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Abstract— In this work, we perform the challenging task
of a humanoid robot standing up from a chair. First we
recorded demonstrations of sit-to-stand motions from normal
human subjects as well as actors performing stylized standing
motions (e.g. imitating an elderly person). Ground contact force
information was also collected for these motions, in order
to estimate the human’s center of mass trajectory. We then
mapped the demonstrated motions to the humanoid robot via
an inverse kinematics procedure that attempts to track the
human’s kinematics as well as their center-of-mass trajectory.
In order to estimate the robot’s center-of-mass position accu-
rately, we additionally used an inertial parameter identification
technique that fit mass and center-of-mass link parameters from
measured force data. We demonstrate the resulting motions on
the Carnegie Mellon/Sarcos hydraulic humanoid robot.

I. INTRODUCTION

As humans we are generally able to execute dynamic

and dexterous motions with relative ease: walking, jumping,

and dancing are a few examples. The motion of sitting and

standing up from a chair is also a seemingly simple and

commonplace motion we do everyday, but in reality is quite

complex and dynamic, and can become challenging and even

dangerous as we grow older. Success of this task requires

whole body coordination and balance, careful control and

placement of the body’s center-of-mass (COM) as it moves

from a large support basin under the chair to much smaller

one above the feet, all the while coping with sudden contact

state and force changes. As roboticists, we are interested in

such a motion and aim to better understand its complex-

ities by synthesizing natural human sitting-to-standing on

a humanoid robot platform. To do so, we will first record

the motions of humans naturally standing up from chairs,

and transfer that motion onto a humanoid robot. However,

this transfer process is non-trivial as simple playback of

the recorded motion will generally fail, because the human

and robot have different kinematic and dynamic properties.

Therefore, we will also record the contact forces of the

humans as they execute the motion, and use the human’s

COM trajectory as a guide for the robot.

In this work, we outline our procedure for generating

and implementing natural human-like sit-to-stand motions

from human demonstration onto a humanoid robot. Because

the center-of-mass trajectory of both the human and robot

are an essential component of this procedure, we will first

discuss how we estimate the sagittal plane COM of the robot

using joint torques and contact forces recorded from static
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postures. The inertial parameter identification method can

provide a more accurate estimate than the manufacturers’

CAD data. Next, in order to map the recorded human motion

to the robot motion, we will discuss our inverse kinematics

procedure. The inverse kinematics optimization attempts to

match the human’s kinematic motion as closely as possible,

while tracking the human’s COM trajectory. Finally we

will demonstrate the resulting motion implemented on the

Carnegie Mellon/Sarcos hydraulic humanoid robot.

II. ROBOT CENTER OF MASS ESTIMATION

Planning a successful sit-to-stand motion without falling

requires accurate knowledge of the robot’s center-of-mass

position throughout the trajectory. Not only must the robot’s

COM be placed above the feet by the end of the movement,

we also wish to track the human demonstrator’s COM

trajectory as closely as possible, to realize natural human-

like motion. If we know the masses and relative COM

locations of each individual link on the robot, we can easily

obtain the total COM location of any configuration via

forward kinematics. Although the manufacturers of most

robots provide estimates of masses and COMs of each link

computed by computer aided design (CAD) software, these

estimates do not account for several components including

(in the case of our robot) hydraulic hoses, electronics,

and onboard computers. These extra components contribute

approximately 50% additional mass to our robot.

To obtain a more accurate estimate of the robot’s center of

mass position, we employ a simplified version of a traditional

least-squares optimization inertial parameter identification

technique. As shown in [1], [2] (and extended to floating

base systems by [3], [4]), the complete dynamics equations

of a floating base rigid body robot can be written to be linear

with respect to inertial parameters:

K(q, q̇, q̈)φ = ST τ + JT
C(q)λ, (1)

where q ∈ R
n+6 is the robot configuration vector (n joints

plus 6 DOF floating base), τ ∈ R
n is the vector of actuation

torques, S =
[

0n×6 In×n

]

delineates the actuated and

unactuated degrees-of-freedom (note that the floating base is

unactuated), JC is the contact Jacobian, and λ is the vector of

contact forces. Finally, φ =
[

φT
0 φT

1 . . . φT
n

]T
is the

vector of inertial parameters of n+1 links (n joints plus the

floating base link), and each link has 12 inertial parameters,

as follows:

φi = [ mi micxi
micyi

miczi
Ixxi

Ixzi
Ixzi

Iyyi
Iyzi

Izzi
fci

fvi
]T , (2)
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where mi is the mass of link i, the vector

〈cxi
, cyi

, czi
〉 is the link’s center of mass position, and

〈Ixxi
, Ixyi

, Ixzi
, Iyyi

, Iyzi
, Izzi

〉 are the 6 independent

components of its inertia tensor. Additionally fci
and fvi

are coulomb and viscous friction, respectively.

By considering only static postures of the robot (i.e., when

q̇ = q̈ = 0), we further simplify (1), by considering only

the gravity contribution of K:

Kg(q)φg = ST τ + JT
C(q)λ, (3)

with each link’s parameters defined as:

φg,i = [ mi micxi
micyi

miczi
]T (4)

By measuring the contact forces and torques while the

robot is in several static postures, we can collect several data

points and stack them in the following manner:










Kg(q1)
Kg(q2)

...

Kg(qN )











φg =











ST τ1 + JT
C1

λ1

ST τ2 + JT
C2

λ2

...

ST τN + JT
CN

λN











, (5)

or in more simple notation as:

Kgφg = f , (6)

where the bar notation refers to an augmented stack of N

matrices, and the following vector of total generalized force:

fi = ST τi + JT
Ci

λi (7)

The inertial parameters, which contribute to gravity forces,

can then be estimated using ordinary weighted least squares:

φ̂g =
(

K
T

g Kg

)

−1

K
T

g f , (8)

which will compute the parameter set φ̂g that minimizes
∣

∣

∣

∣

∣

∣
Kgφ̂g − f

∣

∣

∣

∣

∣

∣

2

.

A. Reduced Robot Model

One major challenge of data-driven inertial parameter

estimation approaches is acquiring a rich data set that evenly

samples the entire configuration/motion space. Humanoid

robots compound this problem, since they are generally high

degree of freedom systems and the useable workspace is

limited to a set of stable postures. However, we may be able

to reduce the complexity by estimating only those parameters

relevant to the task. In our sit-to-stand task, the forward

progression of the center of mass is most critical for robot

stability. Therefore, we decided to further simplify the iden-

tification problem by considering a reduced dimensionality

model of the robot with motion restricted to the sagittal

plane. Therefore for center of mass parameter estimation, we

use a 5 link model with 4 actuated DOFS: ankle, knee, hip,

and torso (again the base link is unactuated) (Fig. 1 (right)).

One or two arm links would also have been reasonable to

add to the planar model, however, we decided to neglect

the arms due to their small mass relative to the heavier legs

and torso. By simplifying the inertial parameter problem to

Ankle

Knee

Hip

Torso

Fig. 1. Left: The Carnegie Mellon/Sarcos humanoid robot standing in
a static squat position. Contact forces are measured using force sensing
plates shown below the robot. Right: Some sample postures used for data
collection.

only reflect the center of mass of a 5 link planar robot, we

have reduced the total number of inertial parameters from

468 (the full robot with 39 links) to 15 (5 links with 3

parameters each: mass and x, y positions). Note, however,

by restricting estimation to a planar model, we sacrifice the

identifiability of individual links. Instead we are limited to

only being able to identify groups of parameters in linear

combinations with each other [5]. While identification of

individual link parameters may be erroneous, the aggregated

center of mass estimation of all links can still be accurate.

B. Data Collection and Estimation

To collect data for center of mass estimation, we place

the robot into several statically stable standing postures of

various ankle, knee, hip, and torso configurations. In each

posture, we record joint torques of the robot using onboard

load cells and the contact forces and moments of each foot

with individual force sensing plates (AMTI Biomechanics

Force Platform) (Fig. 1 (left)). We recorded a total of 88

different standing postures including upright straight knee

standing and low bending squatting (the right and left sides

of the robot were kept symmetrical). The total range of

displacement of each joint in the entire data set is 1.47, 1.69,

0.56, and 0.56 radians for hip, knee, ankle, and torso joints

respectively. Fig. 1 (right) shows five representative postures

from the data set.

