
Sampling Based Scene-Space Video Processing

Felix Klose12∗ Oliver Wang1∗ Jean-Charles Bazin1 Marcus Magnor2 Alexander Sorkine-Hornung1

1 Disney Research Zurich 2 TU Braunschweig

Denoising Action shots Virtual aperture

Figure 1: Single frames from video results created with our sampling based scene-space video processing framework. It enables fundamental
video applications such as denoising (left) as well as new artistic results such as action shots (center) and virtual aperture effects (right). Our
approach is robust to unavoidable inaccuracies in 3D information, and can be used on casually recorded, moving video.

Abstract

Many compelling video processing effects can be achieved if per-
pixel depth information and 3D camera calibrations are known.
However, the success of such methods is highly dependent on the
accuracy of this “scene-space” information. We present a novel,
sampling-based framework for processing video that enables high-
quality scene-space video effects in the presence of inevitable errors
in depth and camera pose estimation. Instead of trying to improve
the explicit 3D scene representation, the key idea of our method is
to exploit the high redundancy of approximate scene information
that arises due to most scene points being visible multiple times
across many frames of video. Based on this observation, we pro-
pose a novel pixel gathering and filtering approach. The gather-
ing step is general and collects pixel samples in scene-space, while
the filtering step is application-specific and computes a desired out-
put video from the gathered sample sets. Our approach is easily
parallelizable and has been implemented on GPU, allowing us to
take full advantage of large volumes of video data and facilitat-
ing practical runtimes on HD video using a standard desktop com-
puter. Our generic scene-space formulation is able to comprehen-
sively describe a multitude of video processing applications such
as denoising, deblurring, super resolution, object removal, com-
putational shutter functions, and other scene-space camera effects.
We present results for various casually captured, hand-held, mov-
ing, compressed, monocular videos depicting challenging scenes
recorded in uncontrolled environments.

CR Categories: I.2.10 [Computer Graphics]: Picture/Image
Generation—Display Algorithms I.3.7 [Artificial Intelligence]: Vi-
sion and Scene Understanding—3D/stereo scene analysis;

Keywords: Video processing, Sampling, Inpainting, Denoising,
Computational Shutters

1 Introduction

Scene-space video processing, where pixels are processed accord-
ing to their 3D positions, has many advantages over traditional
image-space processing. For example, handling camera motion,
occlusions, and temporal continuity entirely in 2D image-space can
in general be very challenging, while dealing with these issues in
scene-space is simple. As scene-space information, e.g., in the
form of depth maps and camera pose parameters, becomes more
and more widely available due to advances in tools and mass mar-
ket hardware devices (such as portable light field cameras, depth-
enabled smart phones [Google 2015] and RGBD cameras), tech-
niques that leverage depth information will play an important role
in future video processing approaches.

Previous work has shown that accurate scene-space information
makes fundamental video processing problems simple, automatic,
and robust [Bhat et al. 2007; Zhang et al. 2009a] and even enables
the creation of new, compelling video effects [Kholgade et al. 2014;
Kopf et al. 2014]. However, the visual output quality of such meth-
ods is highly dependent on the quality of the available scene-space
information. Despite considerable advances in 3D reconstruction
over the last decades, computing exact 3D information for arbitrary
video recorded under uncontrolled conditions remains an elusive
goal (and will likely remain so for the foreseeable future, due to
inherent ambiguities in these tasks).

We propose an alternative, general-purpose framework that facili-
tates robust scene-space video processing in the presence of incor-

∗ denotes joint first authorship with equal contribution

rect 3D information by exploiting the high degree of redundancy in
video that arises from multiple observations of the same scene point
over time. Our approach takes as input a casually acquired, hand-
held, moving, and uncalibrated video, possibly altered by compres-
sion artifacts, along with potentially incorrect depth maps and cam-
era pose information, both of which are either derived from the in-
put footage itself or acquired using other sensors. Our work on sam-
ple based scene-space processing is inspired by recent advances in
edge-aware filtering and consists of the following two steps. First,
for each output pixel an efficient, general-purpose gathering step
collects a large set of input video pixels that potentially represent
alternative observations of the same scene point. In the second
step, an application-specific filtering operation efficiently reduces
the contribution of outliers in the sample set and computes the out-
put pixel color as a weighted combination of the gathered samples.

This sampling-based framework allows us to formulate a wide
range of video effects as straightforward, transparent filtering oper-
ations in scene space, operating directly on noisy scene-space data
without the need for accurate reconstruction or refinement tech-
niques. We demonstrate a wide range of practical applications,
from fundamental video processing tasks such as denoising, de-
blurring, and super resolution to advanced video effects such as
action shots, virtual apertures, object removal, and computational
shutter effects. We show results computed from different sources
of depth information including standard multi-view stereo recon-
struction and one application that uses actively acquired depth from
a Kinect. Because our approach is robust to spurious depth values,
we can use simple and fast local depth estimation and deal with the
resulting depth noise in the filtering step. While our approach as-
sumes the existence of a consistent scene-space representation over
a number of frames, its robustness to outliers allows us to handle
some degree of dynamic content, and we show a variety of results
on scenes with moving objects.

The entire framework can be easily parallelized. We describe a
GPU implementation that is capable of gathering billions of sam-
ples on-the-fly without the need for explicit storage in a dedicated
data structure or quantization of scene-space, achieving practical
runtime performance for real-world HD video footage on a desktop
computer.

The key idea is that our framework relies on simple, fast and trans-
parent algorithms that achieve high-quality results from inaccurate
3D information by exploiting scene structure redundancy across
multiple video frames.

2 Related Work

Our algorithm applies to a wide range of applications in image and
video processing. In this section, we therefore briefly review related
work on a general level and discuss more specific related research
in the context of the respective applications in Sec. 5.

