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Figure 1: We introduce an algorithm for the design of spinning tops and yo-yos. Our method optimizes the inertia tensor of an input model
by changing its mass distribution, allowing long and stable spins even for complex, asymmetric shapes.

Abstract

Spinning tops and yo-yos have long fascinated cultures around the
world with their unexpected, graceful motions that seemingly elude
gravity. We present an algorithm to generate designs for spinning
objects by optimizing rotational dynamics properties. As input, the
user provides a solid 3D model and a desired axis of rotation. Our
approach then modifies the mass distribution such that the princi-
pal directions of the moment of inertia align with the target rotation
frame. We augment the model by creating voids inside its volume,
with interior fill represented by an adaptive multi-resolution vox-
elization. The discrete voxel fill values are optimized using a con-
tinuous, nonlinear formulation. Further, we optimize for rotational
stability by maximizing the dominant principal moment. We extend
our technique to incorporate deformation and multiple materials for
cases where internal voids alone are insufficient. Our method is
well-suited for a variety of 3D printed models, ranging from char-
acters to abstract shapes. We demonstrate tops and yo-yos that spin
surprisingly stably despite their asymmetric appearance.
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1 Introduction

Spinning toys have existed since antiquity as playful objects that
capture the imagination. Invented independently all over the world,
spinning tops are referenced in ancient Greek literature [Gould

1975], and evidence of clay tops has been found in ancient cities
dating as early as 3500 B.C. Similarly, while yo-yos are believed to
have been invented in China, there are many historical references,
including in Mozart’s The Marriage of Figaro where a yo-yo is spun
to relieve stress [Malko 1978]. Despite the long tradition of these
toys, until today creating new designs has been a trial-and-error pro-
cess, calling on the intuition and meticulous patience of artists and
hobbyists. Moreover, there has been little departure from rotation-
ally symmetric designs.

Much attention has been devoted in the field of classical mechanics
to explaining the motion of spinning objects, however, the focus has
been primarily on analysis [Crabtree 1909; Perry 1957; Provatidis
2012; Cross 2013] rather than design. In this paper, we investi-
gate the unique geometric properties of shapes that spin, with an
eye on digital modeling and free-form design. A stable spin has
requirements on rotational inertia, including precise positioning of
the center of mass and correct alignment of the primary axes of the
body. We propose an algorithm to optimize for these inertial prop-
erties, for example to design a spinning top that rotates smoothly
and stably and can be fabricated using 3D printing.

In our approach, users provide an initial design for a spinning
model, specified as a 3D surface mesh. Along with the input ge-
ometry, the user may specify the desired axis of spinning and the
contact point with the support. The mass distribution is then op-
timized to ensure that the primary axis for the moment of inertia
aligns with the desired axis of rotation. Since the moment of in-
ertia depends on the entire volume, rather than just on the surface
geometry, we preserve the appearance of the input design by pri-
oritizing changes to the internal mass distribution. The algorithm
may also deform the model to ensure correct rotational properties in
cases where internal modifications are not sufficient. Alternatively,
we can optimize dual-material models that compensate unfavorable
configurations with a higher density fill, avoiding changes to the
external shape.

Overall, we present a novel technique to design objects with spe-
cial dynamic properties, and make the following contributions: We
formulate a nonlinear functional that measures the spinnability of a
solid shape about a user-defined axis. Using this measure, we de-
vise constraint optimization problems that align the principal axes
for moment of inertia with user-specified rotation axes. To this end,
we maximize the ratio of principal moments in the dominant and
lateral directions and place the center of mass on the rotation axis.

http://doi.acm.org/10.1145/2601097.2601157
http://portal.acm.org/ft_gateway.cfm?id=2601157&type=pdf


For our tops, we further improve stability by lowering the center of
mass, simultaneously reducing the mass.

Our approach is effective on a wide range of models, from charac-
ters to abstract geometric forms. We employ an adaptive octree for
discretizing the fill volume of our input shapes and a cage-based
scheme to parameterize their deformations. We validate our results
by fabricating the optimized shapes; as can be seen in the accompa-
nying video, the objects can be stably spun despite their complex,
asymmetric exterior appearance.

2 Related work

Fabrication-oriented design has recently gained increasing in-
terest from the computer graphics community, triggered by ad-
vances in 3D manufacturing technology. Various physical prop-
erties have been explored in this shape modeling context, such as
reproducible material appearance (see [Hullin et al. 2013] for a
survey), deformation properties [Bickel et al. 2010; Skouras et al.
2013], articulation behavior [Bächer et al. 2012; Calı̀ et al. 2012;
Zhou et al. 2014], and kinematic structures [Zhu et al. 2012; Coros
et al. 2013; Ceylan et al. 2013]. Complementary to these works, we
focus on rigid models and dynamic properties resulting from mass
distribution.

Prévost et al. [2013] proposed an approach for balancing static
models at rest, that applies a combination of voxel carving and
deformation to control the center of mass. Our work addresses a
more general problem of stability under rotational motion, involv-
ing both center of mass and moment of inertia. While Prévost et
al. [2013] use a plane sweeping heuristic for carving, we solve our
constrained combinatorial problems by recasting them as sequential
linear-quadratic programs using relaxation on the fill variables. As
discussed later, our optimization can be used for static balancing,
tending to find more stable solutions.

