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Abstract
Spinning tops and yo-yos have long fascinated cultures 
around the world with their unexpected, graceful motions 
that seemingly elude gravity. Yet, due to the exceeding diffi-
culty of creating stably spinning objects of asymmetric shape 
in a manual trial-and-error process, there has been little 
departure from rotationally symmetric designs. With mod-
ern 3D printing technologies, however, we can manufacture 
shapes of almost unbounded complexity at the press of a but-
ton, shifting this design complexity toward computation.

In this article, we describe an algorithm to generate 
designs for spinning objects by optimizing their mass dis-
tribution: as input, the user provides a solid 3D model and 
a desired axis of rotation. Our approach then modifies the 
interior mass distribution such that the principal directions 
of the moment of inertia align with the target rotation frame. 
To create voids inside the model, we represent its volume 
with an adaptive multiresolution voxelization and optimize 
the discrete voxel fill values using a continuous, nonlinear 
formulation. We further optimize for rotational stability by 
maximizing the dominant principal moment. Our method 
is well-suited for a variety of 3D printed models, ranging 
from characters to abstract shapes. We demonstrate tops 
and yo-yos that spin surprisingly stably despite their asym-
metric appearance.

1. INTRODUCTION
Spinning toys have existed since antiquity as playful objects 
that capture the imagination. Invented independently all 
over the world, spinning tops are referenced in ancient 
Greek literature,12 and evidence of clay tops has been found 
in ancient cities dating as early as 3500 B.C. Similarly, while 
yo-yos are believed to have been invented in China, there 
are many historical references, including in Mozart’s The 
Marriage of Figaro where a yo-yo is spun to relieve stress.17 
Despite the long tradition of these toys, until today creating 
new designs has been a trial-and-error process, calling on 
the intuition and meticulous patience of artists and hobby-
ists. Moreover, there has been little departure from rotation-
ally symmetric designs.

Much attention has been devoted in the field of classi-
cal mechanics to explaining the motion of spinning objects; 
however, the focus has been primarily on analysis8, 9, 19, 21 
rather than design. In this article, we investigate the unique 
geometric properties of shapes that spin, with an eye on 
digital modeling and free-form design. A stable spin has 
requirements on rotational inertia, including precise posi-
tioning of the center of mass and correct alignment of the 
primary axes of the body. We propose an algorithm to opti-
mize for these inertial properties, for example, to design a 

spinning top that rotates smoothly and stably and can be 
fabricated using 3D printing.

In our approach, users provide an initial design for a 
spinning model, specified as a 3D surface mesh. Along with 
the input geometry, the user may specify the desired axis of 
spinning and the contact point with the support. The mass 
distribution is then optimized to ensure that the primary 
axis for the moment of inertia aligns with the desired axis 
of rotation. Since the moment of inertia depends on the 
entire volume, rather than just on the surface geometry, we 
preserve the appearance of the input design by changing the 
internal mass distribution as we illustrated in Figure 1 on an 
elephant top.

We first formulate a nonlinear functional that measures 
the spinnability of a solid shape about a user-defined axis. 
Using this measure, we then devise constrained optimization 
problems that align the principal axes for moment of inertia 
with user-specified rotation axes. To this end, we maximize 
the ratio of principal moments in the dominant and lateral 
directions and place the center of mass on the rotation axis. 
For our tops, we further improve stability by lowering the 
center of mass, simultaneously reducing the mass.

The original version of this paper was published in 
 Proceedings of SIGGRAPH’14, August 2014, ACM.

Figure 1. We describe an algorithm for the design of spinning tops 
and yo-yos. Our method optimizes the inertia tensor of an input 
model by changing its mass distribution, allowing long and stable 
spins even for complex, asymmetric shapes.
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Our approach is effective on a wide range of models, from 
characters to abstract geometric forms. We employ an adap-
tive octree for discretizing the fill volume of our input shapes 
and validate our results by fabricating the optimized shapes; 
the objects can be stably spun despite their complex, asym-
metric exterior appearance.