Pre-processing Our approach leverages recent advances in 3D
reconstruction techniques. Among these are structure-from-
motion (SFM) methods that simultaneously recover scene points
and camera poses [Kolev et al. 2009; Furukawa and Ponce 2010],
and real-time variants like simultaneous localization and map-
ping (SLAM) [Newcombe and Davison 2010; Tanskanen et al.
2013]. In all our experiments, we estimate camera pose param-
eters automatically using commonly available commercial tools
(NUKEX 9.0v5). In addition, our scene-space framework requires
per-pixel depth needed to project each video pixel into scene-space.
Depth from monocular video is customarily computed using stereo
methods employed on pairs of subsequent video frames [Scharstein
and Szeliski 2002; Seitz et al. 2006]. Other techniques for generat-

ing spatio-temporally consistent depth maps from video sequences
rely on segmentation and bundle optimization [Zhang et al. 2009b]
or filtering [Lang et al. 2012]. Such methods involve complex,
computationally expensive global optimization routines to handle
inherent ambiguities and/or to enforce smoothness. In contrast, for
our framework we found it completely sufficient to compute dense
depth using a much simpler, data-term only depth estimation algo-
rithm, or to use raw depth data from sensors like the Kinect, since
our sample collection and filtering step robustly eliminates outliers
during rendering.

Depth-image based rendering Scene-space information is fre-
quently used in image-based rendering methods to synthesize views
of recorded scenes from arbitrary perspectives. Most commonly,
depth-image based rendering (DIBR) methods work by project-
ing pixels into virtual camera views using per-pixel depth informa-
tion [Zitnick et al. 2004]. Recent extensions use additional image-
based correspondences to mask depth projection errors [Lipski et al.
2014]. For a survey of depth image-based rendering approaches,
we refer the reader to [Shum et al. 2007]. In contrast to the goals of
image-based rendering, our work does not aim to synthesize novel
views from virtual camera positions. We are instead focused on pro-
cessing the recorded video frames themselves. This key distinction
allows us to achieve high visual fidelity and realism by exploiting
the original frames as a prior.

Point-based methods Similar to our approach, point-based ren-
dering techniques deal with large numbers of unstructured points.
These methods work by “splatting” unstructured, oriented 3D
point clouds into a virtual camera view for displaying complex
scenes [Zwicker et al. 2001]. Similar to our approach, these meth-
ods accumulate surface samples in screen space. In order to cope
with noisy outlier points, it is common in point-based rendering
to resample and filter the 3D point cloud, e.g., by moving least
squares [Alexa et al. 2003; Öztireli et al. 2009; Kuster et al. 2014].
These methods focus on rendering predominantly correct 3D points
corrupted by spurious noise (often acquired by a laser scanner), and
obtain robustness by assuming that the underlying geometry is a lo-
cally smooth manifold. Epipolar constraints have been shown to
improve rendering quality for transitions between views, despite
some inaccurate depth estimates [Goesele et al. 2010]. Our frame-
work, in contrast, is designed to handle cases where the vast major-
ity of samples are outliers that arise from incorrect 3D estimates.
Our approach does not assume a spatially smooth model, but relies
on redundancy from very large sample sets (on the order of billions
of samples or more) and a bilateral weighting scheme to remove
the contribution of outliers. Our target application is general video
processing as opposed to 3D rendering.

Filtering Our work is inspired in part by the recent successes
of “edge-aware” filtering methods in image and video process-
ing [Paris et al. 2007]. Such approaches are often used for image
processing where an image-space patch is filtered by a weighted
combination of pixels based on a multivariate normal distribution
centered around the input pixel. This simple idea has been shown
to be successful in handling a large degree of outliers and has been
used in a wide range of applications including tonemapping and
style transfer [Aubry et al. 2014], upsampling [Kopf et al. 2007],
colorization [Gastal and Oliveira 2011], and to approximate global
regularizers [Lang et al. 2012]. Zhang et al. [2009c] propose a
method that leverages multiple view geometry to find image patches
for denoising. This approach marginalizes over depth values, and
is therefore somewhat robust to bad depth estimations, however
it works only for single images. Our filtering step resembles
these methods, but instead of deriving weights from image patches

Figure 2: Conceptual overview of our method. Samples are pro-
jected from video frames into scene-space (left), then a gathering
step finds all samples that fall into the viewing frustum of an output
pixel (middle), finally a filtering operation reduces this set to the
output pixel’s color (right).

we filter samples collected from scene-space frustums in a high-
dimensional sample space.

Depth-aware video enhancement Prior approaches have used
depth to achieve various video effects such as stylization and re-
lighting [Richardt et al. 2012], manipulating still images by regis-
tering stock 3D models to image content [Kholgade et al. 2014], or
computing visually consistent hyperlapses [Kopf et al. 2014]. Other
methods have proposed registering high-resolution stills to improve
the quality of video effects such as HDR, superresolution and ob-
ject removal on static [Bhat et al. 2007] as well as dynamic [Gupta
et al. 2009] scenes. Zhang et al. [2009a] generate transparency,
bullet time, and depth-of-field effects using high-quality, compu-
tationally expensive depth maps. While these approaches generate
compelling results, they rely on accurate scene information. Conse-
quently, the quality of their result is directly affected by any errors
in the estimated 3D scene correspondences. Our approach, in con-
trast, presents a new way of operating in scene-space that is robust
to noisy depth.

Related to our work, Sunkavalli et al. [2012] generate novel still
images from short videos by aligning video frames and comput-
ing importance-based pixel weights on the resulting image stack.
They show applications such as super resolution, blur and noise re-
duction, as well as visual summaries (action shots). While this ap-
proach creates compelling snapshots, it operates entirely in image-
space and does not straightforwardly extend to video. By regarding
the task in scene-space instead of image-space, our framework may
be considered a generalization of this earlier work that is also ap-
plicable to videos recorded by a moving camera.

3 Method Overview

The intuition behind our method can be summarized as follows,
Fig. 2. For each output pixel, we gather all samples that lie within
a 3D region defined by the pixel frustum of the output pixel, cor-
responding to all potential observations of the same scene point.
We then filter this sample set to generate an output pixel color by
weighting the samples appropriately. This intuition is conceptual
only; in practice the gathering step is performed directly in the im-
ages, avoiding the need for a costly intermediate 3D point cloud
representation.

