
Sketch-Based Generation and Editing of Quad Meshes

Kenshi Takayama
ETH Zurich

Daniele Panozzo
ETH Zurich

Alexander Sorkine-Hornung
Disney Research Zurich

Olga Sorkine-Hornung
ETH Zurich

Figure 1: Results created by two professional artists using our novel sketch-based quad remeshing tool. The smooth subdivision surfaces
defined by the coarse quad meshes demonstrate the suitability of our approach for practical production pipelines.

Abstract

Coarse quad meshes are the preferred representation for animating
characters in movies and video games. In these scenarios, artists
want explicit control over the edge flows and the singularities of
the quad mesh. Despite the significant advances in recent years,
existing automatic quad remeshing algorithms are not yet able to
achieve the quality of manually created remeshings. We present
an interactive system for manual quad remeshing that provides the
user with a high degree of control while avoiding the tediousness
involved in existing manual tools. With our sketch-based interface
the user constructs a quad mesh by defining patches consisting of
individual quads. The desired edge flow is intuitively specified by the
sketched patch boundaries, and the mesh topology can be adjusted
by varying the number of edge subdivisions at patch boundaries. Our
system automatically inserts singularities inside patches if necessary,
while providing the user with direct control of their topological and
geometrical locations. We developed a set of novel user interfaces
that assist the user in constructing a curve network representing such
patch boundaries. The effectiveness of our system is demonstrated
through a user evaluation with professional artists. Our system is
also useful for editing automatically generated quad meshes.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Modeling packages;

Keywords: quad meshing, edge flow, sketch-based interfaces

Links: DL PDF WEB VIDEO DATA

1 Introduction

The generation of pure quadrilateral meshes is an important step
in the production pipeline of movies and video games, where the
Catmull-Clark subdivision is ubiquitously used to generate smooth
surfaces. The automatic generation of such meshes is a very active
research topic, and geometric modeling packages [3D-Coat 2013;
ZBrush 2013] now include automatic quad remeshing algorithms.

The quality of a quad mesh and its suitability to a given application
heavily depends on the placement of the singularities (i.e., vertices
where more or less than four quadrilaterals meet), and on the align-
ment of the mesh with semantic features. The latter often does not
directly correspond to geometric notions such as principal curvature
directions; for example, artists may prefer a certain anisotropy in flat
or spherical parts of the model because they anticipate deformations
due to articulation of the shape. Important concepts in this respect
are the so-called “edge flow” and “edge loops” – chains of consec-
utive edges in the quad mesh that can locally be thought of as the
grid lines. Artists and designers often wish to explicitly control the
edge flow and be able to prescribe precise positioning of edge loops.

Optimizing the alignment of the quad mesh and the amount and po-
sitions of singularities is a challenging task due to the global effect
of every change in the quad mesh connectivity. It is generally impos-
sible to refine, coarsen or otherwise edit a quad mesh only locally
without introducing additional singularities. Thus, automatic quad
meshing methods [Kälberer et al. 2007; Bommes et al. 2009] cast
the problem as a single, mixed-integer, global energy minimization
and solve it using customized greedy solvers. Due to the inherent
complexity of the problem, it is not feasible to expose to the user
the control over every single quadrilateral or edge loop while still
producing high-quality meshes with low metric distortion. In other
words, while influencing the overall alignment of the mesh to a given
field of directions is already achieved by the mentioned automatic
methods, hard constraints on edge loops, placement of singularities
and other editing operations are not fully supported. This is a major
limitation that restricts the practical usability of existing methods to
the generation of dense quad meshes, where a fine level of control is
not required. Even in this setting, it is common to manually remesh
parts of the surface to improve their quality.