2. RELATED WORK
Fabrication-oriented design. Fabrication-oriented 
design has gained increasing interest from the computer 
graphics community, triggered by advances in 3D manu-
facturing technology. Various physical properties have 
been explored in this shape modeling context includ-
ing deformation properties,4, 22 articulation behavior,1, 5 
structural strength,23, 24 and kinematic structures.6, 7, 25

Most related to our effort is the work by Prévost et al.20: 
they proposed an approach for balancing static models at 
rest that applies a combination of voxel carving and defor-
mation to control the center of mass. Our work addresses a 
more general problem of stability under rotational motion, 
involving both center of mass and moment of inertia. While 
Prévost et al.20 use a plane sweeping heuristic for carving, we 
solve our constrained combinatorial problems by recasting 
them as sequential linear-quadratic programs using relax-
ation on the fill variables. As discussed later, our optimiza-
tion can be used for static balancing, tending to find more 
stable solutions.

Rotational dynamics design. Furuta et al.10 combine a 
geometric modeling interface and a rigid body simulator 
for the design of kinetic art, providing real-time previews 
of the resulting motion during the design process. While 
restricted to forward simulations, this approach allows the 
user to quickly explore many trial-and-error experiments. 
We avoid trial-and-error and simulation, directly estimating 
models from user-specified geometries.

Hirose et al.13 enforce symmetries along with additional 
geometric constraints to create sphericons. In contrast, 
we do not require a feasible starting solution and do not 
incorporate constraints other than the ones prescribed by 
the desired physical properties, enabling free-form design. 
To the best of our knowledge, we are the first to study the 
computational design of spinning toys with asymmetric 
appearance.

Moment of inertia. Moment of inertia is a fundamental 
property of rigid bodies. It specifies the required torque 
needed for a change in angular velocity and is, for example, 
an essential component in physics-based animation for 
rigid body simulations or dynamics and control of charac-
ters.16 Design for moment of inertia has been investigated in 
mechanical engineering. However, the methods and objec-
tives used differ significantly. Our approach further general-
izes to free-form shapes and we formulate an exact energy 
and derivatives.

Topology optimization. Topology optimization meth-
ods solve engineering problems of distributing a limited 
amount of material in a design space.3 While our adaptive 
voxel discretization shares similarities with solution tech-
niques common in this field, spinnability properties have 
not been considered by prior work.

3. FUNDAMENTALS AND OVERVIEW
Given a 3D shape, we aim to generate spinnable models by 
altering their mass distribution, while keeping the appear-
ance as close to the original as possible. In the following 
sections, we describe the user input, fundamental mass 
properties, and spinnability metrics needed to optimize the 
input toward a stably rotating object.

3.1. User input
The user provides the surface of a solid 3D shape, along 
with the desired spinning axis a. The axis origin is set to the 
contact point p as shown in Figure 2a, which can be user-
defined or chosen as the lowest point on the model w.r.t. the 
up-direction a. For yo-yo designs, the shape is partitioned 
into two parts and connected with an axle that aligns with a, 
to allow string coiling. The user selects a point q on the axle 
to define the coiling location (Figure 2b).

3.2. Mass properties and constraints
Center of mass. We denote by M the mass of our object and 
by c the center of mass. If we assume a frictionless spin, the 
only external torque acting on a spinning top relative to p, is 
the gravitational torque with magnitude |τ| = Mgd, where g 
is Earth’s gravity and d is the distance from c to the spinning 
axis (Figure 2a). We constrain the center of mass to lie on the 
spinning axis so that the net torque on the model around the 
ground contact point is zero.

Refer to Figure 2c: during the spinning motion, the 
precession angle θ between the rotational (vertical) and 
spinning axes increases if the angular velocity ω becomes 
smaller. We can express the gravitational torque as |τ| = 
Mgsin θ, where  is the height of the center of mass. Hence, 
we expect a longer, more stable spin for smaller values of 
 and M.

For yo-yos, the gravitational torque remains zero through-
out the spin if we neglect the effect of an uneven coiling of 
the string.