In the following, we write the color of a pixel p at frame f in the in-
put video I as If (p). Our goal is to compute all output pixel colors
Of (p). For each Of (p), we draw a set of samples Sf (p) directly
from I . A sample s ∈ R7 is composed of color (srgb ∈ R3),
scene-space position (sxyz ∈ R3), and frame time (sf ∈ R). Color
srgb is in the range [0-255], sxyz are in scene space units, where

Input Depth map

Point cloud

Figure 3: Visualization of the quality of depth information our
method is able to use. The point cloud below shows a side view
of 5 images projected into scene-space. The amount of 3D outliers
is clearly visible.

the scene is scaled such that 90% of the points lie in a 103 cube,
and sf is in units corresponding to the frames of the input video.
Samples are generated by projecting a pixel from an input frame
If using camera matrix Cf and its respective depth value Df (p),
Sec.4. Filtering is defined as a function Φ(S) ∈ P(R7)→ R3 that
takes a sample set and produces an output color per pixel, Sec. 5.
In the following we drop the index f for clarity when considering
individual, sequentially processed frames.

Preprocessing As a preprocessing step, we derive camera cali-
bration parameters (extrinsics and intrinsics) C, and depth infor-
mation D from the input video I . Images are processed in an
approximately linear color space by gamma correction. Unless
otherwise specified, we compute camera calibration parameters au-
tomatically using commonly available commercial tools (NUKEX
9.0v5). Dense depth is either derived from the input video and cam-
era calibrations using multi-view stereo techniques or, in the case
of the action shots example, acquired by a Kinect sensor. Unless
otherwise mentioned, we use a simple, local depth estimation algo-
rithm where the standard multi-view stereo data-term [Seitz et al.
2006] is computed over a temporal window around each frame.
For each pixel this entails searching along a set of epipolar lines
defined by C, and picking the depth value with the lowest aver-
age cost (we use sum of squared RGB color differences on 3 × 3
patches). This simple approach does not include any smoothness
term and therefore does not require any complex global optimiza-
tion scheme, making it easy to implement and efficient to compute.
As expected it yields many local depth outliers, introducing high-
frequency “salt-and-pepper” noise in the depth map. Fig. 3 shows
an example of a noisy point cloud corresponding to a depth map
computed using this approach. Sec. 6 discloses timing details of
the depth computation step and all subsequent components of our
method.

Figure 4: Sample gathering. A pixel in output image O defines a
frustum V which projects to a convex polygon VJ in an input frame
J (left). Each pixel in VJ is then checked whether its projection in
O is inside VO (right). Pixels that pass this test are added to the
sample set. The green arrow indicates a gathered sample, while the
red arrows indicate samples that were tested, but rejected.

4 Sample Gathering

Next we discuss the general, application independent sample gath-
ering step, describing how we compute a sample set S(p) for each
output pixel p. The goal in constructing such a set is to collect
multiple observations of the same scene point visible to p. For
each output pixel p, a physical camera integrates information over
a frustum-shaped 3D volume V in scene-space, Fig 4. Therefore
the input video pixels that project into V are the samples we want
to collect.

The straightforward approach would be to project all video pix-
els into scene-space using their associated depth and camera ma-
trices, and store the resulting 3D point cloud in a space partition-
ing structure (e.g., a kd-tree). Gathering S(p) could then be done
by querying the data structure. However, a 1000-frame video at
720p resolution consists of nearly a billion 7D samples, and ren-
dering an output video would require an equal number of frustum
shaped queries. Computing this lookup on a general-purpose, data-
agnostic data structure would be computationally intractable, so in-
stead we exploit the underlying geometric nature of our input data
to drastically boost efficiency.

The key idea behind our efficient gathering step is to exploit the
duality between the scene and its 2D projections in the input video.
In order to find which pixels project into the frustum V , we look at
its projection into a single input frame J . All pixels that project into
V must reside inside the respective 2D convex hull VJ (determined
by projecting the frustum V into J), Fig 4. Therefore, rather than
storing and validating 3D points, we instead directly operate on the
pixels in VJ , looping through all J .

More formally, given output camera matrix CO , the 3D frustum
volume V of a pixel p is simply defined as a standard truncated
pyramid using the pixel location (px, py) and a frustum size l:

V = {C−1
O · [px ±

l

2
, py ±

l

2
, {near, far}, 1]T)}, (1)

where near, far are the depth values of the near and far clipping
planes (.01 and 1000 respectively). The 2D frustum hull VJ is ob-
tained by individually projecting the 3D frustum vertices of V into
J . Because pixels inside of VJ may not project into V , but lie
in front or behind it, we cannot simply accept the entire region.
Therefore, we rasterize all pixels q ∈ VJ and check whether their
projection back into the output view lies within VO , Fig. 4. Specif-
ically, we check the distance from q projected back into O to the
original pixel p.

‖p− CO · C−1
J · [qx, qy, qd, 1]T ‖1 <

l

2
(2)

Each pixel q passing this test is converted into a 7D sample and
added to the sample set S(p).

In case of error-free depth maps, camera poses, and a static scene,
the samples inside that pixel’s frustum (l = 1) would be a com-
plete set of all observations of that scene point (as well as any oc-
cluded scene points). However, inaccuracies in camera pose and
depth inevitably lead to false positives, i.e., outlier samples wrongly
gathered, and false negatives, i.e., scene point observations that are
missed. To account for depth and camera calibration inaccuracies,
we increase the per-pixel frustum size l to cover a wider range. In
most cases, we use l = 3 pixels. In general, this produces on the
order of a few hundred to a thousand samples per set. Note that the
depth of the current output pixel p is irrelevant at this stage of the
algorithm.

Since output sample sets are handled independently, we can com-
pute all frustum volumes for one output frame concurrently (i.e., the
approach is parallelized over output pixels p). This kind of local,
independent parallelism is especially well suited for GPU imple-
mentation. To handle the large volumes of input data, and to ad-
ditionally maximize data coherency during the computation, each
pixel in O gathers all samples from If in parallel before moving
on to If+1.