Surprisingly, manual generation of quad meshes has not received
much attention, neither in the research community nor in the industry.
Most of major modeling packages provide tools to manually retopol-
ogize surfaces (i.e., convert a triangle mesh into a quad mesh), that

http://doi.acm.org/10.1145/2461912.2461955
http://portal.acm.org/ft_gateway.cfm?id=2461955&type=pdf
http://igl.ethz.ch/projects/sketch-retopo/
http://igl.ethz.ch/projects/sketch-retopo/sketch-retopo.mp4
http://igl.ethz.ch/projects/sketch-retopo/sketch-retopo-data.zip


ultimately reduce to manual placement of the majority of the vertices.
These tools clearly allow full control over the mesh, but modeling
quad meshes with them is slow and requires a lot of redundant user
input. Further, it is often quite challenging even for professional
artists to manually design a perfect quad mesh on the first try. Since
the quality of a quad mesh is a global property, the correction of a
single mistake might require regeneration of the entire mesh.

We propose a novel interactive approach to quad remeshing that
allows the user to sketch a coarse curve network; every segment of
the curve network will become part of an edge of the quad mesh,
and every intersection between curves will become a vertex. The
interior of every bounded polygon is automatically meshed to match
a user-provided number of edges on every side, while singularities
are automatically inserted when needed. Such free-form, flexible
and at the same time explicitly controlled approach to “sketching”
the edge flow is enabled by our particular representation of the quad
mesh: instead of focusing on patches with regular connectivity in-
side, we allow a controlled number of singularities in each patch, and
explicitly control the number of subdivisions of each patch side. Sin-
gularities can also be moved geometrically and topologically inside
each patch. This paradigm provides complete control when desired,
while removing most of the tediousness of previous approaches and
enabling fast interactive experimentation until the desired connectiv-
ity is found. The curve network is stored in a special data structure
that supports efficient insertion and removal of curves and links the
curve network with the tessellated patches.

Our system is equipped with two novel user interfaces that assist the
user in efficiently sketching the curve network: spine sketching and
autocompletion. The spine sketching tool allows the user to draw
a single stroke and create a new patch whose edge flow is aligned
with the stroke. The autocompletion tool analyzes the region around
the mouse cursor and suggests a closed region that connects existing
parts of the curve network in the vicinity of the cursor. This tool
is often used to connect regions generated with the spine sketching
tool. The system also provides some specialized tools that allow the
user to, for example, quickly sketch strokes on cylindrical parts and
to change the topology of the curve network.

We demonstrate that our system allows professional artists to quickly
remesh complex 3D shapes into quads while precisely controlling the
density and edge flow of the quads (Figs. 1-2). Our approach is also
useful for editing quad meshes consisting of patches of regular grids
automatically generated using recent quad remeshing algorithms.

2 Related work

Automatic quad mesh generation has been extensively studied
[Bommes et al. 2012], due to the broad range of applications in
computer graphics and engineering. While existing methods are
able to produce high quality dense quad meshes (e.g., [Kälberer
et al. 2007; Huang et al. 2008; Bommes et al. 2009; Zhang et al.
2010]), the automatic generation of coarse meshes is still an open
challenge, in particular because the number, type, and placement of
singularities is of critical importance and very hard to optimize for.

Many existing approaches are based on the generation of a N -
rotational symmetry field over a triangle mesh, starting from cur-
vature analysis and manually placed directional constraints or sin-
gularities [Palacios and Zhang 2007; Ray et al. 2008; Crane et al.
2010; Lai et al. 2010]. The field is then used to generate a dense
quad mesh, that is then simplified [Bommes et al. 2011; Tarini et al.
2011] or used directly to generate a coarse patch layout [Campen
et al. 2012]. Daniels II et al. [2011] used a few feature curves to
define a scalar field on the surface that imposes a partitioning of the
surface, which is then transformed into a quad mesh by applying

Figure 2: Retopology of a car model, performed by a professional
artist. From left to right: patches created in our sketch-based tool;
final coarse quad mesh; Catmull-Clark subdivision surface.

templates. Tierny et al. [2012] proposed to extract a Reeb atlas from
user sketches and use it with connectivity textures to generate a pure
quad mesh. Tong et al. [2006] proposed to use a singularity graph
to compute a global surface parameterization with discontinuities
across singularity edges, from which a pure quad mesh is extracted.

These methods can be used to automatically generate quad meshes
while incorporating sparse user constraints. However, the link be-
tween the provided constraints and the final quad mesh is not straight-
forward, and it is thus impossible for the user to control the output
of these methods efficiently and at a sufficiently fine scale.

