that, while Alice created the
first beat, she has only little contribution because multiple operations
were applied to it by Bob afterward. In contrast, Charlie is the sole
owner of the freezes event in the last beat as no other author touched
that event or participants within.

Relations. Relations are bipartite graphs that characterize the corre-
lation between two dimensions in the story repository.
Author-Participant Relations. This graph visualizes the relations be-
tween authors and participants, as depicted in Figure 7 (b). The edge
width between an author node and a participant node corresponds
to the number of times an author has used the participant over all
revisions of the story. In the exemplary repository Bob edited the
participants Scientist Horton and Scientist Victor.

Author-Beat Relations. This graph visualizes the relation between
authors and beats. The edge width between an author node and a beat
node corresponds to the number of times an author has edited the
beat or events and participants within the beat over all revisions of
the story. The graph in Figure 7 (c) indicates that Alice and Bob were
both editing the first two beats and Bob and Charlie were editing the
last beat.

Author-Event Relations. This graph visualizes the relations between
authors and events types. The event instances from all revisions are
collected and then grouped by event type. The edge width between
an author node and an event node corresponds to the number of times
an author has edited the event type over all revisions of the story.
The graph in Figure 7 (d) indicates that Bob was clearly editing the
most different event types.

Participant-Event Relations. This graph visualizes the relations be-
tween participants and event types. The author instances and par-
ticipant instances from all revisions are collected and then grouped
by event type and participant type, respectively. The edge width
between an author node and a participant node corresponds to the
number of times a participant instance occurs within an event in-
stance over all revisions of the story. Figure 7 (e) illustrates that
participant Scientist Horton and Ghost Hunn were characters that
appeared in the most different event types and are likely the lead
characters in the story.

Meta-Relations. Meta-relations characterize relations between en-
tities in the same dimension through their interaction with another
dimension. For example, we can characterize the relation among
authors based on how they interacted with participants. It visualizes
the relations between all authors based on how much they used the
same participants throughout all revisions. The edge width corre-
sponds to the number of interactions. Similarly, we can quantify the
meta-relation between authors based on which events they used, or
how much they edited the same objects within the beats throughout
all revisions.

Story Version Control

@ Revision: 2 Revision: 3 @

approaches approaches

gw

casts spell on

Revision: 1

\‘o”,

appears

67 n

s pooks_

A 5

al s
| NS
K\

)

turns to stone freezes

CVMP 2017, December 11-13, 2017, London, United Kingdom

Beat 0 Beat 1

approaches
(a) Allce

‘Scie@ctor . .
o(b e ®¢ @

Beat 2

casts spell on freezes
Charlie
— —

approaches reezes N
turns to stone
appears \j

ca @ on . /\
Bob Scieptist Horton
ca GSp\eIlwon VY
approaches

(C) turns to stone
. (d)wresh (%)
‘ 8° g e’
[spooks,
 ©) -

<&

Figure 7: Left: simple story repository with three revisions and three authors, visualized using events and participants. Purple high-
lighting indicates inserted objects while orange highlighting indicates changed objects since the last revision. Right: different graph
types generated from the repository. Beat-centric graph (a), author-participant (b), author-beat (c), author-event (d), and participant-
event (e) relation-centric graphs. Graphs (f), (g), and (h) depict meta-relation-centric graphs corresponding to (b), (c), (d), respectively.

Figure 7 depicts three meta-relation-centric graphs: (f) author-
participant-author, (g) author-beat-author, and (h) author-event-author,
which correspond to the graphs (b), (c), and (d), respectively. Meta-
relations are especially valuable for large repositories with a great
number of entities per dimension, for instance, many different au-
thors or many different event types, where direct relation graphs
become extremely complex and illegible. Example meta-relation
graphs for large repositories with seven authors are depicted in
Figure 9. Graph (a) indicates that author Aleus is dominating and
collaborating with all other authors, while the remaining authors
have low connectivity among themselves. Two subgroups of authors
are visible in graph (b). Authors Pallas and Orion as well as Hermes
and Memnon seem to be highly engaged on the same entities of the
story. Krotos is an independent author who is not editing anything
that other authors have created. Finally, graph (c) conveys that all
authors are strongly connected and almost all edit the same story
entities.