5 Filtering

Now that we have computed the sample set S(p), the second step is
to determine a final pixel color O(p) from this sample set. Among
the samples in S(p), some will correspond to a scene point ob-
served by the output camera, but others will come from occluded
regions, incorrect 3D information, or moving objects. An applica-
tion specific weighting function is used to emphasize samples that
we can trust, while reducing the influence of outliers. All results
we show in the following are computed using a sample set filtering
operation of the form:

O(p) = Φ(S(p)) =
1

W

∑
s∈S(p)

w(s)srgb (3)

where w(s) is an application specific weighting function and W =∑
s∈S(p) w(s), is the sum of all weights. One key property of Eq. 3

is that it is very fast to compute. This allows us to take advantage
of the large amount of redundant data present in video. To give
an intuition for the importance of efficiency; for a 30 second 720p
video at 30fps, and number of samples per set |S(p)| ≈ 1000, the
output video will be created from about a trillion weighted samples.
We show how this can be done in a reasonable amount of time on
a desktop computer. In empirical tests, we observe that, on average

W
|S(p))| ≈ .18, indicating that around 82% of the information in
S(p) is discarded by our approach.

A central feature of our method is the flexibility it provides in defin-
ing different weighting functions w(s) on the 7D samples. In par-
ticular, it is straightforward to specify effects based on scene-space
coordinates by making w(s) depend on the scene-space position of
a sample. We demonstrate this in several applications, such as ac-
tion shots, and inpainting defining approximate 3D regions (bound-
ing boxes), each with their own set of parameters for w(s).

We demonstrate the general applicability of our method by first
showing a number of difficult fundamental video processing op-
erations, followed by advanced video effects. All results were com-
puted using different variants of the weighting function w(s). We
encourage the reader to watch the accompanying video to assess the
results. All video results and datasets are available on the project
website.

D
en

oi
si

ng

Input Scene-space denoising BM3D [Dabov et al. 2007]

D
eb

lu
rr

in
g

Input Scene-space deblurring [Cho et al. 2012]

Figure 5: Results of our method on video denoising and deblurring. We obtain similar quality results to existing state-of-the-art approaches
specifically tailored to the respective task.

Denoising As the same scene point is observed many times
throughout a video, we can use these multiple observations to de-
noise input frames. Simply averaging all samples in S(p) by setting
w(s) = 1 causes occluded and noisy samples to corrupt the result,
Fig. 14. One key observation is that we have a reasonable prior on
the expected color Of (p) of an output pixel p, namely the input
pixel color If (p) at the same frame and pixel location. We call the
sample that originates from projecting If (p) into scene-space to be
the reference sample sref . Filtering can then be done as a weighted
sum of samples, where weights are computed as a multivariate nor-
mal distribution with mean sref :

wdenoise(s) = exp

(
− (sref − s)2

2σ2

)
. (4)

While we use the above notation for clarity, samples are actually
represented in a 7D space and we use a diagonal covariance matrix.
We call the diagonal entries σrgb for the three color dimensions,
σxyz for the scene-space position and σf for the frame time. For
denoising, we use typical parameters σrgb = 40, σxyz = 10, σf =
6. The values of σ are set based on the expected variance of their
respective modalities; due to the low quality of the input videos,
depth estimates in this application are very noisy and σxyz is set to a
high value (scenes are scaled to a 103 cube). For some applications
we do not list all three parameters, denoting that some dimensions
are not used.

We compare the result of our scene-space filter with a state-of-the-
art video denoising method (BM3D) [Dabov et al. 2007] in Fig. 5.

0 10 20 30 40 50 60 70

20

30

40

Standard deviation of noise added

PS
N

R

Noisy input
BM3D

Scene-space

Figure 7: PSNR for denoising. Synthetic noise was removed from
a real video sequence using BM3D and our scene-space method.

Despite a simple filtering operation, we achieve similar quality de-
noising results, demonstrating the power of working in scene-space
with large volumes of data. Our method even produces reasonable
results for scenes exhibiting lighting changes and limited amounts
of foreground motion. We show examples of these in the supple-
mental video.

We conducted an additional quantitative evaluation to compare to
spatiotemporal BM3D. In this experiment, we took a largely noise-
free video sequence, and added zero mean, grayscale Gaussian
noise with varying standard deviations. After adding increasing
amounts of noise, we ran the noisy videos through our entire au-
tomatic pipeline, including depth computation, camera calibration,
and denoising. Fig. 7 shows the resulting plot of PSNR values. In

Su
pe

rr
es

ol
ut

io
n

Input Scene-space super resolution Infognition super resolution [2015]

Figure 6: A comparison using our framework and a commercial tool for super-resolution.

the case of a static scene and camera motion, we observe that our
method is able to outperform BM3D by incorporating 3D informa-
tion in the filtering.

Deblurring We can also use our method for deblurring video
frames that are blurry due to sudden camera movements, e.g., dur-
ing hand-held capture. We use the same equation as above, but add
to it a measure of frame blurriness:

wdeblur(s) = exp

(
− (sref − s)2

2σ2

) ∑
q∈Isf

|∇Isf (q)|, (5)

where∇ is the gradient operator, and Isf is the frame that the sam-
ple s originated from. The first part is the same multivariate nor-
mal distribution as Eq.(4), and blurriness is computed as the sum
of gradient magnitudes in Isf . This down-weights the contribution
from blurry frames when computing an output color. We use values
σrgb = 200, σxyz = 10, σf = 20. We compare to a recent state-
of-the-art approach that uses a patch search in space and time to
find non-blurred patches that combines the content of these patches
with the current frame [Cho et al. 2012]. We can observe similar
quality results, Fig 5.