Connectivity editing for quadrilateral meshes was introduced by
Peng et al. [2011] and allows the user to move and cancel irregular
vertices under specific rules. Their technique is useful for manually
fixing topological problems often seen in automatically generated
quad meshes. In contrast, our main goal is to enable fast manual cre-
ation of quad meshes from scratch using sketch-based user interface.

3D freeform curve sketching techniques have been explored with
a main focus on either user interface design [Bae et al. 2009] or
algorithms to infer 3D geometry from 2D sketches [Schmidt et al.
2009]. Bessmeltsev et al. [2012] proposed a method to generate
quad mesh patches that represent 3D surfaces defined by such 3D
curves. In contrast to these scenarios where 3D curves are drawn
into an ambient 3D space, we assume a 3D surface mesh as input
and focus on how to assist the user in drawing a curve network on
the 3D surface that is suitable as a layout of quad mesh patches.

Mesh segmentation is related to our problem of designing a curve
network on a 3D surface in the sense that each segmentation bound-
ary can be treated as a curve of the network. While there have
been various effective techniques proposed in the literature for both
automatic and interactive approaches [Chen et al. 2009; Fan et al.
2012], we believe that retopologizing a model is not equivalent to
segmenting a model because artists often create specific edge flows
that cannot be captured by existing geometric descriptors. We there-
fore chose to allow the user to sketch arbitrary curves on the surface
to define the curve network.

Suggestive modeling techniques have been explored in different
contexts using various approaches such as geometric pattern match-
ing [Igarashi and Hughes 2001], data-driven suggestions [Chaudhuri
and Koltun 2010; Tierny et al. 2011], probabilistic reasoning [Chaud-
huri et al. 2011], and guidance by physical validity [Umetani et al.
2012]. Our autocompletion technique is conceptually similar to the
one proposed by Igarashi and Hughes [2001], but we deal with the
problem of suggesting curves on surfaces instead of lines on planes.

3 Overview

Figure 3 shows an overview of our approach. After importing a
3D surface mesh model as input, the user can sketch curves on it
freely (Fig. 3a). Curve intersections are detected and marked as
corners of the resulting quad mesh patches (Fig. 3b). When a loop
of curve segments with four corners is detected, a rectangular patch



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Brief overview of some of the basic features of our system.
(a-d) Sketch-based patch generation, (e-f) topology control inside
patches, and (g-h) T-junctions and non-quadliteral patches.

of the quad mesh is generated automatically (Fig. 3c-d). The user
can modify the topology of the quad mesh by either changing the
number of edge subdivisions at one side of the patch (Fig. 3e), or
moving a pair of irregular vertices by dragging the mouse (Fig. 3f).
The curve network is topologically flexible, allowing T-junctions
(Fig. 3g) and triangular and pentagonal patches (Fig. 3h, shown in
blue and brown, respectively).

The interior of each detected patch is quadrangulated using existing
algorithms [Nasri et al. 2009; Takayama et al. 2013]. Specifically,
we employ Nasri et al.’s algorithm for pentagonal patches, and
Takayama et al.’s generalization of that algorithm for triangular and
quadrilateral patches, as it supports much coarser quadrangulations.
In the following, we present a set of novel user interfaces for effi-
ciently sketching a curve network representing patch boundaries on
the model, as well as the important technical details necessary to
implement the system.

4 User interface

The simple combination of patch quadrangulation algorithms [Nasri
et al. 2009; Takayama et al. 2013] with basic curve sketching tools
(e.g., curve creation, deletion, deformation) would already achieve a
faster workflow compared to existing manual tools (Fig. 3). How-
ever, it would still be very tedious for the user to draw and adjust
every single stroke by hand, especially when working on complex
models consisting of many individual parts and semantic features.
We thus investigated a number of improvements to the interface,
consulting and iterating with an artist. The main result is two novel
user interfaces, spine sketching and autocompletion, and a number
of smaller additional tools that are useful in practice as well.

A central design choice for all developed interfaces was to enable an
efficient and as intuitive as possible interaction for the user, consis-
tenly based on the same sketching interface and without requiring
complex interactions, as in other existing tools. All these features
are best demonstrated in the accompanying video.