5.1 User Study Repository Visualizations

Figure 8 and Figure 10 depict selected graphs from the repositories
created as part of the user study, during which six groups (A to F)
with three authors each were authoring stories using the SVC system
over the course of a day. The user study is described in detail in
Section 6. To anonymize the authors, their real names were replaced
with a name of a Greek deity in all visualizations. Figure 8 (top)
contains the story-centric graphs for each group. The author color
keys are omitted for simplicity. Story lengths as well as the author’s
organization regarding who is assigned to which parts of the story
is clearly visible. For instance, in group D, the story is divided
into three parts and each part is assigned to one author. Author
red made some edits in the previous part to conform it with his or
her part. Analogously, the green author made edits in the first two
parts. Figure 8 (a), (b), and (c) contain author-event, author-beat,
and author-participant relation-centric graphs for groups A and D.
A force atlas [6] layout was applied to the graphs, which arranges

the nodes based on a constant gravity force as well as on the force
induced by the edge widths. Additionally, the nodes are resized
based on the node degrees. We found that these visual attributes
increase readability greatly, as was shown in the graph visualization
user study discussed in Section 6.

In group A Scientist Horton and Scientist Victor were clearly the
most often used characters as is depicted in graph (a) of Figure 8.
Also, their story is mostly happening in the Room Dining and Room
Entrance. Graph (b) for group D confirms our observations that the
authors did non share edits on the same beats. Nereus was editing
the most number of beats. In contrast, the authors in group A share
most of their beats. Graph (c) for group A illustrates that the authors
were using many of the same beat types, which confirms again that
the authors were collaborating more closely than group D.

Finally, Figure 10 depicts a participant-event relation-centric
graph for group D. Various details about the story can be extracted
from the graph. For instance, Scientist Victor and Scientist Horton
are clearly the main protagonist of the story as they appear in the
most different event types. Interestingly, Potion Green is investigated
but never drunk. Unlike both humans, both ghosts are never frozen
and never turn to stone. Ghost Hunn is the only ghost that both
appears and disappears.

Observations. It is particularly useful to observe how the different
groups worked together using the visualizations described above.
We observe that group A authors were particularly collaborative,
where they often worked together to iterate and finalize on the same
segments of the story, and contribute to the participants story progres-
sion. This is evident in their meta-relationships where we see strong
relationships develop between all three authors. The structural prop-
erties of the authored stories also emerge from these visualizations
where groups A and B author complex stories with many ongoing
narrative events. The other groups chose to opt for simpler, linear
narratives. The authors in group D collaborate in interesting ways, as
evident from their meta-relations. In terms of story beats, the authors
prefer to work independently, sketching out different portions of the

CVMP 2017, December 11-13, 2017, London, United Kingdom F. Zind et al.
Group A o 4 Group E
Group B Group F
Group C
GroupD o i
Group A P@ &= o
W i Sttt flermes Thalassa N Lo
Sciéntist Victor £
< ot =@ ©

N o e bad & o=

host I @ - E @
Group D —~ p@d PR &l

@ Pon e avsnis t dnige ‘@
@ < g\ <
UR@ng Pdtion Bljie @ m@s
S tist Victe B18
C‘W @ci ntist Horton G@“ A\ E“ Nereus " @ N Nereus LN
oG . A ppear Wrmeye
Pai@ ing/_\ lepart; w"@nh
Gom Secret Fassage @
(a) (b) (©)

Figure 8: Selected graphs from the story repositories created during the user study. Top contains all story-centric graphs in scale.
Bottom (a), (b), and (c) show author-event, author-beat, and author-participant relation-centric graphs for groups A and D.

(@

(©

(

@

b)

Figure 9: Meta-relation graphs characterize relations between
entities in the same dimension, here authors, through their in-
teraction with another dimension.

stories by themselves without much crosstalk. Nereus is central in
determining the progression of the various participants.

6 EVALUATION

We conducted two user studies to evaluate both the usability of
the system and the value of the graphical visualizations for collab-
oration. The first study included eighteen participants composed
of 14 Computer Scientists and 4 Digital Artists. Participants were

randomly grouped into 6 teams of 3 people. Each team was tasked
with the goal to collaboratively co-author a story with our system.
The experiment duration was 24 hours, and subjects were asked to
distribute their contributions over the experiment duration. All teams
were provided with the core SVC system, including functionality
to author stories as visual storyboards. The user study concluded
with a primary questionnaire to evaluate the entire system. A second
follow-up study was conducted to evaluate graph visualizations.