Moment of inertia. Moment of inertia is the analog of 
mass for rotational motion and measures the resistance to 
rotations about a given axis. Euler’s equations from classical 
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Figure 2. Spinning yo-yos and tops stably: for spinning tops, the 
center of mass must lie on the user-specified spinning axis a, 
otherwise it will cause an unbalanced external torque |τ| = Mgd 
relative to p (a). For slower angular velocities, the precession angle θ 
between rotational (vertical axis) and spinning axes becomes larger 
(c). For smaller , the gravitational torque |τ| = Mg sin θ is smaller for 
equal precession, resulting in a longer spin. For yo-yos, we require 
the center of mass to coincide with q (b).
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mechanics (see, e.g., Ref.11) conveniently describe the rotat-
ing motion of a rigid body in its body frame, whose axes are 
the three principal axes of inertia and the origin is c. Since 
there is no external torque acting on the body (for c on the 
spinning axis), we can only spin about an axis with constant 
angular velocity if it is a principal axis of inertia.

For an arbitrary rigid body, there exists an equivalent ellip-
soid with the same inertial properties. We can discuss the 
preferable axis using an ellipsoid E with half-axes ha, hb, hc 

(hc ≤ hb ≤ ha). Due to sym-
metry, E ’s principal axes of inertia 
are parallel to its half-axes, and the 
corresponding moments Ia, Ib, and 
Ic each equal the sum of squares 
of the two other half-axes’ lengths 
(omitting a common scale factor), 
as illustrated in the inset. Hence, 
the maximal principal axis of iner-
tia corresponds to the shortest axis 
hc, and we have Ic ≥ Ib ≥ Ia. If we 

spin the ellipsoid E with a constant angular velocity ω about 
a principal axis of inertia, the kinetic energy K in our system  
is  I ∈ {Ia, Ib, Ic}. Since K is proportional to I, we can 
expect a longer spin for I = Ic.

Rotational stability. Rotational stability refers to a body’s 
behavior under small disturbances to its angular velocity ω 
due to, for example, frictional forces. Given three distinct 
values for the principal moments of inertia, Ic > Ib > Ia, ro-
tation is stable under small perturbations only about the 
largest and the smallest axis.11 In the case of two axes hav-
ing identical principal moments, the rotation is stable only 
around the distinct axis. For Ic = Ib = Ia, no axis is stable, ne-
glecting contact friction. We can observe this effect when 
trying to spin a marble in place: the orientation of the body 
changes over time. As long as the condition Ic > Ib ≥ Ia holds, 
we call Ic the dominant and Ib and Ia the lateral principal mo-
ments of inertia.

For an asymmetric shape whose maximal principal axis 
of inertia aligns with the spin (and gravitational) axis and 
whose moments are distinct Ic > Ib > Ia, the top spins stably 
under the condition14:

  (1)

From this relation we can see that the stability limit 
depends on the height of the center of mass  and the mass 
M itself: the lower the centroid and the smaller the mass, 
the less angular velocity ω is required for a stable spin, 
confirming our conclusion from the above discussion on 
precession. Similarly, we need a smaller ω the higher the 
absolute difference between the largest moment Ic and the 
mid-moment Ib.

In summary, in order to spin stably, four basic require-
ments on the mass distribution of the model must be met:

1. The center of mass c must lie on axis a for spinning 
tops, or coincide with the axle center q for yo-yos.

2. The center of mass c should be closer to contact point 
p and the mass M minimal for our tops.

3. The axis a should be parallel to the maximal principal 
axis of inertia.

4. The magnitude of the largest principal moment of 
inertia should dominate over lateral moments to 
ensure the stability of the spin.

3.3. Measuring spin quality
To distill the above analysis of spinning properties into a 
spin quality measure, we formulate energy functionals for 
our yo-yos and tops. Provided that the basic constraints 
from Section 3.2 are fulfilled, our functionals assign a 
spin quality score to a given model M based on the sta-
bility criterion (1). Note that while Equation (1) suggests 
that a comparison of the mid- and largest moments is suf-
ficient for tops, we consider all moments in our quality 
measures because the ordering of mid- and smallest axes 
might flip during our dynamic balancing optimization 
(see Section 4).