Spine sketching. With this tool, the user only needs to draw a
single stroke, and the system generates a rectangular patch whose
center line closely follows the user’s stroke (Fig. 4a). According
to artists’ feedback, this behavior is intuitive because a rectangular
patch naturally implies an edge flow represented by its center line.
The patch width is set according to a user-controlled brush size. A
sketch near existing patch boundaries results in the patches being
connected. Two directions are considered for snapping to existing
patches: orthogonal snapping occurs when the stroke’s endpoints
are close to an existing patch boundary (Fig. 4b), while parallel
snapping is used when the stroke is parallel to a nearby patch bound-
ary (Fig. 4c). The tool also checks if corners are on the boundary,
in which case the resulting patch will snap to them (Fig. 4d-e). Par-

(a)

(d) (e) (f) (g)

(b) (c)

Figure 4: The spine sketching interface for rapid patch creation.

allel snapping can stop and resume at some point along the stroke,
depending on the configuration of existing surrounding patches;
snapping stops either when the snapped patch boundary deviates too
much from the stroke in orientation (Fig. 4f), or when the brush does
not overlap with the neighboring patch anymore during sketching
(Fig. 4g).

(a) (b)

click!

(c) (d)

Figure 5: Examples for the autocompletion feature.

Autocompletion. This tool provides real-time suggestions of
likely patch candidates in the proximity of existing patch boundaries
(Fig. 5a). The user can accept the current suggestion by clicking
(Fig. 5b). This is useful, for instance, for filling small remaining
gaps after spine sketching of more globally relevant patches. The
suggested patch snaps to any nearby existing patch boundaries, with
priority to snapping to corners. By default the system suggests the
largest possible quadrangular patch, but the user can also choose
smaller (Fig. 5c) or triangular alternatives (Fig. 5d). Implementation
details about this tool are given in Section 5.

(a) (c) (b) 

Figure 6: Sketching for cylindrical features.

Cylinder sketching. This tool is tailored for sketching on cylin-
drical parts such as arms and legs. When the user sketches a stroke
connecting a pair of loops, typically created using a standard pla-
nar cutting tool, the system identifies a few corresponding pairs of
points on the loops based on arc length parameterization and con-
nects them by tracing geodesic paths, producing multiple patches
simultaneously (Fig. 6a). If the loop encloses a disc-like region, the
system also generates a patch filling that region. This is useful for
completing the end cap of a cylindrical part, e.g. at fingertips (Fig.
6b). The tool can also be used for connecting a pair of nested loops
in a planar region (Fig. 6c).

Alignment to geometric features. It is generally desireable that
a quad mesh aligns with salient geometric features such as ridges and



Figure 7: Automatic alignment of strokes to geometric features.

valleys of the original model. To facilitate the creation of curves that
accurately align with such features, the system provides a simple
curve modification tool based on the geometric snakes algorithm
[Lee and Lee 2002] that iteratively moves a curve towards more
geometrically salient locations (Fig. 7).

(a) (b)
click! click!

Figure 8: Efficient editing of corner types.

Corner type editing. The placement of corners has a fundamental
influence on the resulting mesh topology; hence our system provides
a simple tool for efficient editing of corner configurations. The user
can delete a patch corner with two adjacent curve segments or create
a new corner on a curve segment by simple clicking (Fig. 8a). The
user can also switch between a T-junction and an ordinary corner by
dragging the mouse starting near the respective vertex, and releasing
the mouse button at the vertex position (Fig. 8b).

5 Implementation details

In the following we briefly describe how we implemented two key
components of our system: the curve network representation and the
curve analysis algorithm.

5.1 Curve network representation

Required properties of our curve network representation are:

• topological flexibility, supporting open endpoints and T-
junctions;

• curve-by-curve (instead of patch-by-patch) construction;
• instant detection of loops and their orientation;
• handling of elements in different levels (e.g., individual curve

vertices and coarse quad mesh vertices) in a unified way.