To assess printability of digital models, structural strength analysis
under various loading conditions has been proposed, e.g. [Umetani
and Schmidt 2013; Zhou et al. 2013]. Given a model with struc-
tural weaknesses, Stava et al. [2012] and Wang et al. [2013] create
support structures and modify surface thicknesses to improve ro-
bustness. We select surface thickness based on printer resolution,
but further robustness measures could also be integrated.

Rotational dynamics design. Furuta et al. [2010] combine a ge-
ometric modeling interface and a rigid body simulator for the de-
sign of kinetic art, providing real-time previews of the resulting mo-
tion during the design process. While restricted to forward simula-
tions, this approach allows the user to quickly explore many trial-
and-error experiments. We avoid trial-and-error and simulation, di-
rectly estimating models from user-specified geometries. Hirose et
al. [2011] enforce symmetries along with additional geometric con-
straints to create sphericons. In contrast, we do not require a feasi-
ble starting solution and do not incorporate constraints other than
the ones prescribed by the desired physical properties, enabling
free-form design. To the best of our knowledge, we are the first
to study the computational design of spinning toys with asymmet-
ric appearance.

Moment of inertia is a fundamental property of rigid bodies. It
specifies the required torque needed for a change in angular veloc-
ity and is, for example, an essential component in physics-based
animation for rigid body simulations [Eberly 2003] or dynamics
and control of characters [Macchietto et al. 2009]. Design for
moment of inertia has been investigated in mechanical engineer-
ing, for example, in reducing inertial resistance of car rims [König
and Wintermantel 2004]. However, the methods and objectives
used differ significantly: the domain is restricted to regular, low-
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Figure 2: Spinning Yo-yos and Tops stably: For spinning tops,
the center of mass must lie on the user-specified spinning axis a,
otherwise it will cause an unbalanced external torque |τ | = Mgd
relative to p (a). For slower angular velocities, the precession an-
gle θ between rotational (vertical axis) and spinning axes becomes
larger (c). For smaller `, the gravitational torque |τ | = Mg` sin θ
is smaller for equal precession, resulting in a longer spin. For yo-
yos, we require the center of mass to coincide with q (b).

resolution grids in combination with an approximate inertia formu-
lation [Kang et al. 2009]; evolutionary algorithms are employed as
an optimization strategy [Proos et al. 2001; König and Winterman-
tel 2004]. In contrast, our approach is generalizable to free-form
shapes and we formulate an exact energy and derivatives.

Topology optimization methods solve engineering problems of
distributing a limited amount of material in a design space [Bendsøe
and Sigmund 2012]. While our adaptive voxel discretization shares
similarities with the method proposed by DeRose and Dı́az [1996],
spinnability properties have not been considered by prior work in
this field. Furthermore, we propose a joint hollowing and deforma-
tion optimization that allows deformation of the grid.

3 Fundamentals and overview
Given a 3D shape, we aim to generate spinnable models by alter-
ing their mass properties, while keeping the appearance as close to
the original as possible. In the following sections we describe the
user input, fundamental mass properties, and spinnability metrics
needed to optimize the input toward a stably rotating object.

3.1 User input

The user provides the surface of a solid 3D shape, along with the
desired spinning axis a. The axis origin is set to the contact point
p as shown in Fig. 2 (a), which can be user-defined or chosen as
the lowest point on the model w.r.t. the up-direction a. For yo-yo
designs, the shape is partitioned into two parts and connected with
an axle that aligns with a, to allow string coiling. The user selects
a point q on the axle to define the coiling location (Fig. 2 (b)).

3.2 Mass properties and constraints

Center of mass. We denote by M the mass of our object and
by c the center of mass. If we assume a frictionless spin, the only
external torque acting on a spinning top relative to p, is the grav-
itational torque with magnitude |τ | = Mgd, where g is Earth’s
gravity and d is the distance from c to the spinning axis (Fig. 2 (a)).
We constrain the center of mass to lie on the spinning axis so that
the net torque on the model around the ground contact point is zero.

Refer to Fig. 2 (c): during the spinning motion, the precession an-
gle θ between the rotational (vertical) and spinning axes increases if
the angular velocity ω becomes smaller. We can express the grav-
itational torque as |τ | = Mg ` sin θ, where ` is the height of the
center of mass. Hence, we expect a longer, more stable spin for
smaller values of ` and M .



For yo-yos, the gravitational torque remains zero throughout the
spin if we neglect the effect of an uneven coiling of the string.

Moment of inertia is the analog of mass for rotational motion
and measures the resistance to rotations about a given axis. Eu-
ler’s equations from classical mechanics (see, e.g., [Goldstein et al.
2001]) conveniently describe the rotating motion of a rigid body in
its body frame, whose axes are the three principal axes of inertia
and the origin is c. Since there is no external torque acting on the
body (for c on the spinning axis), we can only spin about an axis
with constant angular velocity if it is a principal axis of inertia.

For an arbitrary rigid body, there exists
an equivalent ellipsoid with the same
inertial properties. We can discuss
the preferable axis using an ellipsoid
E with half-axes ha,hb,hc (‖hc‖ ≤
‖hb‖ ≤ ‖ha‖). Due to symmetry,
E’s principal axes of inertia are parallel
to its half-axes, and the corresponding
moments Ia, Ib, and Ic each equal the
sum of squares of the two other half-

axes’ lengths (omitting a common scale factor), as illustrated in
the inset. Hence, the maximal principal axis of inertia corresponds
to the shortest axis hc, and we have Ic ≥ Ib ≥ Ia. If we spin
the ellipsoid E with a constant angular velocity ω about a princi-
pal axis of inertia, the kinetic energy K in our system is 1

2
Iω2,

I ∈ {Ia, Ib, Ic}. Since K is proportional to I , we can expect a
longer spin for I = Ic.