Yo-yos. We measure the spin quality of a yo-yo by sum-
ming the squared ratios of the dominant to lateral principal 
moments of inertia:

  (2)

assuming that Ic corresponds to the given spin axis and the 
center of mass c equals the axle center q. The function fyo-yo is 
our yo-yo energy functional; small values correspond to lon-
ger, more stable spins.

Tops. To measure the quality of a spinning top, we add 
a term that penalizes the distance  between the center of 
mass c (which is constrained to lie on the axis a) and the 
contact point p and minimizes the mass M, yielding the top 
energy functional:

  (3)

The two weights γc and γI allow calibrating the relative contri-
butions of the center of mass, inertia and the regularization 
term of the parameterization that follows (see Section 5).

3.4. Optimizing tops and yo-yos
We turn models into spinnable objects by altering their mass 
distribution while keeping their appearance unchanged. To 
this end, we redistribute mass by hollowing the interior with 
precisely shaped voids. We adopt a multiresolution octree 
to discretize the interior volume of the object. To generate 
the voids, we optimize for voxel fill values using a continu-
ous, nonlinear formulation as we discuss in more detail in 
Section 5. We maximize stability through the energy func-
tionals fyo-yo (2) and ftop (3), respectively.

While hollowing is effective for many models, some spe-
cial cases over-extend our stability requirements and voids 
alone cannot accomplish a stable spin. This is due to the non-
negligible material on the object’s shell. In the original ver-
sion of this article,2 we introduce extensions to our approach, 
further manipulating mass by either deforming the surface 
and interior voids or compensating for highly nonoptimal 
mass distributions with a heavier material in the interior.

ε
Ic

IaIb
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where tr is the trace operator and Ix and Iy take on the roles of 
Ia and Ib, respectively.

Optimizing yo-yos. To turn an arbitrary model M into a 
yo-yo, we therefore need to minimize fyo-yo with Ia:= Ix, Ib:= Iy, 
and Ic:= Iz, with the constraints

  (6)

Parallel Axis Theorem. The body frame centered at c is not 
an ideal coordinate system for our tops because the center of 

mass can move freely along the axis a. A bet-
ter-suited frame is centered at the contact 
point p, with the z-axis aligned with a (see 
inset). Within this frame, the center of mass 
c lies at height  on the z-axis, so that the 
inertia tensor I is computed w.r.t. a frame 
shifted by  w.r.t. our body frame. To evalu-
ate ftop, we use the Parallel Axis Theorem, 

which states that if the axes of two frames are parallel, we can 
determine the new inertia tensor using the translation vector 
between the two origins and the body’s mass:

 ICoM = I + M (ccT – cT cE),

where E is the identity matrix. For our choice of frame, where 
the center of mass is at [0, 0, ]T, the theorem simplifies to

Optimizing tops. For our tops, we minimize ftop, where Ia 
and Ib are now the eigenvalues of the upper 2 × 2 block of the 
inertia tensor ICoM, and Ic = sx2 + sy2 as before.

Unlike the yo-yo case, c can move freely on the z-axis. 
Hence, we relax the equality constraint sz = 0, instead substi-
tuting M = sz in the objective ftop (refer to Equation 3).

The constraints to the optimization are then

  (7)

Optimizing static balance. Interestingly, the problem 
of balancing a model at rest is a relaxed version of the top 
optimization:

where we remove the mass term M in fstatic because only the 
lowering of c improves the balance at rest.

5. HOLLOWING
The most nonintrusive way to compensate for unfavor-
able mass distributions in a model is to introduce voids in 
the interior, as illustrated in Figure 3. The idea of carving 
the shape’s interior by sweeping a plane through a uni-
form voxel grid was explored in Prévost et al.20 for static 
balancing. We propose a different optimization approach 
that addresses the inertia tensor in addition to the center 
of mass, uses a spatially adaptive discretization, and 
avoids heuristics.