To evaluate the quality of our estimation procedure, we

separated the data set into 90% for training and 10% for

evaluation (9 of 88 postures). For each evaluation posture

we compared the predicted center of mass position versus

the recorded center-of-pressure position obtained from the

AMTI force sensor. RMS error for forward/backwards center

of mass position was 0.0196 m in the evaluation set.

III. MOTION GENERATION FROM HUMAN

DEMONSTRATION

We wish to understand how a human controls his whole

body in an environment with multiple and variable contact
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Fig. 2. Procedure for generating the robot motion trajectory from human
motion capture data. STEP1: measure the human motion data by the optical
motion capture system, STEP2: estimate the COM trajectory from the force
plate data, STEP3: overlay the marker data onto the measured humanoid
robot posture, and STEP4: solve the inverse kinematics computation with
1) the COM trajectory (hard) and 2) the marker trajectory (soft) as the
constraints.

forces, and realize a natural human-like motion on a hu-

manoid robot in a complex environmental contact. Many

robotics researches have considered the center of mass

(COM) as an essential point for the humanoid robot motion

control, and used it for complex tasks such as the control of

biped walking or the response to a sudden external force [6],

[7]. Indeed, for human sit-to-standing motion, biomechanics

researchers measured kinematic variance patterns during

repeated standing motions and concluded that precise COM

trajectory control in the sagittal plane is a key component to

successful standing [8] . Therefore, in this work, our goal is

not only record and playback natural human standing motion,

but also accurately measure the human’s COM trajectory

experimentally, and plan the humanoid robot’s motion so

that its COM will trace that of human. Here the following

difficulties should be solved:

1) The actual COM position of a human is difficult to ob-

tain, because accurate kinematics and mass properties

Fig. 3. Left: Kinematic model of humanoid robot. Right: 155 DOF skeletal
model used to estimate the human’s COM position.

of humans are difficult to estimate.

2) The kinematics and mass properties differ between

humans and the humanoid robot.

3) The accurate dynamics properties of the humanoid

robot are unknown and differ from the manufacturer’s

CAD data.

We generate the humanoid robot’s motion in the following

steps while addressing these problems. An overview of the

process is provided in Fig. 2.

First, using an optical motion capture system (VICON), we

measure the experimental human motion data as a set of 3-D

marker trajectories m(t) ∈ R
3nm , where nm is the number

of markers. Two force sensor plates (AMTI) also measure

ground contact forces and are synchronized to the motion

capture data spatially and temporally. One plate is positioned

beneath the chair and the other is under the subject’s feet.

From the six axis contact force measurement of each plate,

we can compute the position of the center of pressure (COP)

pCOPexp(t) ∈ R
2.

To estimate the human’s COM trajectory, we use a 155

DOF skeletal model [9], [10], (Fig. 3, right) with an av-

erage set of human inertia properties. We use this model

to map the motion capture markers to human joint angle

data θ(t) ∈ R
njh , where njh

is the number of degrees

of freedom of the skeleton model. Then, we can compute

a simulated COM and COP trajectory during the human

motion (pCOMsim(t) ∈ R
3 and pCOPsim(t) ∈ R

2) based on

the skeletal model’s inertia parameters. There may be a

difference between simulated and measured COP, because

the inertia properties are different between the subject and

the average human. We, therefore, manually scale the link

lengths and masses of the skeletal model appropriately so that

the resulting pCOPsim(t) matches pCOPexp(t) within 2cm to

solve 1). Lastly, the appropriate COM trajectory pCOMsim(t)
is computed.