This is in contrast to previous work on generating surface patches
from curve networks [Schaefer et al. 2004; Bessmeltsev et al. 2012],
where a complete curve network is assumed as input, with all loops
already correctly identified. Li et al. [Li et al. 2005] also proposed
a data structure for representing exact embeddings of planar maps
on manifold surfaces, which would meet all but the last requirement
listed above. Here we describe a simple curve network representa-
tion, as shown in Fig. 9, which meets all of these requirements and
is well-suited for our purposes.

While the user sketches a curve on the model surface, the curve is
densely sampled and the resulting points and segments are added
as curve network vertices and halfedges, respectively. Each vertex
stores a surface normal in addition to its 3D position. When the

Figure 9: Curve network representation. (Left) Black points repre-
sent curve network vertices, while purple and orange points repre-
sent corners and open endpoints, respectively. Red and blue arrows
depict curve network halfedges with and without the corner flag,
respectively. Green arrows represent halfchains and gray areas
represent the corresponding quadrangulated patches. Notice that a
T-junction is formed on the right by a non-corner halfedge incident
to a corner vertex, visualized with a blue semicircle. (Right) White
points represent quad mesh vertices. Brown arrows depict boundary
halfedges of patches.

sketched curve intersects with an existing curve segment, the system
computes their intersection and assigns a corner flag to halfedges
incident to the intersection (red arrows in Fig. 9 left). A corner vertex
is defined as the one being pointed to by at least one corner halfedge.
A T-junction is represented as a halfedge that is incident on a corner
vertex but is not assigned the corner flag. When new halfedges are
added, the system traces over halfedges to find consecutive halfedges
connecting vertices that are either corners or open endpoints. From
these halfedges a new entity called halfchain is created that refers
to the beginning and ending of the sequence. When consecutive
halfchains form a loop with three, four, or five corners, a patch is
generated. Each halfchain in the loop is assigned a reference to the
generated patch, and the patch is assigned a reference to one of these
halfchains (similar to the standard halfedge data structure). A pair
of opposing halfchains shares a number of edge subdivisions used
for quadrangulating the patch.

Geometric information such as 3D position and normal is obtained
for vertices at patch boundaries by simple sampling along their
corresponding curve network segment. For vertices inside a patch,
geometric information is first interpolated from the boundaries using
uniform Laplacian smoothing, followed by projection to the model
surface along the interpolated normal. Each patch is a separate quad
mesh with its own set of vertices, faces, and halfedges (Fig. 9 right).
To establish adjacency information between neighboring patches,
each halfedge on the boundary of each patch stores a reference to
the halfchain it belongs to and an index representing its position on
the halfchain. This allows us, for example, to easily trace a global
edge flow across neighboring patches.

Loop orientation detection. When a loop of halfchains is de-
tected, the system generates a patch only if the loop is oriented
counterclockwise when viewed from the exterior of the surface (oth-
erwise, the system would generate two overlapping patches from a
single loop). To detect a loop’s orientation, we compute

A =
∑
i

1

2
((pi − c)× (pi+1 − c)) · ni (1)

where pi and ni denote position and the normal of the i-th vertex on
the loop, respectively, and c denotes the loop’s center of mass. We
regard A as a rough estimate of the signed area of a region on the
surface enclosed by the loop, and the loop orientation is detected as
counterclockwise if A > λ l2/4π where l is the loop’s length (we
use a threshold λ = 0.1).



5.2 Curve analysis algorithm

Here we briefly describe how curves representing existing patch
boundaries are analyzed when using spine sketching and autocom-
pletion. Our basic idea is to locally parameterize the model surface
near the user’s mouse input by employing the stroke parameteriza-
tion technique of Schmidt [2013] (Fig. 10), and then analyze the
configuration of nearby curves in this 2D parameter space, making
subsequent processes much simpler.

Figure 10: Local parameterization used in spine sketching (left)
and autocompletion (right).

For spine sketching, the analysis is done by following the description
in Section 4. For autocompletion, the analysis is based on the number
of corners and their respective angles formed by the boundary curves.
Fig. 11 enumerates all the cases considered. We initially set the
region to be analyzed as the locally parameterized region and run
the analysis algorithm. To produce suggestions with smaller sizes,
we repeatedly shrink the region to be analyzed and run the algorithm
while keeping the local parameterization.