4. OPTIMIZING DYNAMIC BALANCE
Before we explain our multiresolution discretization of the inte-
rior mass distribution, we formalize our quality measures and 
requirements from the previous section, casting them as opti-
mization problems in a discretization-independent manner. 
To evaluate our two quality measures fyo-yo and ftop on a model M 
made of a homogeneous material, we need to express its mass 
properties M, c, and the 3 × 3 symmetric inertia tensor I.

Assume that the surface M encloses a region Ω ∈ R3 that 
corresponds to a solid object with constant density ρ. We 
express the above quantities using the ten integrals of the 
monomials of degree ≤2 over Ω, collected in a 10-vector:

  (4)

We obtain the following expressions for the mass and 
center of mass:

and M’s inertia tensor:

Note that we can reduce the volume integrals in sΩ to sur-
face integrals s¶Ω using the Divergence theorem, resulting 
in analytical expressions for a triangulated surface ¶Ω; see 
Supplemental Material accompanying the original version 
of  this article Ref.2

Coordinate frame for yo-yos. As evident from the formu-
las above, c and I are expressed w.r.t. a coordinate frame. 

For our yo-yos, the most convenient frame 
has its origin at the user-provided spin 
point q and one of the three axes, say 
z, points in the direction of the desired 
spin axis a, as illustrated in the inset. For 
this choice of frame, the model can only 
be spun about a if the center of mass 
components sx, sy, and sz, and also the 

off-diagonal elements −sxz, −syz of I equal zero. Otherwise, 
c does not equal q or the z-axis is not a principal axis 
of inertia of M. Provided M fulfills these constraints,  
Iz = sx2 + sy2 takes on the role of Ic in our functional fyo-yo. If Ix and Iy 
denote the eigenvalues of the 2 × 2 upper block

we recall that the trace of I–2 is the sum of the squared eigen-
values , leading to an elegant reformulation of our 
yo-yo functional fyo-yo

  
(5)
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where Ωi = ∪k Ωk is a partitioning of the interior into octree 
cells Ωk. The void space Ω′ consists of all cells Ωk for which 
βk = 1.

5.3. Optimization approach
Given our adaptive voxel discretization, since the fill val-
ues are binary, the resulting minimization problem would 
be combinatorial. In order to take advantage of continu-
ous optimization techniques, we propose a relaxation 
approach that allows βk to take on a continuous value in 
the interval [0, 1].

The goal of the optimization eventually is to assign 
binary fill values to each voxel. In practice, we observed 
that fill variables βk with a fractional value only occur on 
the boundary between voids and solid regions. Hence, 
we sample these regions at a high resolution, ensuring 
final fractional values correspond to finest resolution 
cells only (compare with Figure 3, final). Values are then 
rounded to binary numbers after convergence of the 
optimization.

This motivates the following optimization algorithm 
using adaptive refinement (refer to Figure 3, right):

Initialization. We initialize the octree to a mid-level 
refinement (blue in Figure 3) as a compromise 
between number of variables and resolution of the 
initial partitioning. For each cell, we compute sΩk

. 
For cells which overlap the boundary Ωb (red), we 
only take the contribution from the volume in Ωi into 
account.

Optimization step. We then optimize the fill variables βk for 
all cells k as explained in detail below.

Split-and-merge. All cells k whose fill values are not binary 
(βk ∈ [ε, 1 − ε]) after minimization, are split one level 
lower if they are not yet at the maximum resolution (see 
split branch). Conversely, cells with fill values within ε 
of 0 or 1 are candidates for merging. We merge neigh-
boring cells with the same values into as coarse cells as 

As explained in the previous sections, we aim to mini-
mize ftop(Ω) subject to the constraints (7), or fyo-yo(Ω) subject 
to the constraints (6). The variable in the optimization is 
the spatial mass distribution inside the shape, as detailed 
below. Recall that the functionals and the constraints are 
expressed in terms of the integrals sΩ; we explain how these 
integrals depend on our unknowns.