Rotational stability refers to a body’s behavior under small dis-
turbances to its angular velocity ω due to, e.g., frictional forces.
Given three distinct values for the principal moments of inertia,
Ic > Ib > Ia, rotation is stable under small perturbations only
about the largest and the smallest axis [Goldstein et al. 2001]. In
the case of two axes having identical principal moments, the rota-
tion is stable only around the distinct axis. For Ic = Ib = Ia, no
axis is stable, neglecting contact friction. We can observe this effect
when trying to spin a marble in place: the orientation of the body
changes over time.

For an asymmetric shape whose maximal principal axis of inertia
aligns with the spin (and gravitational) axis and whose moments
are distinct Ic > Ib > Ia, the top spins stably under the condition
[Lewis et al. 1992]:

ω2 >
Mg`

Ic − Ib
. (1)

From this relation we can see that the stability limit depends on the
height of the center of mass ` and the mass M itself: the lower
the centroid and the smaller the mass, the less angular velocity ω
is required for a stable spin, confirming our conclusion from the
above discussion on precession. Similarly, we need a smaller ω the
higher the absolute difference between the largest moment Ic and
the mid-moment Ib.

In summary, in order to spin stably, four basic requirements on the
mass distribution of the model must be met:

1. The center of mass c must lie on axis a for spinning tops, or
coincide with the axle center q for yo-yos.

2. The center of mass c should be closer to contact point p and
the mass M minimal for our tops.

3. The axis a should be parallel to the maximal principal axis of
inertia.

4. The magnitude of the largest principal moment of inertia
should dominate over lateral moments to ensure the stability
of the spin.

3.3 Measuring spin quality

To distill the above analysis of spinning properties into a spin qual-
ity measure, we formulate energy functionals for our yo-yos and
tops. Provided that the basic constraints from Section 3.2 are ful-
filled, our functionals assign a spin quality score to a given model
M based on the stability criterion (1). Note that while Eq. (1) sug-
gests that a comparison of the mid- and largest moments is suf-
ficient for tops, we consider all moments in our quality measures
because the ordering of mid- and smallest axes might flip during
our dynamic balancing optimization (see Section 4).

Yo-yos. We measure the spin quality of a yo-yo by summing the
squared ratios of the dominant to lateral principal moments of iner-
tia:

fyo-yo = γI

[(
Ia
Ic

)2

+

(
Ib
Ic

)2
]
, (2)

assuming that Ic corresponds to the given spin axis and the center
of mass c equals the axle center q. The function fyo-yo is our yo-yo
energy functional; small values correspond to longer, more stable
spins.

Tops. To measure the quality of a spinning top, we add a term that
penalizes the distance ` between the center of mass c (which is con-
strained to lie on the axis a) and the contact point p and minimizes
the mass M , yielding the top energy functional:

ftop = γc (`M)2 + fyo-yo. (3)

The two weights γc and γI allow calibrating the relative contribu-
tions of the center of mass, inertia and the regularization terms of
the parameterizations that follow (Sections 5–7).

3.4 Optimizing tops and yo-yos

We turn models into spinnable objects by altering their mass prop-
erties while keeping the appearance as close to the original as pos-
sible. Our primary focus is redistributing mass by hollowing the
interior with precisely shaped voids. This method has significant
effect on the inertia tensor, with the added benefit of preserving ap-
pearance. However, due to non-negligible material on the object’s
shell, voids cannot always accomplish a stable spin. Consequently,
we introduce deformation and dual-material optimization as exten-
sions to our approach.

Hollowing. We first optimize the shape’s mass distribution by in-
troducing inner voids. We adopt a multi-resolution octree to dis-
cretize the interior volume of the object. To generate the voids, we
optimize for voxel fill values using a continuous, nonlinear formula-
tion as discussed in more detail in Section 5. We maximize stability
through the energy functionals fyo-yo (2) and ftop (3), respectively.

Cage-based deformation. While hollowing is effective for
many models, some special cases over-extend our stability require-
ments. In these instances, we further manipulate mass by introduc-
ing deformation optimization. We automatically extract a cage from
our octree and deform both the surface and the interior voids. We
are able to simultaneously optimize for hollowing, using a unified
formulation described in Section 6.

Dual-density optimization. As an alternative to deformation, we
modify our hollowing optimization to incorporate multiple densi-
ties in our material specifications. A heavier material is used in
the interior to compensate for highly non-optimal geometry of the
model’s shell. While this technique presents an additional fabrica-
tion effort, its benefit is avoiding changes to the exterior shape. We
describe the method in Section 7.



4 Optimizing dynamic balance

To evaluate our two quality measures fyo-yo and ftop on a model
M made of a homogeneous material, we need to express its mass
properties M , c, and the 3× 3 symmetric inertia tensor I. Assume
that the surface M encloses a region Ω ∈ R3 that corresponds
to a solid object with constant density ρ. We express the above
quantities using the ten integrals of the monomials of degree ≤ 2
over Ω, collected in a 10-vector:

sΩ(ρ) = [s1, sx, sy, sz, sxy, syz, sxz, sx2 , sy2 , sz2 ]T , (4)

where st = ρ

∫
Ω

t dV, e.g., sxy = ρ

∫
Ω

xy dV.