(a) (b1) (b2) (c) (d1) (d2) (e) 

(f1) (f2) (g) (h) (i) (j) (k) 

Figure 11: Configurations of the curves and corners considered
in our autocompletion algorithm. Gray regions represent existing
patches. The blue dotted line represents the region to be analyzed.
Black points represent existing corners, while red points represent
corners created by the algorithm. The green region represents the
suggested patch. The algorithm considers cases where there are
zero (a), one (b1-b2), two (c-e), three (f1-g), and four (h) corners on
a sequence of boundary curves. The algorithm also considers cases
where there are two separate sequences of the boundary curves (i-k).

6 Results

Evaluation. We hired two professional 3D artists to test our pro-
totype system. Both had approximately six years of experience in
retopology tasks, in particular in the generation of low-poly char-
acters for interactive games. We presented the tool and explained
all the features in a twenty-minute training session and then asked
them to retopologize a model from the Stanford repository and some
additional models of their choice.

Figures 1, 2 and 12 (first two columns) show results created by the
artists (see Table 1 for the statistics). The artists generated high
quality quad meshes using only a few patches.

The feedback from the artists was very positive, confirming that
our new tool is significantly more efficient than currently available
tools [3D-Coat 2013; ZBrush 2013] for manual retopology tasks.

The most appreciated feature was the possibility to edit the topol-
ogy by changing the number of edge subdivisions at patch bound-
aries, followed by the option to topologically move irregular vertices
within patches. The spine sketching tool was mostly used in the
beginning of the process, to generate large patches and experiment
freely with different edge flows. However, in the latter stages when
the curve network was partially created, it did not provide sufficient
precision; the autocompletion tool and manual drawing were used
more frequently, especially to close small gaps or to connect existing
patches. The cylinder sketching and corner type editing tools were
also used frequently.

Overall, both artists agreed that the new interface, combined with
the patch generation algorithm, is superior to all the existing tools
they know and use. They asked to further adjust the interfaces and
hotkeys to make them more usable with pen input devices.

model user # tri # quad #M # 2 #D time

head artist I 6406 808 10 62 1 1.2
monkey artist II 39996 1104 17 132 1 1.5
car artist II 100312 1170 27 140 0 1.3
bunny artist II 70374 1075 13 57 0 0.9
hand artist I 34390 1548 27 195 1 2.0
horse author 50000 2398 8 137 4 0.8
armadillo artist I 358150 2439 15 154 5 0.9
spider author 194996 6287 21 208 2 2.5

Table 1: Statistics of the created results. Legends: # tri: number
of triangles in the input 3D model; # quad: number of faces in the
resulting quad mesh (half the actual size in the case of symmetric
models); number of patches constituting the quad mesh: triangular
(#M), rectangular (#2), pentagonal (#D); time: modeling time in
hours.

Additional results. Figure 12 (two rightmost columns) show a
few additional results created by one of the authors who had no prior
experience in retopology tasks. These results demonstrate that our
tool is also accessible for nonprofessionals.

Editing of automatically generated quad meshes. Recently, a
lot of attention has been devoted to methods for automatic generation
of quad meshes consisting of a few regular-grid patches defined
by separatrices connecting irregular vertices [Bommes et al. 2011;
Tarini et al. 2011; Campen et al. 2012]. Figure 13 demonstrates
that our tool can also be used to quickly edit such automatically
generated quad meshes.

7 Limitations and future work

While we focused on letting the user freely draw arbitrary curves
on surfaces to define curve networks, we expect that incorporating
mesh segmentation techniques [Chen et al. 2009; Fan et al. 2012] and
feature line extraction techniques (e.g., [Hildebrandt et al. 2005])
could further reduce the necessary user input; these techniques could
be used to automatically generate sketches that can be converted
into patches using the proposed system. The autocompletion tool
would also become more powerful by employing, in addition to the
geometric pattern matching, data-driven techniques [Chaudhuri and
Koltun 2010] and probabilistic reasoning [Chaudhuri et al. 2011].