Super resolution We can also perform a scene-space form of
super resolution, where the goal is to create a high-resolution out-
put video Ô from a low-resolution input video I . The traditional
approach of using sub-pixel shifts derived from aligning multiple
images, and solving for the high-resolution image, e.g., using it-
erative reweighted least squares [Sunkavalli et al. 2012], or using
external priors, e.g., on image gradients [Sun et al. 2008]. Instead,
we simply choose a weighting scheme that prefers observations of
the scene point with the highest available resolution. We assume
that each scene point is most clearly recorded when it is observed
from as close as possible (i.e., the sample with the smallest pro-
jected area in scene space). To measure this, we introduce a new
sample property that we call sarea. The scene-space area of a sam-
ple is computed by projecting its pixel corners into the scene and
computing the area of the resulting quad. Assuming square pixels
it is sufficient to compute the length of one edge. Let pl and pr be
the left and right edge pixel locations of a sample located at p and
C be the camera matrix for the sample’s frame sf ;

sarea =
∥∥C−1 · [pl, D(p), 1]T −C−1 · [pr, D(p), 1]T

∥∥2
2

(6)

We then use the following weighting function:

wsr(s) = exp

(
− (sref − s)2

2σ2

)
exp

(
− sarea

2σarea

2
)
. (7)

We use parameters values σrgb = 50, and σarea = .02. Intuitively,
the latter term down-weights samples that were observed by cam-
eras from farther away, preferring the samples with more detailed
information. In order to generate reference samples sref in this
case, we bi-linearly upsample I to the output resolution. As our
gathering step allows samples to be gathered from arbitrary pixel
frustums, we simply gather samples from frustums corresponding
to pixel coordinates from Ô, rather than O.

In addition to fundamental video processing applications, our ap-
proach can also be used to create compelling, stylistic scene-space
effects.

Inpainting and semi-transparency We can use our method to
“see-through” objects by displaying content that is observed behind
an object at another point in time. This application requires that a
user specifies which objects should be made transparent, either by
providing per-frame binary image masks M where M(p) = 1
indicates that pixel should be removed, or a scene-space bounding
region, and M(p) = 0 otherwise. In the latter case, we project all
samples that fall into the scene-space bounding region back into the
original images to create M . We show in the supplemental video
how one might create a scene-space mask with substantially less
interaction than drawing 2D image masks, and compare our result
to a state-of-the-art video inpainting method [Granados et al. 2012]
using masks provided by the authors, Fig. 8.

As we do not have a reference sref in S(p) for the mask region,
we instead compute an approximate reference sample by taking the
mean of all samples,

sref =
1

|S(p)|
∑

s∈S(p)

s (8)

and weight samples with the following function,

winpaint(s) =

{
exp

(
− (sref−s)2

2σ2

)
when M(sp) = 0

0 else
(9)

This computes a weighted combination of samples based on their
proximity to the mean sample. If we iterated this procedure, this
would amount to a weighted mean-shift algorithm that converges
on cluster centers in S(p). However we found that after two steps
the result visually converges. For inpainting, we use parameter val-
ues σrgb = 55. To achieve semi-transparent results, we add the
standard multivariate weighting to the input frame I(p) and use
σrgb = 80, in order to emphasize similar color samples.

Computational scene-space shutters A “computational shut-
ter” replaces the process of a camera integrating photons that arrive

O
bj

ec
ts

em
i-

tr
an

sp
ar

en
cy

Input 3D mask 3D mask reprojected Scene-space semi-transparency

V
id

eo
in

pa
in

tin
g

Input Background mask Scene-space inpainting [Granados et al. 2012]

Figure 8: Scene-space samples can be used for video inpainting. Regions can be specified either in scene-space (top row) or in image-space
(bottom row). The 2D background mask is inverted for clarity.

at a pixel sensor with a controlled post processing algorithm. By ex-
tending this concept into scene-space, we can generate compelling
results that are fully consistent over camera motion. In this case, our
weighting function is replaced by the shutter function that operates
on the time of each sample:

wcompshutter(s) = ξ(sf) (10)

where ξ(sf) is a box function in a typical camera. The most
straightforward example is a scene-space long exposure shot, Fig. 9.
As opposed to image-space long exposure shots, time-varying com-
ponents become blurred but the static parts of the scene remain
sharp, even with a moving camera.

We define possible alternatives for ξ(sf) visually in Fig. 10. If
we consider ξ(sf) to be an impulse train, and apply it only in a
user-defined scene-space region, we can obtain “action shot” style
videos. By using a long-tail decaying function, we can create
trails of moving objects. These effects are related to video synop-
sis [Pritch et al. 2008], as they give an immediate impression of the
motion of a scene. In both cases, the temporally offset content be-
haves correctly with respect to occlusions and perspective changes.
When the computational shutter contains Dirac delta functions, this
implies a projection of content from one frame into another (i.e.,
action shots in Fig. 9). As only a single time instance is used, we
cannot leverage repeated observations of these scene points, and
we lose some of the robustness to noisy depth, leading to visible re-
projection errors typical to depth image-based rendering. Nonethe-
less, this example highlights the expressiveness of our method by its
ability to model complex scene-space effects using simple shutter
functions. For this, we require reasonable depth of moving fore-
ground objects, which we acquire using a Kinect depth sensor, as it
cannot be deduced from the video directly.

Until now, we have not explicitly addressed occlusions. This is
because inaccurate depth makes reasoning about occlusions diffi-
cult. Instead we have relied on sref and sample redundancy to
prevent color bleeding artifacts. However, using this approach for
dynamic foreground objects, our method can only capture a single
observation at a given moment of time. Because we have neither a
reference sample nor a significant number of samples with which to
determine a reasonable prior, we use the following simple occlusion

Figure 10: A selection of “computational shutter” weighting func-
tions, from left to right; a box filter equivalent to a regular camera
shutter, an impulse train used to generate multiple exposure video
action shots, and a long falloff used for motion trails.

heuristic to prevent color bleed-through for scenes with reasonable
depth values, e.g., from a Kinect. We introduce the notion of a sam-
ple depth order sord, that is the number of samples in S(p) that are
closer to p than the current sample s,

sord = #{q ∈ S(p)
∣∣ (pxyz − qxyz)2 < (pxyz − sxyz)2}. (11)

Our weighting function becomes:

waction = ξ(sf) exp

(
− s2ord

2σ2
ord

)
. (12)

We use σord = 10. This weighting function emphasizes the sam-
ples in the gathered frustum that are the closest to the output cam-
era.