We obtain the following expressions for the mass and center of
mass:

M = s1 and c =
1

M
[sx, sy, sz]T ,

andM’s inertia tensor:

I =

 sy2 + sz2 −sxy −sxz
−sxy sx2 + sz2 −syz
−sxz −syz sx2 + sy2

 .
Note that we can reduce the volume integrals in sΩ to surface in-
tegrals s∂Ω using the Divergence Theorem, resulting in analytical
expressions for a triangulated surface ∂Ω; see supplemental mate-
rial for the derivations and pseudocode.

Coordinate frame for yo-yos. As evident from the formulas
above, c and I are expressed w.r.t. a coordinate frame. For our

cz
x

y yo-yos, the most convenient frame has its origin
at the user-provided spin point q and one of the
three axes, say z, points in the direction of the de-
sired spin axis a, as illustrated in the inset. For
this choice of frame, the model can only be spun
about a if the center of mass components sx, sy ,

and sz , and also the off-diagonal elements −sxz,−syz of I equal
zero. Otherwise, c does not equal q or the z-axis is not a prin-
cipal axis of inertia of M. Provided M fulfills these constraints,
Iz = sx2 + sy2 takes on the role of Ic in our functional fyo-yo.
Because our evaluation is independent of the choice of the x and y
axes, we parameterize the 2× 2 upper block of I by an orientation
angle φ using a Givens rotation:

R

[
sy2 + sz2 −sxy
−sxy sx2 + sz2

]
RT =

[
Ix 0
0 Iy

]
,

R =

[
cosφ − sinφ
sinφ cosφ

]
.

Optimizing yo-yos. To turn an arbitrary modelM into a yo-yo,
we therefore need to minimize fyo-yo with Ia := Ix, Ib := Iy , and
Ic := Iz , with the constraints

st = 0, ∀t ∈ {x, y, z, xz, yz} and (5)

cosφ sinφ (sx2 − sy2) + (cos2 φ− sin2 φ) sxy = 0. (6)

z

c

l
yx

p

Parallel Axis Theorem. The body frame cen-
tered at c is not an ideal coordinate system for
our tops because the center of mass can move
freely along the axis a. A better-suited frame is
centered at the contact point p, with the z-axis
aligned with a (see inset). Within this frame, the
center of mass c lies at height ` on the z-axis, so

that the inertia tensor I is computed w.r.t. a frame shifted by ` w.r.t.
our body frame. To evaluate ftop, we use the Parallel Axis Theorem,
which states that if the axes of two frames are parallel, we can de-
termine the new inertia tensor using the translation vector between
the two origins and the body’s mass:

ICoM = I +M
(
ccT − cT cE

)
,

where E is the identity matrix. For our choice of frame, where the
center of mass is at [0, 0, `]T , the theorem simplifies to

ICoM = I− s2
z

s1
diag(1, 1, 0).

Optimizing tops. For our tops, we minimize ftop, where Ia and
Ib now refer to the rotated components of the shifted inertia tensor
ICoM , and Ic = sx2 + sy2 as before. Unlike the yo-yo case, c can
move freely on the z-axis. Hence, we relax the equality constraint
sz = 0, instead substituting `M = sz in the objective ftop (refer to
Eq. (3)). The constraints to the optimization are then

st = 0, ∀t ∈ {x, y, xz, yz} and (7)

cosφ sinφ (sx2 − sy2) + (cos2 φ− sin2 φ) sxy = 0. (8)

Optimizing static balance. Interestingly, the problem of balanc-
ing a model at rest is a relaxed version of the top optimization:

minimize fstatic = γc`
2 subject to sx = sy = 0

where we remove the mass term M in fstatic because only the low-
ering of c improves the balance at rest.

5 Hollowing

The most nonintrusive way to compensate for unfavorable mass dis-
tributions in a model is to introduce voids in the interior, as illus-
trated in Fig. 3. The idea of carving the shape’s interior by sweeping
a plane through a uniform voxel grid was explored in [Prévost et al.
2013] for static balancing. We propose a different optimization ap-
proach that addresses the inertia tensor in addition to the center of
mass, uses a spatially-adaptive discretization, and avoids heuristics.

As explained in the previous sections, we aim to minimize ftop(Ω)
subject to the constraints (7), (8), or fyo-yo(Ω) subject to the con-
straints (5), (6). The variable in the optimization is the spatial mass
distribution inside the shape, as detailed below. Recall that the func-
tionals and the constraints are expressed in terms of the integrals
sΩ; we explain how these integrals depend on our unknowns.

5.1 Fabrication considerations

We enforce a minimal wall thickness to ensure that the resulting
models can be fabricated. As shown in Fig. 3 left, we partition the
region Ω into a boundary shell Ωb and the interior Ωi, restricting
the hollowing to Ωi. To account for a hollowed region Ω′ ⊆ Ωi in
our cost functionals, we adjust the volume integrals in Eq. (4):

sΩ−Ω′ = sΩ − sΩ′ .