6.1 System Evaluation

The primary questionnaire aimed to evaluate the usability of the
system in addition to the usefulness of specific version control and
visualization functionalities to support collaboration. To evaluate
the usability of the system, we included the 10 question from the
System Usability Scale (SUS) [3]. This questionnaire was selected
because it is easy to administer and can provide reliable results for
small sample sizes. Our system received a score of 74.6, which
demonstrates above average usability. The SUS questions as well as
the detailed results can be found in the supplementary material.
The remaining items in the primary questionnaire were selected
to observe qualitative aspects about the collaborative process as

Story Version Control

(e VAR
anter dibappears
Ghost Hunn
ob: erves at dls(ance @
[spooks) /\
s@l on Q approaches
N N
N
Rodm Corjdor host Infi
m /\ o
Room Se\cryass@ Scie @m@me@ctor
Y X 72X P@d
/" Room Entrance/ (o« 4 e
P N
Rgom Dinjng Invesllgales
A\
NG N N
r@ \J o Ennce

tur@ne

Figure 10: Participant-event relation-centric graph for group
D.

well as specific components of SVC. Regarding the collaborative
process, participants tended to agree that the system facilitates col-
laborative authoring, awareness of how co-authors were contributing
and how the story evolved over time. For the basic version control
functionality, subjects strongly agreed that they understood the basic
functionality and tended to agree that the basic functionality operated
as expected and was helpful in the collaborative process. Participants
also tended to agree that they understood how to use the visual dif-
ference and update preview views, and that these functionalities
operated as expected. However, the visual difference was neutrally
observed to be helpful in the process of collaborative authoring. Par-
ticipants tended to agree that they understood how to use the Conflict
Resolution Tool and that the tool helped them resolve conflicts with
co-authors. Finally, participants tended to agree that the provided
version control functionality was sufficient. We generally observed
that the system was useful as well as usable.

6.2 Graph Visualization Evaluation

Another aim of the user study is to evaluate the influence of graph
visualizations on the collaborative process, specifically in terms
of improving awareness of author participation and story content.
We designed a follow-up study to specifically explore quantitative
and qualitative aspects of graph visualizations. The quantitative
questions provide the context for participants to analyze the graphs.
After analyzing two graphs of a given type, the participant is more
informed to assess whether the graph type improves awareness of
author participation or story content.

We selected the 6 different types of graph visualizations: Story-
centric (G1), author-participant relations (G2), author-event relations
(G3), author-beat relations (G4), participant-event relations (G5),
and author-beat meta-relations (G6). All graphs, except for the meta-
relation-centric graphs, were generated from the completed stories
authored during the first study. For each graph type, we present two
graphs from two different co-author groups and ask five questions.
The first question requires comparing the two graphs of given type.

CVMP 2017, December 11-13, 2017, London, United Kingdom

Questions 2 and 3 can be answered by analyzing graphs 1 and 2,
respectively. Question 4 explores relevance of the graph type for
supporting collaboration (“This type of graph improves awareness of
author collaboration in the story.”). Question 5 explores the relevance
of the graph type for supporting content understanding (“This type
of graph improves awareness of story content”). Please refer to the
supplemental material for the complete questionnaire.

We collected responses from 15 of the original user study partici-
pants. Although some of these questions were particularly challeng-
ing, responses to quantitative questions were correct 90% of the time.
The primary aim of the quantitative questions was to motivate the
participant to think critically about each graph. Figure 11 summa-
rizes the responses to qualitative questions per graph type. Subjects
agreed that the story-centric authors-beats graphs (G1, see example
in Figure 8-top) improved awareness of author collaboration, and
disagreed that it improves awareness of story content. Interestingly,
the other two graphs showing author-beats in either relation-centric
(G4) or meta-relation-centric (G6) had similar responses. We in-
terpret this to mean that visualizations involving authors and beats
provide a high-level representation to improve understanding of
author participation. Respondents either tended to agree or agreed
that all graphs visualizing author information improved awareness
of author participation. The relation-centric participant-event graph
lacked author information resulting in the opposite effect; subjects
agreed it improved awareness of story content.