Virtual aperture With appropriate weighting functions, we can
also represent complex effects such as virtual apertures, exploit-
ing the existence of our samples in a coherent scene-space. To do
this, we model an approximate physical aperture in scene-space and
weight our samples accordingly, Fig. 11. This allows us to create
arbitrary aperture effects, such as focus pulls and focus manifolds
defined in scene-space.

We design a weighting function for an approximate virtual aperture
as a double cone with its thinnest point a0 at the focal point z0,

C
om

pu
ta

tio
na

lS
hu

tte
rs

Input Scene-space long exposure Image-space long exposure

A
ct

io
n

Sh
ot

s

Figure 9: Computational shutter effects. In a scene-space long exposure video, static objects remain sharp despite camera motion, while
moving components like the fountain become blurred. Image-space long exposure on the other hand, blurs the whole frame (top row). Scene-
space processing enables effects such as action shots or motion trails, where the filtering step selects distinct frames in time (bottom row).
Because these effects live in scene-space, they behave correctly in terms of occlusions and perspective change.

Fig. 12. The slope as of the cone defines the size of the aperture as
a function of distance from focal point;

a(z) = a0 + |z0 − z| ∗ as. (13)

To avoid aliasing artifacts we use the sample area sarea introduced
previously to weight each sample by the ratio of its size and the
aperture size at its scene-space position. The intuition is that sam-
ples carry the most information at their observed scale.

With r as the distance of sxyz along the camera viewing ray, and q
as the distance from the ray to s, we use

wva =

{
sarea
πa(r)2

when q < a(r)

0 else .
(14)

Many other formulations for synthetic apertures are conceivable
and work on camera arrays demonstrated how it is possible to cre-
ate compelling virtual aperture images and videos [Wilburn et al.
2005; Vaish et al. 2005]. In our case, we are not using multiple
viewpoints at the same time instance, but rather samples captured
from neighboring frames to compute aperture effects.

6 Implementation

Our method was implemented in Python with CUDA bindings and
tested on an Intel i7 3.2 GHz desktop computer, with 24GB RAM
and a GeForce GTX 980 graphics card. Datasets were captured
using an iPhone 5s, GoPro Hero 3, Canon S100 point-and-shoot,
and Sony α7s camera. In general, we process videos ranging from
200-1000 frames (6-30 seconds) long, all at 720p resolution. Un-
less otherwise noted, all datasets were preprocessed with an auto-
matic script that computes camera pose and data-term only depth
maps. Tab. 1 gives the processing times for different steps of our
method. The samples/pixel are averages observed in our exper-
iments, and are determined by the required sampling regions; in

Figure 11: Frame from a video with an added virtual aperture ef-
fect (narrow depth-of-field).

inpainting we use a large temporal σf , accumulating samples over
many frames, and with a virtual aperture, we gather from a bigger
frustum, accumulating many samples over a large spatial region.
The cost of gathering vs. filtering also depends on the application,
but in most cases, we observed that roughly 80-95% is spent gath-
ering samples and the rest in filtering. Despite the large amount of
data considered, our prototype implementation shows that sampling
based scene-space approaches can generate results in a reasonable
amount of time. Further optimizations are possible for performance
critical applications.

7 Evaluation

We present a general framework for implementing a variety of ef-
fects efficiently and intuitively. We do not claim that our approach
always performs better than any of the application specific state-
of-the-art methods that we compare to, only that we can generate
compelling video processing effects. For this reason, we provide
videos in the supplemental material as validation of our approach.

(a) (b) (c) Denoised with (a) Denoised with (b) Denoised with (c)

Figure 13: Evaluation of denoising with varying quality depth maps: globally smooth (computed using Nuke) (a), data-term only depth (b),
and (b) with added high frequency noise (c). While the denoised output is similar in many places, some artifacts are visible when zoomed in.
For example, when denoised with the globally smoothed (a) or added noise (c) results, more of the background color bleeds in from behind
the table legs, and in (c) the final result has substantially more high frequency noise.

a) Mean of all samples Our method b) Mean of all samples Our method

Figure 14: Averaging the color of all gathered samples (mean) generates poor quality results because it includes many incorrect samples
due to 3D projection errors. Using our filtering, the contribution of these samples can be greatly reduced.

Figure 12: The shape of our virtual aperture weighting function
is a double cone with the focal point at the center. The distance
from this focal point along the viewing ray determines the size of
the area from which samples are used.

We additionally analyzed the performance of our method over a
range of different sources of 3D information. We experimented
with alternate camera pose estimation tools (VisualSFM, PFTrack)
with similar results. In Fig. 13, we show a denoising result using
a variety of depth maps, from over-smoothed to highly noisy. This
example shows that our method degrades gracefully as the quality
of depth is reduced, leading to only subtle artifacts visible as resid-
ual noise and color bleeding from occluded scene objects. We
further demonstrate the effect of our robust filtering step in Fig. 14,
by comparing our filtering to averaging all gathered samples. With
a simple mean, errors in scene-space information are clearly visible.

In most applications, we use 5 < σf < 20, which implies that
we are only using information up to about 60 frames on either side
of the output frame. This limitation is due to drift in the camera
calibration. After more frames, we found that the reprojection er-
rors become worse and worse and gathering these samples did not
help much. By choosing lower σf , our approach can be robust to

samples/pixel sec./frame

Preprocessing - 1.5
Depth Computation - 28.5

Denoising 500 3.4
Deblurring 250 8.9
Action shots 100 4.7
Video Inpainting 1000 16.0
Virtual Aperture 12000 10.2
Motion Trails 600 29.0
Super resolution (9×resolution) 800 140.1

Table 1: Processing time for different applications of our method.
Preprocessing is the total time spent on automatic extraction of
frames, lens undistortion, and camera pose estimation. Runtimes
are dependent on scene structure, camera motion, sampling pa-
rameters, so timings are only given as an estimate of the runtime
the algorithm can be expected to perform at.

this kind of drift, at the expense of having fewer samples available
for filtering. However, given drift-free calibrations, e.g., from pose
estimation techniques employing loop closure, we could take ad-
vantage of additional frames.