Recall, given an axis, the contribution of a mass element to the
moment of inertia is proportional to its squared distance from this
axis. Mass on the boundary Ωb has a high influence on the moment
of inertia since it is far from the axis. Therefore, it is desirable for
the wall to be as thin as possible within fabrication limits.
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Figure 3: Hollowing: (Left) Our input encloses a volume Ω. By introducing voids Ω′, we can compensate for an unfavorable mass distribu-
tion. (Right) To reduce the number of variables and overall time complexity for our voids optimization, we summarize contributions of octree
leaf cells in a partition of larger cells shown here for a boundary and an interior cell.

5.2 Voxelization

We discretize the interior Ωi into mass elements Ωk and optimize a
binary fill variable βk ∈ {0, 1} for each, where a value of 1 means
that we hollow that element, and 0 means we keep it filled. To han-
dle free-form surfaces in our input and provide sufficient degrees
of freedom for interior voids, we require our discretization to sup-
port fine enough mass elements. One possibility would be to use
a high-resolution uniform voxel grid. However, we observe that
finest-resolution voxels are only required at the surface separating
the void space from the fill and external surface (see, e.g., the inte-
rior mass distribution of the Heart in Fig. 3 left, bottom). We there-
fore employ a multi-resolution voxelization based on an adaptive
octree, thereby significantly reducing the number of fill variables.
Our discretized volume integrals then become

sΩ−Ω′ = sΩ −
∑
k

βk sΩk

where Ωi =
⋃

k Ωk is a partitioning of the interior into octree cells
Ωk. The void space Ω′ consists of all cells Ωk for which βk = 1.

5.3 Optimization approach

Given our adaptive voxel discretization, since the fill values are bi-
nary, the resulting minimization problem would be combinatorial.
In order to take advantage of continuous optimization techniques,
we propose a relaxation approach that allows βk to take on a con-
tinuous value in the interval [0, 1].

The goal of the optimization eventually is to assign binary fill values
to each voxel. In practice, we observed that fill variables βk with
a fractional value only occur on the boundary between voids and
solid regions. Hence, we sample these regions at a high resolution,
ensuring final fractional values correspond to finest resolution cells
only (compare with Fig. 3 final). Values are then rounded to binary
numbers after convergence of the optimization.

This motivates the following optimization algorithm using adaptive
refinement (refer to Fig. 3 right):

Initialization. We initialize the octree to a mid-level refinement
(blue in Fig. 3) as a compromise between number of variables
and resolution of the initial partitioning. For each cell, we
compute sΩk . For cells which overlap the boundary Ωb (red),
we only take the contribution from the volume in Ωi into ac-
count.

Optimization step. We then optimize the fill variables βk for all
cells k as explained in detail below.

Split-and-merge. All cells k whose fill values are not binary (βk ∈
[ε, 1− ε]) after minimization, are split one level lower if they
are not yet at the maximum resolution (see split branch). Con-
versely, cells with fill values within ε of 0 or 1 are candidates
for merging. We merge neighboring cells with the same val-
ues into as coarse cells as possible (see merge branch). This
gives us a new set of cells Ωk for which we update sΩk .

Convergence. After each optimization step, and split-and-merge,
we check whether all fill values βk ∈ [ε, 1− ε] correspond to
cells Ωk at the maximum resolution. If so, we terminate the
optimization.

Our functionals ftop and fyo-yo are nonlinear in the fill variables βk.
To prevent an under-determined minimization problem, we use a
uniform symmetric Laplacian L as a regularizer, constructed over
neighboring cells. This results in the following optimization:

min
β

f(β) + γL
1

2
βTLβ,

where β is a vector containing all βk, and f(β) refers either to
ftop(β) or fyo-yo(β).

5.4 Implementation details

Cells overlapping the boundary need special handling. We rep-
resent the content of such cells with a tree itself, rooted at
the cell’s level, refined to highest resolution in close proxim-
ity to the boundary of M (red cell in Fig. 3). We illustrate

iterations

cell splitting in the inset on
the left. Cells corresponding
to fill variables are marked in
red, their subtrees in black.

Note that the example cell overlaps both internal void and the ex-
ternal model boundary.

To optimize the above regularized functionals, we use an active set
algorithm with sequential linear-quadratic programming (SLQP)
[Nocedal and Wright 2000; Byrd et al. 2006]. We restrict the fill
values to the unit interval using box constraints and incorporate the
center of mass and inertia as equality constraints. As the Hessian is
dense, in our experiments we experienced better time performance
when using LBFGS [Fletcher 1987], a memory-efficient approxi-
mation of the Hessian.
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Figure 4: Octree-cage extraction: We first identify all octree cells
(solid grey) intersecting with the objects’ volume. The exterior sur-
face of these octree cells defines our cage and the cell corners on the
surface are the handles (red). We then precompute bounded bihar-
monic weights [Jacobson et al. 2011] for all grid vertices (green)
and tri-linearly interpolate them for mesh and voxel vertices.

6 Cage-based deformation

If our void optimization does not lead to a sufficiently stable spin-
ning axis, we additionally allow the optimization to deform the sur-
face and the interior cells, by using a cage-based scheme. We ex-
tract the cage from our octree by identifying all cells at a specific
refinement level that intersect with the object’s volume as illustrated
in Fig. 4. The m vertices on the outer boundary of these cells be-
come the cage vertices, so-called handles (red). We then introduce
a uniform grid (dotted and solid grey lines) at a finer octree level
and precompute the bounded biharmonic weights [Jacobson et al.
2011] wij for each grid vertex vi (green and red) and handle j. For
surface vertices of M, and initial and newly created cell vertices
(after splits), we tri-linearly interpolate the weights.