Next we generate the whole-body joint trajectory for the

humanoid robot. Other researchers have explored mapping

human motion capture data to humanoid robot motion, e.g.

mapping the joint angle data, or tracing the end effector’s

trajectory. In this paper, we apply an inverse kinematics
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Fig. 4. Top: Frame sequence of the human actor performing an elderly style standing motion. Bottom: The corresponding humanoid robot’s standing
motion emulating the actor’s performance.

computation considering the motion capture marker data as

a constraint using the method proposed in [11]. We add the

simulated human COM trajectory as an additional constraint

in the inverse kinematics computation. First, we adjust the

marker position on the humanoid robot model. To solve 2)

and realize a complicated contact condition like sitting on a

chair, we experimentally measure the humanoid robot’s joint

angles in a sitting posture. Then we pick the corresponding

frame from the human motion capture data, and overlay the

measured marker positions of that frame onto the measured

humanoid robot’s posture. The relative position between

each marker and the corresponding humanoid robot’s link

is chosen as the robot’s marker position set. The inertia

parameters of humanoid robot that were estimated in the

previous section and the robot marker position set gives the

Jacobian matrix of COM w.r.t. the joint angles J COM(θr) ∈
R

3×njr and that of the marker positions w.r.t. the joint angles

Jm(θr) ∈ R
3nm×njr , where njr

is the number of degrees

of freedom of the humanoid robot. Lastly, we compute the

trajectory of the humanoid robot joint angles θr(t) ∈ R
njr

iteratively that satisfies pCOMsim(t) as a hard constraint and

m(t) as a soft constraint. The resulting joint angle trajectory

maintains the desired COM trajectory strictly to keep balance

while respecting the measured marker trajectories as a soft

constraint to emulate the human motion.

IV. EVALUATION

A. Experiments

We evaluate the proposed method on the Carnegie Mel-

lon/Sarcos humanoid robot. This force controllable robot

has a total of 34 hydraulic actuators with a load sensor at

each joint, and a 6 axis force sensor at each foot. First, we

recorded human motion using the VICON optical motion

capture system, while simultaneously measuring ground con-

tact force with AMTI force plates. During motion capture,

we asked our demonstrators not to move their feet during

the motion or touch their hands to the chair or body. No

other instructions such as speed or timing were given. While

we recorded healthy subjects executing natural standing

motions, we also recorded a professional actor performing

stylized standing, including imitating an elderly person. After

motion capture, we generate the corresponding robot motion

using the estimated robot COM parameters from Sec. II and

the proposed inverse kinematics computation from Sec. III.

Finally we execute the planned trajectory, at full speed, on

the humanoid robot via joint PD control. Fig. 4 shows an
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Fig. 5. Sequence of a natural standing motion implemented on the
humanoid robot.

example motion sequence. Here the professional actor is

performing a stylized elderly stand up motion. The bottom

shows the corresponding robot sequence generated by the

proposed method, aligned in time with the demonstrated

motion. Fig. 5 shows the sequence that results from a

demonstration of natural standing. From these frame shots,

we see that the humanoid robot successfully realizes the

human standing motion, while maintaining balance during

the whole motion. In the next subsection, we analyze the

data measured during the humanoid robot experiment, and

evaluate the efficiency of the proposed method.

B. Results

Fig. 6 shows the COM and COP position in the longitudi-

nal direction, plotted against time in the horizontal axis, for

the example of a natural standing motion shown in Fig. 5.

The vertical axis represents the COM and COP position [m]

with respect to the left foot position, and a positive value

represents the forward direction. Each line represents the

following value:

• green dashed line: the estimated COM position of the

human demonstrator. The motion is captured by the

optical motion capture system, and this COM is esti-

mated using a skeletal model whose inertial parameters

are from an average human but adjusted based on the

recorded COP position (not shown).

• blue solid line: the planned COM position for the gener-

ated humanoid robot motion. The humanoid robot mo-

tion is generated by the inverse kinematics computation

with COM position as a hard constraint. The iterative

inverse kinematics optimization produces a very close

match to the human’s COM trajectory.

• red solid line: the estimated COM position from the

experiment with the humanoid robot, computed by

forward kinematics from measured joint angles and the

COM parameters estimated from Sec II.