7.1 Limitations and future work

Our approach has several limitations, and numerous directions for
promising future work. Our framework assumes that the color of
scene points stays constant over a local temporal window, i.e., scene
changes due to lighting variation or object motion are not explicitly
modeled. Despite this, the robust nature of the filtering step enables
us to generate realistic-looking results even when these assump-

Figure 15: The top row shows an example of a rapidly moving ob-
ject. Our method cannot denoise the flapping bird as excessive mo-
tion prevents us from gathering reliable samples from other frames.
Despite this, we can denoise the rest of the scene and avoid ghost-
ing of the bird. Occlusions can be an additional problem, as we
gather samples both on and behind objects. We can reduce their
contribution using depth information, or the reference sample.

Figure 16: The blurred edge of the wall in the noisy input image
(left), makes both depth estimation and the reference sample unre-
liable, which can cause high frequency artifacts (right).

tions are violated. However, for fast moving objects, our ability to
collect samples is limited to the current frame only, and as a result
our filtering step can at best recreate the original frame, Fig. 15.
For the action shots example, samples are gathered from a single,
distant frame and no valid reference samples exist, which can lead
to standard reprojection errors, clearly visible in Fig. 9.

One solution would be to gather samples in object space rather than
scene-space. Doing so however, requires computing accurate dense
scene flow (scene-space optical flow). Computing scene flow is a
challenging problem, and while there has been exciting recent work
showing high quality 3D trajectories [Joo et al. 2014], these are
often achieved with specialized acquisition scenarios (in this case
a 480 camera dome). Nonetheless, as scene flow becomes more
available, our approach is well suited to take advantage of it; by
integrating the motion of the scene into the sample gathering step
we can support fully dynamic scenes as well.

Occlusions are another inherent difficulty when working with un-
structured point clouds. As we gather samples throughout the entire
output pixel frustum, we collect occluded samples that project be-
hind objects if these regions become visible at another time in the
video. If a good reference sample sref is not available, these can
show up as color bleeding in the foreground, Fig. 15. With suffi-
ciently accurate depth information however, (e.g, in the action shots
application), the contribution of these occluded samples can be re-
duced, allowing us to prevent unwanted color bleeding.

Our approach computes neighboring output pixel colors indepen-
dently. This is important for efficient parallelization, but means that
it is not straightforward to enforce higher-level image-space consis-
tency in the final result. This can lead to high frequency artifacts,

for example in Fig. 8 and the HORSE sequence in the supplemental
material, where speckling is visible in regions with high contrast be-
tween foreground and background colors. In cases where both the
depth and reference sample color are incorrect, object boundaries
can become distorted as the weighting of sample sets varies from
pixel to pixel. This effect is visible in Fig. 16 and in the KITCHEN
sequence in the supplemental video, where the edge of the wall be-
comes distorted. We can mitigate this problem to some extent by
controlling the size of the pixel frustums; by having overlapping
frustums between neighboring pixels, neighboring sample sets will
share samples, achieving a limited amount of spatial consistency.
However, explicit methods that solve for image-space consistency,
e.g., by solving for pixel colors as a MRF considering neighboring
output pixels as being connected, would be an interesting area for
future work.

Finally, our method requires scene-space information, which can be
seen as an additional burden. In fact, for some videos, existing ap-
proaches are not sufficiently robust to determine camera pose and
depth values automatically. As these technologies improve, how-
ever, more and more scenes will be suitable for automatic sampling-
based processing. In professional environments, these problems are
solved on a daily basis with a high degree of accuracy using mature
tools and skilled operators, and our approach can directly be inte-
grated into such production pipelines.

8 Conclusion

We have presented a general framework that allows for robust
scene-space video processing in the presence of inaccurate 3D in-
formation. Our method is based on simple, transparent algorithms
that can take advantage of the large volumes of data that comes with
HD videos. We have demonstrated the generality of our approach
for different fundamental video processing applications and com-
pared the results to state-of-the-art methods specifically designed to
the respective tasks. Additionally, we have shown several advanced
video processing operations such as video inpainting, action shots,
and virtual apertures. Each of these applications was computed on
real world, hand-held footage captured with consumer-grade cam-
eras, demonstrating the robustness of our approach and general ap-
plicability both to mass market and professional requirements. We
believe that our novel scene-space processing approach will enable
new video applications that were previously impossible, limited or
could not be fully explored because of inevitably unreliable depth
information. Video results and datasets are available on the project
website to facilitate future research.

Acknowledgments

We would like to thank Henning Zimmer, Changil Kim, Yağız
Aksoy, Cengiz Öztireli, and Mario Botsch for helpful discussions
throughout the project, as well as Sunghyun Cho and Miguel Grana-
dos for making their datasets public. Marcus Magnor acknowledges
funding from ERC Grant #256942 “RealityCG”.

References

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN,
D., AND SILVA, C. T. 2003. Computing and rendering point set
surfaces. TVCG.

AUBRY, M., PARIS, S., HASINOFF, S. W., KAUTZ, J., AND DU-
RAND, F. 2014. Fast local Laplacian filters: Theory and appli-
cations. ACM Trans. Graphics.

BHAT, P., ZITNICK, C. L., SNAVELY, N., AGARWALA, A.,
AGRAWALA, M., COHEN, M. F., CURLESS, B., AND KANG,
S. B. 2007. Using photographs to enhance videos of a static
scene. In EGSR.

CHO, S., WANG, J., AND LEE, S. 2012. Video deblurring for
hand-held cameras using patch-based synthesis. ACM Trans.
Graphics (Proc. SIGGRAPH).

DABOV, K., FOI, A., KATKOVNIK, V., AND EGIAZARIAN, K. O.
2007. Image denoising by sparse 3D transform-domain collabo-
rative filtering. Trans. Image Processing.

FURUKAWA, Y., AND PONCE, J. 2010. Accurate, dense, and ro-
bust multiview stereopsis. TPAMI.

GASTAL, E. S. L., AND OLIVEIRA, M. M. 2011. Domain trans-
form for edge-aware image and video processing. ACM Trans.
Graphics (Proc. SIGGRAPH).