Similar to Prévost et al. [2013], we parametrize the handle transfor-
mations by uniform scales uj ∈ R and translations tj ∈ R3, such
that the overall deformation at a vertex vi has the form

v′i =

m∑
j=1

[
wij v

T
i wij

] [ uj

tj

]
.

In contrast to their work, however, the handles are automatically
extracted without any 3D input from the user.

Collecting all original locations of the n triangle vertices vS
i and

current leaf cell corners vL
i , with their tri-linearly interpolated

weights in a 3n × 4m weight matrix W and, similarly, collect-
ing the parameters uj , tj of the m handles in a 4m column vector
h, we get the matrix version of the Linear Blend Skinning (LBS)
deformation:

v′ = Wh, where v′ =

[
v′S

v′L

]
,W =

[
WS

WL

]
.

The 3n-vector v′ collects all the deformed vertex and grid point
positions. As individual points are typically only influenced by a
partial set of handles, W is relatively sparse.

Allowing deformation means that the integrals s involved in our
optimization formulation become functions of the handle transfor-
mations h, in addition to the fill variables β:

sD(β,h) = sΩ(h)−
∑
k

βk sΩk (h).

6.1 Optimization

For the combined optimization of fill values and deformations, we
add two additional regularizers that keep the deformation of the sur-
face within reasonable limits. Since we only expect small rotations,
we employ Sorkine et al. [2004]’s bi-Laplacian LT

DLD , which ac-
counts for linearized rotations and favors smooth deformations. Ad-
ditionally, we penalize deformations far from the original surface:

γD,L(v′S)TLT
DLDv′S + γD,v‖v′S − vS‖22.

As before, we optimize the resulting constraint minimization using
active sets, with an analytical gradient, and an LBFGS approxima-
tion for the Hessian. The gradient with respect to handle trans-
formations is straightforward if we assume the derivatives of our
s-integrals with respect to vertex positions to be known (see our
supplemental material for derivations and pseudocode),

∂

∂h
sD(β,h) =

[
∂sΩ

∂v′
−
∑
k

βk
∂sΩk

∂v′

]
∂v′

∂h

where ∂v′/∂h = W. Note that the cells’ volume integrals sΩk

with their respective gradients are all independent, allowing a mas-
sively parallel update after a deformation step.

We can easily replace our volume deformation with any other cage-
based scheme and handle parametrizations by switching the LBS
formulation and gradient ∂v′/∂h.

7 Optimizing dual-material models

As previously motivated in Section 5.1, the masses of the elements
in the boundary shell Ωb generally have the most influence on a
model’s inertial properties. So far we considered two balancing
strategies: hollowing, and the combination of hollowing and de-
formation. While these strategies are well-suited for physical fab-
rication using single material 3D printers, an artist might not be
satisfied with a deformed spinning toy. We can further increase our
feasible set for the hollowing-only strategy by allowing for dual ma-
terial optimizations. We use a material with high density ρi on the
interior, where ρi � ρb. Given the same interior volume Ωi, the
heavier material makes it possible to achieve larger changes in mo-
ment of inertia and avoid the need for deformation. Our discretized
volume integrals are then a function of the material densities:

sΩ−Ω′ = (sΩb(ρb) + sΩi(ρi))−
∑
k

βk sΩk (ρi).

where the first term represents the solid model (sΩ = sΩb + sΩi)
with different densities for boundary and interior. Fig. 5 shows an
example fabricated result, where the model’s boundary and interior
are made of low- and high-density materials, respectively.

Figure 5: Dual-material optimization: (Left) dual-material model,
(right) 3D printed mold and resulting metal cast.



8 Results

Fabrication. All our models were printed on an Objet Connex
350 with an ABS-like plastic (green surface finish) and Objet’s
“Vero White” material (white finish). The printer has a resolution
of 600 and 1600 DPI on the two horizontal and vertical axes, re-
spectively. The Connex 350 – like most other 3D printers – builds
models layer-by-layer in a bottom-up manner, requiring a support-
ing structure for fabricating overhanging parts. Because we cannot
remove any support from the interior without introducing holes in
the models’ shells, we cut them prior to printing and glue them af-
terward.

Spinning tops. We validated our approach by designing and fab-
ricating a variety of spinning tops, ranging from posed characters
and abstract shapes to household objects. For the models presented
in Figs. 6, 7, 8, and 9, we use an adaptive octree with a maximum
refinement level of nine during the optimization. On a standard
desktop computer with 3.2 GHz and 8 cores, the complete process-
ing time for each takes less than a minute. This includes loading
the input mesh, initializing the octree, performing hollowing opti-
mization, and writing the output mesh. The hollowing optimization
itself takes approximately 10 seconds.

In the figures below we illustrate the before-and-after body frames
with black spheres for the center of mass, and red, green, and blue
arrows for the maximal, mid-, and minimal principal axes of inertia
(see, e.g., Fig. 7): the Ellipsoid in Fig. 6 demonstrates how we can
turn asymmetric models, whose principal axes are far off the user-
specified rotation axis, into dynamically balanced models that spin
stably.

Figure 6: Asymmetric “Ellipsoid”: (Left) Unstable input design
with misaligned principal axes. (Middle) Cross-section of opti-
mized result after hollowing. The dominant principal axis (red)
aligns with the spin axis. (Right) Fabricated result with hollowing.