Author

I Content

G1 G2 G3 G4 G5 G6

Figure 11: Graph Visualization Qualitative Questions. Re-
sponses to questions about how the respective graph improves
awareness of author collaboration and story content.

6.3 Applications

We demonstrate the possibilities of our media-agnostic abstract story
representation in SVC by creating stories of various media types.
Figure 12 depicts three examples, including screenshots from the
Haunted Castle animated story, which was automatically synthesized
from our visual storyboard editor. Additionally, we created stories
using (b) short movie clips as events to produce a movie and (c)
photographs as narrative events to produce a comic representation.
The final movie and comic rendering were manually created based
on story definitions produced by our authoring system. The movie
clips were extracted from the open source film Tears of Steel®.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented our work to enhance collaborative
story authoring by providing an SVC and graphical visualization

8 (CC) Blender Foundation - mango.blender.org

CVMP 2017, December 11-13, 2017, London, United Kingdom

F. Ziind et al.

Figure 12: Different story media types as employed by our Story Version Control system: (a) procedural animation system, (b) video
clips, and (c) comic panels. Images in (b) and (c¢) (CC) Blender Foundation - mango.blender.org

framework. To support SVC, we propose a graph-based story repre-
sentation as well as a tree edit distance operation that provides the
foundation for SVC operations. We present a suite of visualizations
that encode the relationships between story elements, characters, and
authors, as the story evolves. These visualizations capture meaning-
ful information that cannot be observed from a single story snapshot,
or from the raw data contained in a repository, and provides a means
for authors to interpret each others creative intent. Our user study
validates the efficacy of our tools and our results show a variety of
stories authored by untrained users, who have used our system for
the first time.

Limitations. As a prototype implementation, SVC does not include
production features, such as access security, distribution, or var-
ied workflows as found in existing vVCS. Further limitations in our
current system motivate a number of future research directions. Cur-
rently, our system does not support branching narratives. Several
users in our user study requested this feature. While we have not im-
plemented such functionality, it could be incorporated via additional
engineering effort. Users also requested commenting (annotations
to communicate with other authors) and spoken character dialog.
Incorporating these features could be achieved by including an ad-
ditional layer on top of our system that relies on more traditional
text-based version control. Directly coupling textual representations
with our graph-based representation would provide an interesting
area of future work.

Future Work. Additional limitations hint at more far-reaching fu-
ture work. Timing in our system is not represented explicitly but
defined implicitly by the given story beats. A more robust and flexi-
ble timing model could provide an additional level of control to story
authors. In our work, conflict resolution operates only at the syntac-
tic level when tree operations fail. Exploring semantic, rather than
syntactic, conflicts is an exciting research direction. Such semantic
detection could flag anachronisms such as a character appearing in
a story after he or she has passed away. Detecting, communicating,
and offering resolution suggestions for such semantic issues is a
challenging future direction. Even more exciting future work could
focus on extending semantic understanding to provide deeper assis-
tance to story authors, such as suggesting portions of the story that
could be most interesting to develop further.

REFERENCES

[1] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. 2009. A survey on
model versioning approaches. International Journal of Web Information Systems
5, 3 (2009), 271-304. https://doi.org/10.1108/17440080910983556

[2] E.E.Beck. 1993. A Survey of Experiences of Collaborative Writing. In Computer
Supported Collaborative Writing, Mike Sharples (Ed.). Springer London, London,
87-112. https://doi.org/10.1007/978-1-4471-2007-0_6

[3] J. Brooke. 1996. SUS: A quick and dirty usability scale. In Usability evaluation

in industry, P. W. Jordan, B. Weerdmeester, A. Thomas, and I. L. Mclelland (Eds.).

Taylor and Francis, London.

Jonathan D. Denning and Fabio Pellacini. 2013. MeshGit: Diffing and Merging

Meshes for Polygonal Modeling. ACM Trans. Graph. 32, 4, Article 35 (July 2013),

10 pages. https://doi.org/10.1145/2461912.2461942

[5] J. Hart. 2013. The Art of the Storyboard: A filmmaker’s introduction. Taylor &

Francis. https://books.google.ch/books?id=3WfmPtOgbagC

Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian.