GOESELE, M., ACKERMANN, J., FUHRMANN, S., HAUBOLD,
C., KLOWSKY, R., STEEDLY, D., AND SZELISKI, R. 2010.
Ambient point clouds for view interpolation. ACM Trans.
Graphics (Proc. SIGGRAPH).

GOOGLE, 2015. Project Tango. https://www.google.com/
atap/projecttango/#project.

GRANADOS, M., KIM, K. I., ANDGTANGO JAN KAUTZ, J. T.,
AND THEOBALT, C. 2012. Background inpainting for videos
with dynamic objects and a free-moving camera. In ECCV.

GUPTA, A., BHAT, P., DONTCHEVA, M., CURLESS, B.,
DEUSSEN, O., AND COHEN, M. 2009. Enhancing and ex-
periencing spacetime resolution with videos and stills. In ICCP.

INFOGNITION, 2015. Infognition superresolution plugin. http:
//www.infognition.com/super_resolution/.

JOO, H., PARK, H. S., AND SHEIKH, Y. 2014. Map visibility
estimation for large-scale dynamic 3D reconstruction. In CVPR.

KHOLGADE, N., SIMON, T., EFROS, A. A., AND SHEIKH, Y.
2014. 3D object manipulation in a single photograph using stock
3D models. ACM Trans. Graphics (Proc. SIGGRAPH).

KOLEV, K., KLODT, M., BROX, T., AND CREMERS, D. 2009.
Continuous global optimization in multiview 3D reconstruction.
IJCV .

KOPF, J., COHEN, M. F., LISCHINSKI, D., AND UYTTENDAELE,
M. 2007. Joint bilateral upsampling. ACM Trans. Graphics
(Proc. SIGGRAPH).

KOPF, J., COHEN, M. F., AND SZELISKI, R. 2014. First-person
hyper-lapse videos. ACM Trans. Graphics (Proc. SIGGRAPH).

KUSTER, C., BAZIN, J.-C., ÖZTIRELI, A. C., DENG, T., MAR-
TIN, T., POPA, T., AND GROSS, M. 2014. Spatio-temporal
geometry fusion for multiple hybrid cameras using moving least
squares surfaces. CGF (Eurographics).

LANG, M., WANG, O., AYDIN, T. O., SMOLIC, A., AND GROSS,
M. 2012. Practical temporal consistency for image-based graph-
ics applications. ACM Trans. Graphics (Proc. SIGGRAPH).

LIPSKI, C., KLOSE, F., AND MAGNOR, M. A. 2014. Correspon-
dence and depth-image based rendering a hybrid approach for
free-viewpoint video. T-CSVT .

NEWCOMBE, R. A., AND DAVISON, A. J. 2010. Live dense re-
construction with a single moving camera. In CVPR.

ÖZTIRELI, A. C., GUENNEBAUD, G., AND GROSS, M. 2009.
Feature preserving point set surfaces based on non-linear kernel
regression. CGF (Eurographics).

PARIS, S., KORNPROBST, P., TUMBLIN, J., AND DURAND, F.
2007. A gentle introduction to bilateral filtering and its applica-
tions. In ACM SIGGRAPH courses.

PRITCH, Y., RAV-ACHA, A., AND PELEG, S. 2008. Nonchrono-
logical video synopsis and indexing. TPAMI.

RICHARDT, C., STOLL, C., DODGSON, N. A., SEIDEL, H., AND
THEOBALT, C. 2012. Coherent spatiotemporal filtering, upsam-
pling and rendering of RGBZ videos. CGF (Eurographics).

SCHARSTEIN, D., AND SZELISKI, R. 2002. A taxonomy and eval-
uation of dense two-frame stereo correspondence algorithms.
IJCV .

SEITZ, S. M., CURLESS, B., DIEBEL, J., SCHARSTEIN, D., AND
SZELISKI, R. 2006. A comparison and evaluation of multi-view
stereo reconstruction algorithms. In CVPR.

SHUM, H., CHAN, S., AND KANG, S. B. 2007. Image-based
rendering. Springer.

SUN, J., XU, Z., AND SHUM, H. 2008. Image super-resolution
using gradient profile prior. In CVPR.

SUNKAVALLI, K., JOSHI, N., KANG, S. B., COHEN, M. F., AND
PFISTER, H. 2012. Video snapshots: Creating high-quality im-
ages from video clips. TVCG.

TANSKANEN, P., KOLEV, K., MEIER, L., CAMPOSECO, F.,
SAURER, O., AND POLLEFEYS, M. 2013. Live metric 3D re-
construction on mobile phones. In ICCV.

VAISH, V., GARG, G., TALVALA, E.-V., ANTUNEZ, E.,
WILBURN, B., HOROWITZ, M., AND LEVOY, M. 2005. Syn-
thetic aperture focusing using a shear-warp factorization of the
viewing transform. In CVPR Workshop.

WILBURN, B., JOSHI, N., VAISH, V., TALVALA, E., ANTÚNEZ,
E. R., BARTH, A., ADAMS, A., HOROWITZ, M., AND LEVOY,
M. 2005. High performance imaging using large camera arrays.
ACM Trans. Graphics (Proc. SIGGRAPH).

ZHANG, G., DONG, Z., JIA, J., WAN, L., WONG, T.-T., AND
BAO, H. 2009. Refilming with depth-inferred videos. TVCG.

ZHANG, G., JIA, J., WONG, T., AND BAO, H. 2009. Consistent
depth maps recovery from a video sequence. TPAMI.

ZHANG, L., VADDADI, S., JIN, H., AND NAYAR, S. K. 2009.
Multiple view image denoising. In CVPR.

ZITNICK, C. L., KANG, S. B., UYTTENDAELE, M., WINDER, S.
A. J., AND SZELISKI, R. 2004. High-quality video view inter-
polation using a layered representation. ACM Trans. Graphics
(Proc. SIGGRAPH).

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M.
2001. Surface splatting. In SIGGRAPH.

https://www.google.com/atap/projecttango/#project
https://www.google.com/atap/projecttango/#project
http://www.infognition.com/super_resolution/
http://www.infognition.com/super_resolution/