5.1. Fabrication considerations
We enforce a minimal wall thickness to ensure that the 
resulting models can be fabricated. As shown in Figure 3 
(left), we partition the region Ω into a boundary shell Ωb and 
the interior Ωi, restricting the hollowing to Ωi. To account for 
a hollowed region Ω′ ⊆ Ωi in our cost functionals, we adjust 
the volume integrals in Equation (4):

sΩ-Ω¢ = sΩ - sΩ¢.

Recall, given an axis, the contribution of a mass element 
to the moment of inertia is proportional to its squared dis-
tance from this axis. Mass on the boundary Ωb has a high 
influence on the moment of inertia since it is far from the 
axis. Therefore, it is desirable for the wall to be as thin as 
possible within fabrication limits.

5.2. Voxelization
We discretize the interior Ωi into mass elements Ωk and 
optimize a binary fill variable βk ∈ {0, 1} for each, where a 
value of 1 means that we hollow that element and 0 means 
we keep it filled. To handle free-form surfaces in our input 
and provide sufficient degrees of freedom for interior voids, 
we require our discretization to support fine enough mass 
elements. One possibility would be to use a high-resolution 
uniform voxel grid. However, we observe that finest-resolu-
tion voxels are only required at the surface separating the 
void space from the fill and external surface (see, e.g., the 
interior mass distribution of the Heart in Figure 3, left, bot-
tom). We therefore employ a multiresolution voxelization 
based on an adaptive octree, thereby significantly reducing 
the number of fill variables. Our discretized volume inte-
grals then become

Initialization

Iterations

Final

Merge

Split

1

0

Ωb Boundary 

Ω9 ⊆ Ωi

interior Ωi

Boundary

βk

βj βj+1

βj+2 βj+3

βk = 1

shell

Figure 3. Hollowing: (Left) Our input encloses a volume Ω. By introducing voids Ω′, we can compensate for an unfavorable mass distribution. 
(Right) To reduce the number of variables and overall time complexity for our voids optimization, we summarize contributions of octree leaf 
cells in a partition of larger cells shown here for a boundary and an interior cell.

research highlights 

 



AUGUST 2017  |   VOL.  60  |   NO.  8  |   COMMUNICATIONS OF THE ACM     97

possible (see merge branch). This gives us a new set of 
cells Ωk for which we update sΩk

.
Convergence. After each optimization step, and split-and-

merge, we check whether all fill values βk ∈ [ε, 1 − ε] cor-
respond to cells Ωk at the maximum resolution. If so, we 
terminate the optimization.

Our functionals ftop and fyo-yo are nonlinear in the fill vari-
ables βk. To prevent an underdetermined minimization 
problem, we penalize differences between fill variables 
using a uniform symmetric Laplacian L, constructed over 
neighboring cells. This results in the following regularized 
optimization problem:

where β is a vector containing all βk, and f (β) refers either 
to fyo-yo(β) or ftop(β), and st denote the respective linear equal-
ity constraints (6) or (7).

To optimize the above regularized functionals, we use an 
active set algorithm with sequential linear-quadratic pro-
gramming.18 We further restrict the fill values to the unit 
interval using box constraints. As the Hessian is dense, in 
our experiments we experienced better time performance 
when using LBFGS,18 a memory-efficient approximation of 
the Hessian.

6. RESULTS
Fabrication. All our models were printed on an Objet 
Connex 350 with an ABS-like plastic (green surface fin-
ish) and Objet’s “Vero White” material (white finish). The 
printer has a resolution of 600 and 1600 DPI on the two 
horizontal and vertical axes, respectively. The Connex 
350—like most other 3D printers—builds models layer-by-
layer in a bottom-up manner, requiring a supporting struc-
ture for fabricating overhanging parts. Because we cannot 
remove any support from the interior without introducing 
holes in the models’ shells, we cut them prior to printing 
and glue them afterward.