Similar to the Ellipsoid, the input model for the Heart in Fig. 7 has
poor mass properties, with the maximal principal axis extremely
misaligned from the desired rotation axle (cupid’s arrow). Our opti-
mization fixes the axis’ orientation and produces a very stable spin,
as shown in the accompanying video.

Figure 7: “Heart”: The initial design (left) has very poor align-
ment of the dominant principal axis with the spin axis. (Middle)
Optimized result after hollowing, showing the interior mass distri-
bution. Opaque surfaces indicate the boundary of the void space.
(Right) 3D printed top.

Finally, two break-dancing Armadillos are shown in Fig. 8, one
spinning on his back shell, one on the tip of his finger. Our hollow-
ing successfully aligns the maximal principal axis of inertia with the
user-specified one, even if it is far off as for the Armadillo spinning
on his shell (compare left and right visualizations). Both Armadil-
los “dance” very stably around a, as we demonstrate in our video.

Figure 8: “Break-dancing Armadillos”: Through our hollowing
optimization, the Armadillos can perform spinning dance moves.
For each design, the unstable input (left), and the optimized stable
output (right) are shown. The Armadillo on its shell is particularly
badly aligned in the initial model.

Rotational stability. For the Teapot model (inset), the center
of mass is reasonably close to the central spinning axis and the

maximal principal axis of inertia is paral-
lel to a. However, as we observe in the
accompanying video, the solid model does
not spin when actuated by hand. In accor-
dance to the rotational stability criterion 1,
a large angular velocity is required for a sta-
ble spin since the moments of inertia are
similar. Our hollowing maximizes the ratio
of Ic over lateral moments and allows us to
reduce the angular velocity by a factor 1.56
(see Fig. 9 left, intertia only: ftop = fyo-yo),
while a simultaneous lowering of the center
of mass allows for a reduction by a factor
1.60 as illustrated in Fig. 9 middle (lower-

ing only: ftop = γc `
2 + fyo-yo). We can achieve an even higher

reduction of ω if we include mass M (see Fig. 9 right), resulting
in a factor 1.68. Interestingly, the lowering only strategy shifts the
mass distribution towards the contact point (compare left with mid-
dle cross-sections), while the simultaneous mass reduction lowers
the center of mass less but reduces the mass inward out (compare
middle with right cross-sections).

Yo-yos. We designed and fabricated two yo-yo examples. The
Cuboid in Fig. 10 top is a case where the initial principal axes of
the inertia tensor are far from the user specifications. Even with
the highly non-optimal starting shape, the optimized output model
spins stably. In our Woven Ring example (Fig. 10 bottom), the hol-
lowing procedure successfully aligned the maximal principal axis
despite complex surface geometry.

Cage-based deformation and dual-material models. There
are physical limitations on how much the inertial properties of an
object can be changed by hollowing if a minimum shell thickness
has to be maintained. In this case, we propose two strategies. For
the Dancing Couple model, we apply a cage-based deformation, as
shown in Fig. 11. Refer to Fig. 4 lower, right for the cage.



Figure 9: “Teapot”: (Left) Hollowed result showing voxelized inte-
rior mass and aligned axes using ftop = fyo-yo. (Middle) Lowering
of the center of mass shifts the mass distribution closer to the con-
tact point. If we include mass reduction (right), mass is reduced
inward out, resulting in the design with highest rotational stability.

Figure 10: Yo-yo designs: (Left to right) 3D print; input model;
optimized output model after hollowing. (Top) “Cuboid”: Our op-
timization rotates the original principal axes frame about the mid-
magnitude axis. (Bottom) “Woven Ring”: The axis of dominant
principal moment is precisely aligned to the spin direction.

Alternatively, we also handle multiple densities. The interior of
the Sumone model (Fig. 5) consists of tin-solder material with sig-
nificantly higher density (ρ = 8.1 g/cm3) compared to our printer
material (ρ = 1.17 g/cm3). While dual material optimization ex-
tends the design space of spinning tops, it comes at the cost of a
two-step fabrication process involving casting from a mold. Where
lower densities are sufficient, 3D printing of multi-material content
is possible [Chen et al. 2013; Vidimče et al. 2013].

Static balancing is an inherent part of our optimization approach.
In Fig. 12, we compare our balancing to the voxel-based sweep
plane heuristic by Prévost and colleagues [Prévost et al. 2013]. For
a fair comparision, we use voxel sizes that match our finest cells
of a level 9 octree. In addition to static balancing, our method is
capable of lowering the center of mass as we demonstrate in Fig. 12
top, left: while our center is 42% of the character’s height, Prévost
et al.’s method places it at 56%. Furthermore, in contrast to Prévost
et al., our method precisely places the center of mass at the center
of the support polygon. This improves stable balance, as shown in
the tilting plane test (Fig. 12 bottom). While our “T-Rex” keeps
its balance up to a tilting angle of 8 degrees, Prévost et al.’s output
already topples over at 1 degree.

Figure 11: “Dancing Couple”. (Top: left to right) Initial design
with principal axes rotated away from spin frame; after hollowing,
the dominant primary axis is still not aligned; optimized result af-
ter deformation. (Middle: left to right) Initial (red) and deformed
(green) models; voxelization after hollowing; voxelization with de-
formation optimization. (Bottom) The 3D printed result.