Takayama et al.’s robust patch quadrangulation algorithm [Takayama
et al. 2013] only supports rectangular and triangular patches. For
pentagonal patches we use Nasri et al.’s algorithm [2009], but it fails
in some extreme cases (e.g., one side having many edge subdivisions



Figure 12: Retopology results created by the two professional artists (Bunny, Armadillo) and one of the authors (Horse, Spider).

while the other sides having only one edge). Extending Takayama et
al.’s algorithm to five and more sided regions is thus desirable, but it
is not straightforward since the number of cases to be considered in
their enumerative approach would grow quickly.

Acknowledgements

We are deeply grateful to Maurizio Nitti for the illuminating dis-
cussions and concept sketches that were tremendously helpful for
the development of our system. We also thank Maurizio Nitti and
Alessia Marra for their participation in the user evaluation and feed-
back. We thank Jun Saito and his colleagues for a useful discussion.
We are grateful to Felix Hornung for helping us with the techni-
cal illustrations and to Emily Whiting for narrating the video. The
Bunny and Armadillo models are courtesy of the Stanford 3D Scan-
ning Repository. The Horse and Bimba models are courtesy of
the AIM@SHAPE Shape Repository. The Head and Hand mod-
els are from ZBrush c©Pixologic Inc. and TurboSquid, respectively.
Other models are kindly provided by Maurizio Nitti. This work
was supported in part by the ERC grant iModel (StG-2012-306877),
by an SNF award 200021 137879 and by a gift from Adobe Re-
search. Kenshi Takayama’s stay at ETH Zurich is funded by JSPS
Postdoctoral Fellowships for Research Abroad.

References

3D-COAT, 2013. Pilgway. Version V3, http://3d-coat.
com/.

BAE, S.-H., BALAKRISHNAN, R., AND SINGH, K. 2009. Every-
bodyLovesSketch: 3D sketching for a broader audience. In Proc.
UIST, 59–68.

BESSMELTSEV, M., WANG, C., SHEFFER, A., AND SINGH, K.
2012. Design-driven quadrangulation of closed 3D curves. ACM
Trans. Graph. 31, 6, 178.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-
integer quadrangulation. ACM Trans. Graph. 28, 3, 77.

Figure 13: Editing an automatically generated quad mesh consist-
ing of patches of regular grids [Tarini et al. 2011] (left) by changing
the number of edge subdivisions at patch boundaries and moving
irregular vertices (right).

BOMMES, D., LEMPFER, T., AND KOBBELT, L. 2011. Global
structure optimization of quadrilateral meshes. Comput. Graph.
Forum 30, 2, 375–384.

BOMMES, D., LÉVY, B., PIETRONI, N., PUPPO, E., SILVA, C.,
TARINI, M., AND ZORIN, D. 2012. Quad meshing. In Euro-
graphics 2012 State of the Art Reports, 159–182.

CAMPEN, M., BOMMES, D., AND KOBBELT, L. 2012. Dual loops
meshing: quality quad layouts on manifolds. ACM Trans. Graph.
31, 4, 110:1–110:11.

CHAUDHURI, S., AND KOLTUN, V. 2010. Data-driven suggestions
for creativity support in 3D modeling. ACM Trans. Graph. 29, 6,
183.

CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L. J., AND
KOLTUN, V. 2011. Probabilistic reasoning for assembly-based
3D modeling. ACM Trans. Graph. 30, 4, 35.

CHEN, X., GOLOVINSKIY, A., AND FUNKHOUSER, T. A. 2009. A
benchmark for 3D mesh segmentation. ACM Trans. Graph. 28, 3.

http://3d-coat.com/
http://3d-coat.com/


CRANE, K., DESBRUN, M., AND SCHRÖDER, P. 2010. Trivial
connections on discrete surfaces. Comput. Graph. Forum 29, 5,
1525–1533.

DANIELS II, J., LIZIER, M. A. S., SIQUEIRA, M. F., SILVA,
C. T., AND NONATO, L. G. 2011. Template-based quadrilateral
meshing. Computers & Graphics 35, 3, 471–482.

FAN, L., MENG, M., AND LIU, L. 2012. Sketch-based mesh
cutting: A comparative study. Graphical Models 74, 6, 292–301.