Spinning tops. We validated our approach by design-
ing and fabricating a variety of spinning tops, ranging 
from posed characters and abstract shapes to household 
objects. For the models presented in Figures 1, 4, and 5, 
we use an adaptive octree with a maximum refinement 
level of nine during the optimization. On a standard 
desktop computer with 3.2 GHz and 8 cores, the com-
plete processing time for each takes less than a minute. 
This includes loading the input mesh, initializing the 
octree, performing hollowing optimization, and writing 
the output mesh. The hollowing optimization itself takes 
approximately 10 s.

In the figures below we illustrate the before-and-after 
body frames with black spheres for the center of mass, 
and red, green, and blue arrows for the maximal, mid-, 
and minimal principal axes of inertia (see, e.g., Figure 4): 
the Ellipsoid in Figure 4 (top) demonstrates how we can 
turn asymmetric models, whose principal axes are far off 
the user-specified rotation axis, into dynamically balanced 
models that spin stably.

Figure 4. Asymmetric “Ellipsoid” and “Heart”: (Left) Unstable input 
designs with misaligned principal axes. (Middle) Optimized results 
after hollowing: for the “Ellipsoid”, a cross-section is shown. The 
dominant principal axis (red) aligns with the spin axis. Opaque 
surfaces indicate the boundary of the void space. (Right) Fabricated 
results with hollowing.

Figure 5. “Break-dancing Armadillos”: Through our hollowing 
optimization, the Armadillos can perform spinning dance moves. 
For each design, the unstable input (left), and the optimized stable 
output (right) are shown. The Armadillo on its shell is particularly 
badly aligned in the initial model.

Similar to the Ellipsoid, the input model for the Heart 
in Figure 4 (bottom) has a poor mass distribution, leading 
to a principal axis far off the desired rotation axle (cupid’s 
arrow). Our optimization fixes the axis’ orientation and pro-
duces a very stable spin.

Finally, two break-dancing Armadillos are shown in 
Figure 5, one spinning on his back shell, one on the tip of 
his finger. Our hollowing successfully aligns the maximal 
principal axis of inertia with the user-specified one, even if it 
is far off as for the Armadillo spinning on his shell (compare 
left and right visualizations). Both Armadillos “dance” very 
stably around a.

Rotational stability. For the Teapot model (inset), the 
center of mass is reasonably close to the central spinning 
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axis and the maximal principal axis of 
inertia is parallel to a. However, the solid 
model does not spin when actuated by 
hand. In accordance to the rotational 
stability criterion 1, a large angular veloc-
ity is required for a stable spin since the 
moments of inertia are similar. Our hol-
lowing maximizes the ratio of Ic over lat-
eral moments and allows us to reduce 
the angular velocity by a factor 1.56 (see 

Figure 6, left, intertia only: ftop = fyo-yo), while a simultane-
ous lowering of the center of mass allows for a reduction 
by a factor 1.60 as illustrated in Figure 6 (middle; lowering 
only: ftop = γc 

2 + fyo-yo). We can achieve an even higher reduc-
tion of ω if we include mass M (see Figure 6, right), result-
ing in a factor 1.68. Interestingly, the lowering only strategy 
shifts the mass distribution toward the contact point (com-
pare left with middle cross-sections), while the simulta-
neous mass reduction lowers the center of mass less but 
reduces the mass inward out (compare middle with right 
cross-sections).

Yo-yos. We designed and fabricated two yo-yo examples. 
The Cuboid in Figure 7 (top) is a case where the initial prin-
cipal axes of the inertia tensor are far from the user specifi-
cations. Even with the highly nonoptimal starting shape, 
the optimized output model spins stably. In our Woven Ring 
example (Figure 7, bottom), the hollowing procedure suc-
cessfully aligned the maximal principal axis despite complex 
surface geometry.