2014. ForceAtlas2, a continuous graph layout algorithm for handy network

visualization designed for the Gephi software. PloS one 9, 6 (2014), e98679.

[7] A.Jhala and R. M. Young. 2010. Cinematic Visual Discourse: Representation,
Generation, and Evaluation. IEEE Trans. on Computational Intelligence and Al in
Games 2, 2 (June 2010), 69-81. https://doi.org/10.1109/TCIAIG.2010.2046486

[8] Mubbasir Kapadia, Seth Frey, Alexander Shoulson, Robert W. Sumner, and
Markus Gross. 2016. CANVAS: Computer-assisted Narrative Animation Synthe-
sis. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (SCA ’16). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 199-209. http://dl.acm.org/citation.cfm?id=2982818.2982846

[9] Riccardo Mazza. 2009. Introduction to Information Visualization (1 ed.). Springer
Publishing Company, Incorporated.

[10] S. McCloud. 1994. Understanding Comics. HarperCollins. https://books.google.
ch/books?id=tUwqbo481p4C

[11] Mateusz Pawlik and Nikolaus Augsten. 2011. RTED: A Robust Algorithm for
the Tree Edit Distance. Proc. VLDB Endow. 5, 4 (Dec. 2011), 334-345. https:
/Idoi.org/10.14778/2095686.2095692

[12] Alberto Piacenza, Fabrizio Guerrini, Nicola Adami, Riccardo Leonardi, Julie
Porteous, Jonathan Teutenberg, and Marc Cavazza. 2011. Generating Story Vari-
ants with Constrained Video Recombination. In Proceedings of the 19th ACM
International Conference on Multimedia (MM ’11). ACM, New York, NY, USA,
223-232. https://doi.org/10.1145/2072298.2072329

[13] Mark O. Riedl and Vadim Bulitko. 2013. Interactive Narrative: An Intelligent
Systems Approach. Al Magazine 34, 1 (2013), 67-77.

[14] Edward Yu-Te Shen, Henry Lieberman, and Glorianna Davenport. 2009. What’s
Next?: Emergent Storytelling from Video Collection. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI "09). ACM,
New York, NY, USA, 809-818. https://doi.org/10.1145/1518701.1518825

[15] K. Zhang and D. Shasha. 1989. Simple Fast Algorithms for the Editing Distance
Between Trees and Related Problems. SIAM J. Comput. 18, 6 (Dec. 1989), 1245-
1262. https://doi.org/10.1137/0218082

[16] Zhenpeng Zhao, Sriram Karthik Badam, Senthil Chandrasegaran, Deok Gun Park,
Niklas L.E. Elmqvist, Lorraine Kisselburgh, and Karthik Ramani. 2014. skWiki: A
Multimedia Sketching System for Collaborative Creativity. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI "14). ACM,
New York, NY, USA, 1235-1244. https://doi.org/10.1145/2556288.2557394

[4

[6

https://doi.org/10.1108/17440080910983556
https://doi.org/10.1007/978-1-4471-2007-0_6
https://doi.org/10.1145/2461912.2461942
https://books.google.ch/books?id=3WfmPt0gbagC
https://doi.org/10.1109/TCIAIG.2010.2046486
http://dl.acm.org/citation.cfm?id=2982818.2982846
https://books.google.ch/books?id=tUwqbo48lp4C
https://books.google.ch/books?id=tUwqbo48lp4C
https://doi.org/10.14778/2095686.2095692
https://doi.org/10.14778/2095686.2095692
https://doi.org/10.1145/2072298.2072329
https://doi.org/10.1145/1518701.1518825
https://doi.org/10.1137/0218082
https://doi.org/10.1145/2556288.2557394

	Abstract
	1 Introduction
	2 Related Work
	3 Story Representation
	4 Story Version Control
	4.1 Story Edit Distance
	4.2 Repository representation
	4.3 Version Control Conflicts
	4.4 System Architecture

	5 Graphical Visualization for Collaborative Story Authoring
	5.1 User Study Repository Visualizations

	6 Evaluation
	6.1 System Evaluation
	6.2 Graph Visualization Evaluation
	6.3 Applications

	7 Conclusions and Future Work
	References