HILDEBRANDT, K., POLTHIER, K., AND WARDETZKY, M. 2005.
Smooth feature lines on surface meshes. In Proc. SGP.

HUANG, J., ZHANG, M., MA, J., LIU, X., KOBBELT, L., AND
BAO, H. 2008. Spectral quadrangulation with orientation and
alignment control. ACM Trans. Graph. 27, 5, 147.

IGARASHI, T., AND HUGHES, J. F. 2001. A suggestive interface
for 3D drawing. In Proc. UIST, 173–181.

KÄLBERER, F., NIESER, M., AND POLTHIER, K. 2007. Quad-
Cover: Surface parameterization using branched coverings. Com-
put. Graph. Forum 26, 3, 375–384.

LAI, Y., JIN, M., XIE, X., HE, Y., PALACIOS, J., ZHANG, E.,
HU, S., AND GU, X. 2010. Metric-driven RoSy field design and
remeshing. IEEE TVCG 16, 1, 95–108.

LEE, Y., AND LEE, S. 2002. Geometric snakes for triangular
meshes. Comput. Graph. Forum 21, 3, 229–238.

LI, W.-C., LEVY, B., AND PAUL, J.-C. 2005. Mesh editing with
an embedded network of curves. In Proc. SMI, 62–71.

NASRI, A., SABIN, M., AND YASSEEN, Z. 2009. Filling N-sided
regions by quad meshes for subdivision surfaces. Comput. Graph.
Forum 28, 6, 1644–1658.

PALACIOS, J., AND ZHANG, E. 2007. Rotational symmetry field
design on surfaces. ACM Trans. Graph. 26, 3, 55.

PENG, C.-H., ZHANG, E., KOBAYASHI, Y., AND WONKA, P.
2011. Connectivity editing for quadrilateral meshes. ACM Trans.
Graph. 30, 141:1–141:12.

RAY, N., VALLET, B., LI, W., AND LÉVY, B. 2008. N-symmetry
direction field design. ACM Trans. Graph. 27, 2.

SCHAEFER, S., WARREN, J., AND ZORIN, D. 2004. Lofting curve
networks using subdivision surfaces. In Proc. SGP, 103–114.

SCHMIDT, R., KHAN, A., SINGH, K., AND KURTENBACH, G.
2009. Analytic drawing of 3D scaffolds. ACM Trans. Graph. 28,
5.

SCHMIDT, R. 2013. Stroke parameterization. Comput. Graph.
Forum 32, 2.

TAKAYAMA, K., PANOZZO, D., SORKINE-HORNUNG, A., AND
SORKINE-HORNUNG, O. 2013. Robust and controllable quad-
rangulation of triangular and rectangular regions. Tech. rep., ETH
Zurich.

TARINI, M., PUPPO, E., PANOZZO, D., PIETRONI, N., AND
CIGNONI, P. 2011. Simple quad domains for field aligned
mesh parametrization. ACM Trans. Graph. 30, 142:1–142:12.

TIERNY, J., DANIELS, II, J., NONATO, L. G., PASCUCCI, V., AND
SILVA, C. T. 2011. Inspired quadrangulation. Computer Aided
Design 43, 11, 1516–1526.

TIERNY, J., DANIELS II, J., NONATO, L. G., PASCUCCI, V., AND
SILVA, C. T. 2012. Interactive quadrangulation with Reeb atlases
and connectivity textures. IEEE TVCG 18, 10, 1650–1663.

TONG, Y., ALLIEZ, P., COHEN-STEINER, D., AND DESBRUN, M.
2006. Designing quadrangulations with discrete harmonic forms.
In Proc. SGP, 201–210.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph. 31, 4, 86.

ZBRUSH, 2013. Pixologic, Inc. Version 4.4, http://www.
pixologic.com/zbrush/.

ZHANG, M., HUANG, J., LIU, X., AND BAO, H. 2010. A wave-
based anisotropic quadrangulation method. ACM Trans. Graph.
29, 118:1–118:8.

http://www.pixologic.com/zbrush/
http://www.pixologic.com/zbrush/