Static balancing. Static balancing is an inherent part 
of our optimization approach. In Figure 8, we compare 
our balancing to the voxel-based sweep plane heuristic by 
Prévost et al.20 For a fair comparison, we use voxel sizes 
that match our finest cells of a level 9 octree. In addition 
to static balancing, our method is capable of lowering the 
center of mass as we demonstrate in Figure 8 (top-left): 
while our center is 42% of the character’s height, Prévost 
et al.’s method places it at 56%. Furthermore, in contrast 

to Prévost et al., our method precisely places the center of 
mass at the center of the support polygon. This improves 
stable balance, as shown in the tilting plane test (Figure 8, 
bottom). While our “T-Rex” keeps its balance up to a 
tilting angle of 8°, Prévost et al.’s output already topples 
over at 1°.

Cutting and voids. Due to the mathematical proper-
ties of moment of inertia, we can expect a small number 
of interior void spaces: among all our demo models, the 
Armadillo spinning on his shell had the largest number 
(5) of void spaces (see Figure 5, left). However, merely two 
planar cuts were sufficient to access all voids. For powder-
based printing, a single cut should be sufficient. We placed 
cuts manually, but could incorporate automated partition-
ing techniques in the future, for example, as an extension 
of Luo et al.15

Limitations. Our method is concerned with the con-
cept of stability under perfect contact conditions with the 

Inertia only Lowering only Lowering and mass
reduction

Figure 6. “Teapot”: (Left) Hollowed result showing voxelized interior 
mass and aligned axes using ftop = fyo-yo. (Middle) Lowering of the 
center of mass shifts the mass distribution closer to the contact 
point. If we include mass reduction (right), mass is reduced inward 
out, resulting in the design with highest rotational stability.

Figure 7. Yo-yo designs: (Left to right) 3D print; input model; 
optimized output model after hollowing. (Top) “Cuboid”: Our 
optimization rotates the original principal axes frame about the 
mid-magnitude axis. (Bottom) “Woven Ring”: The axis of dominant 
principal moment is precisely aligned to the spin direction.

Figure 8. Statically balancing “T-Rex”: Compared to Prévost et al.20 
(top-left), our hollowing result (top-right) has a lower center of 
mass, ∆. Cross-sections are shown in blue. (Bottom) Inclined-plane 
stability test: the model by Prévost et al. loses balance significantly 
earlier (1°) than our optimized model (8°).
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support, and neglecting effects from air drag. However, 
simulation of air drag can be significant for designs with 
complex surface geometry. Our method is further subject 
to practical limitations in scale. While larger models are 
easier to optimize, since minimum printable thickness 
is constant, models with high mass are difficult to spin 
by hand. Lastly, to increase the value of our method as a 
design tool, it would be advantageous to integrate a selec-
tion of user controls.

7. DISCUSSION
Spinning tops and yo-yos have existed since millennia and 
we have witnessed only very limited departure from sym-
metric designs. Utilizing the shift in design complexity 
from manufacturing toward computation, we have pre-
sented a technique to take arbitrary, asymmetric 3D mod-
els and turn them into stably spinning toys with previously 
unseen and surprising dynamic properties. While we have 
not considered friction in our modeling, frictional forces 
can lead to interesting phenomena on spinning objects. 
For example, the “tippe top” is designed to flip vertically 
during its spin and relies on friction with the spin sur-
face. Similarly, a hard-boiled egg changes its spinning axis 
by 90°. However, both examples have a particular shape, 
which likely imposes restrictions on the design space and 
limits free-form design.

Moment of inertia is a physical property fundamental 
to mechanical systems. As their computational design 
becomes increasingly popular, control over their inertial 
properties is an important feature. Our spinning toy appli-
cation serves as empirical evidence that our energy terms 
are meaningful and intuitive. However, our energy formula-
tion and solution strategy are generally applicable. Our work 
could inspire new inertia control techniques, for example, 
in design of mechanical structures,6, 7, 25 animatronics, and 
robotics: our method could be adopted to control iner-
tial properties of individual parts, thereby minimizing the 
system’s overall inertial resistance. This can allow for low-
power actuators, reducing energy consumption and cost, or 
facilitate the design of passive dynamic systems.
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