• red dash line: the actual COP position in the experiment

with the humanoid robot. The CMU/Sarcos humanoid

robot has 6-axis force sensors at each foot link, and the

COP position is computed from this contact force data

(not AMTI force plates as used in previous sections).

Because of this approximation, the COP measurement

is inaccurate due to the chair contact, until lift-off at

approximately 1 second.

Fig. 6. COM and COP position in the longitudinal direction vs. time,
for a natural standing motion. Chair lift-off occurs at approximately 1
second. Green dash line: the human COM position estimated from the
experimental human motion data, blue solid line: the planned COM position
for the generated humanoid robot motion, red solid line: the estimated COM
position of the robot during the experiment, and red dash line: the recorded
COP position of the robot during the experiment.

Fig. 7. Robot COM position trajectory in the sagittal plane. Red and
dark blue lines: estimated COM trajectories for natural and elderly motions
(respectively) using estimated COM parameters from Sec. II. Dots mark the
location of chair lift-off. Green and light blue lines: trajectories for same
motions if original CAD parameters are used for COM estimation.

From this graph, we see that the solid red line strictly

follows the green dashed line and blue solid line, showing

that the motion of the humanoid robot realizes the hu-

man’s COM trajectory well. The COP position data (red

dashed line), also follows the COM trajectory but with

some variance, because the generated motion is not quasi-

static. Because we generated this motion from an inverse

kinematics computation of experimental human motion data,

with kinematics constraints, dynamics constraints are not
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considered. However, although the resulting motion is not

quasi-static, it can still maintain balance throughout the

entire motion even though the contact situation changed

dramatically during the motion.

In Fig. 7 we compare the resulting COM trajectories, from

the robot, for two different motions: natural standing (red)

and stylized elderly (dark blue). Trajectories are shown in

the sagittal plane (x vs. y position), and traverse towards

the right with time. In the elderly case, we see that the

COM actually first moves lower before rising, representing

a deeper torso bend in order to move the COM closer to the

feet and generate more momentum before lift off. This is

consistent with the strategy actually used by elderly subjects

[12]. At the end of the motion we also see the COM move

back, possibly to compensate for the additional generated

momentum. Additionally we also plot how the resulting

COM trajectories would have looked if CAD parameters

are used in the model, instead of our estimated inertial

parameters from Sec II. We see that the estimation procedure

moves the COM significantly lower and towards the rear.

This difference can mainly be attributed to the relatively

massive backpack not accounted for in the CAD files.

V. CONCLUSION

In this work, we implemented a sit-to-stand task on a

humanoid robot, where the robot was able to successfully

stand up from a sitting posture. Our goal was not to engineer

a stable robotic motion for this task, but rather to emulate

natural human-like movement and speed. Therefore we used

demonstrations from healthy subjects naturally standing up

as well as actors performing stylized motions. Because

the dynamics plays a key roll in the realization of this

task, we also recorded the contact forces from our human

demonstrators. This contact force information, along with

a skeletal model, allowed us to estimate the demonstrator’s

COM trajectory along the motion. Maintenance of a consis-

tent COM trajectory has been identified by biomechanics

researchers as a critical control component of this task.

Therefore, it was important for us to not only emulate the

demonstrator’s kinematic motion with our robot, but also

their COM trajectory. However, in order to be able to do

so, we require an estimate of the robot’s COM position.

To obtain as accurate an estimate as possible, we used an

inertial parameter estimation technique to identify the mass

and center of mass parameters of a 5 link planar robot

model. We then used this model to estimate the robot’s COM

position during the motion.

While we had some success with this technique and we

were able to successfully track some of the demonstrators

at full speed, an obvious next step is to use more dynamic

constraints such as ZMP trajectory. Additionally, since our

robot is force-controllable, we would like to employ force

control techniques such as inverse dynamics [13]. Doing

so will require full inertial parameter estimation including

the inertia tensors and joint friction. We have developed

techniques for the estimation of floating base robots [4].

Finally, we would also like to include additional contacts

during a standing motion such as arm rests, and include arm

push off as part of the motion. Interestingly, while humans

often use hand contact as an aid in standing up, for a robot

this may present an additional challenge.
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