∆l
l

Figure 12: Statically balancing “T-Rex”: Our method handles
static balancing. Compared to Prévost et al. (top-left), our hol-
lowing result (top-right) has a lower center of mass, ∆`. (Bottom)
Inclined-plane stability test: the model by Prévost et al. loses bal-
ance significantly earlier (1◦) than our optimized model (8◦).

Cutting and voids. Due to the mathematical properties of mo-
ment of inertia, we can expect a small number of interior void
spaces: among all our demo models (see Table 1), the Armadillo
spinning on his shell had the largest number (5) of void spaces
(see Fig. 8 left). However, merely 2 planar cuts were sufficient
to access all voids. The highest number of planar cuts necessary (5)



for removing support material was for our Dancing Couple, even
though there is only 1 void space. For powder-based printing, a
single cut should be sufficient. We placed cuts manually, but could
incorporate automated partitioning techniques in the future, for ex-
ample, as an extension of Luo et al. [2012].

Model # voids # cuts
Cuboid, Ellipsoid, Heart, T-Rex 1 1
Armadillo (hand) 1 3
Woven Ring 1 4
Dancing Couple 1 5
Teapot 2 1
Elephant 3 2
Armadillo (shell) 5 2

Table 1: Cuts & voids: Models sorted by increasing # of voids.

Limitations. Our method is concerned with the concept of stabil-
ity under perfect contact conditions with the support, and neglect-
ing effects from air drag. However, frictional forces can lead to
interesting phenomena on spinning objects. For example, the ‘tippe
top’ is designed to flip vertically during its spin and relies on fric-
tion with the spin surface [Cohen 1977]. Similarly, a hard-boiled
egg changes its spinning axis by 90 degrees. However, both exam-
ples have a particular shape, which likely imposes restrictions on
the design space and limits free-form design. Further, simulation
of air drag can also be significant for designs with complex surface
geometry.

Our method is subject to practical limitations in scale. While larger
models are easier to optimize, since minimum printable thickness
is constant, models with high mass are difficult to spin by hand.

Lastly, to increase the value of our method as a design tool, it would
be advantageous to integrate a selection of user controls. We would
like to replace the fully automatic pipeline with user-guidance, af-
fording exploration of the top and yo-yo design space.

9 Discussion

We have presented a technique to take arbitrary 3D models and cre-
ate spinnable toys with surprising dynamic properties. Our algo-
rithm generates novel designs for tops and yo-yos by optimizing
rotational dynamics properties. We augment the model by creating
voids inside its volume, with interior fill represented by an adap-
tive multi-resolution voxelization. The discrete voxel fill values are
optimized using a continuous, nonlinear formulation. Further, we
optimize for rotational stability by maximizing the dominant prin-
cipal moment. We extend our technique to incorporate deforma-
tion and multiple materials with different densities. We have shown
through theoretical results and physical validation that our method
is well-suited for a range of geometries, from characters to abstract
shapes.

Moment of inertia is a physical property fundamental to mechan-
ical systems. As their computational design becomes increasingly
popular, control over their inertial properties is an important fea-
ture. Our spinning toy application serves as empirical evidence that
our energy terms are meaningful and intuitive. However, our en-
ergy formulation and solution strategies are generally applicable.
Our work could inspire new inertia control techniques, e.g. in de-
sign of mechanical structures [Zhu et al. 2012; Coros et al. 2013;
Ceylan et al. 2013], animatronics, and robotics: our method could
be adopted to control inertial properties of individual parts, thereby

minimizing the system’s overall inertial resistance. This can allow
for low-power actuators, reducing energy consumption and cost, or
facilitate the design of passive dynamic systems. Further, while
our models are passive objects with intricate shapes, Gajamohan et
al. [2012] present a cube with actively controlled reaction wheels
for balancing and even controlled jumping and falling. Embedding
active control mechanisms is out of scope for this paper but might
be an interesting avenue for future work.
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DEROSE, G. C. J., AND D ÍAZ, A. R. 1996. Hierarchical so-
lution of large-scale three-dimensional topology optimization
problems. In ASME Design Engineering Technical Conferences
and Computers in Engineering Conference.

EBERLY, D. H. 2003. Game Physics. Elsevier Science Inc.

FLETCHER, R. 1987. Practical Methods of Optimization; (2Nd
Ed.). Wiley-Interscience, New York, NY, USA.

FURUTA, Y., MITANI, J., IGARASHI, T., AND FUKUI, Y. 2010.
Kinetic art design system comprising rigid body simulation.
Computer-Aided Design and Applications 7, 4, 533–546.

GAJAMOHAN, M., MERZ, M., THOMMEN, I., AND D’ANDREA,
R. 2012. The Cubli: A cube that can jump up and balance. In
Proc. IROS, IEEE, 3722–3727.

GOLDSTEIN, H., POOLE, C., AND SAFKO, J. 2001. Classical
Mechanics, 3rd ed. Addison Wesley.

GOULD, D. 1975. The Top: Universal Toy Enduring Pastime.
Bailey Brothers and Swinfen Ltd.

HIROSE, M., MITANI, J., KANAMORI, Y., AND FUKUI, Y. 2011.
An interactive design system for sphericon-based geometric toys
using conical voxels. In Proc. International Conference on
Smart Graphics, 37–47.

HULLIN, M. B., IHRKE, I., HEIDRICH, W., WEYRICH, T.,
DAMBERG, G., AND FUCHS, M. 2013. Computational fab-
rication and display of material appearance. In Eurographics
State-of-the-Art Reports (STAR), 17 pages.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O.
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