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Fig. 1: We show Hypotrochoid curves generated by our method along with their cor-
responding latent control points (shown as dots) and the latent trajectories obtained
using a cubic Bézier interpolator. Curves that look similar in Cartesian space (Cols 1,
2) seem to have similar latent controls and trajectories, while smoother curves (Col 3)
seem to have smoother latent trajectories.

1 More About Control Points

Role In Downstream Applications In our work, we evaluate Spline-based
Transformers mainly from the point of view of reconstruction tasks as they are
a common proxy task for pre-training feature backbones for various downstream
* equal contribution.
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applications (such as classification, segmentation, etc). Even when trained to
reconstruct input sequences, Spline-based Transformers already seem to capture
the similarities and differences between the input sequences in their latent con-
trol points. In Fig. 1, we show the predicted control points of two similar-looking
curves (Cols 1, 2) alongside a different curve (Col 3) with their corresponding
latent trajectories in the second row. Complex curves appear to have more non-
linear latent trajectories (Cols 1, 2), while the smoother curve (Col 3) has a more
linear latent trajectory. While further experimentation is certainly required, our
early results indicate that Spline-based Transformers will find use in various
other applications, including representation learning, classification etc.

Latent Control Manipulation The number of control tokens/points depends
on the type of B-Spline (cardinal B-Splines, cubic Bézier, etc.) used. So far we
have used cubic Bézier splines, which are defined by four control tokens across
all data modalities. These control points determine the trajectory of the input
sequence in the latent space of a Spline-based Transformer. For cubic Bézier
splines, the first and the last latent control points determine the start and end
of the latent trajectory, while the second C1 and third C2 control points define
the shape of the latent spline. Fig. 2 demonstrates the effect of modifying the
control point C2 on 2D Hypotrochoids and the effect this has on reconstruction.
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Fig. 2: Modifying the control points alters the latent trajectories according to the
chosen B-Spline (cubic Bézier in our case). Here we incrementally modify control point
C2 to be closer to C1 and visualize the change in the latent space. The corresponding
reconstructed curve is shown in the top row.
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2 Implementation Details

In the following, we present the implementation details for our Spline-based
Transformer to help with reproducibility. In Tab. 1, we enumerate the various
hyperparameters used in building the Spline-based Transformer for each of our
experiments.
Algorithm 1: Spline-based Transformer
Input: Sequence x of dimensions (seq_len× data_dim).
Param: Number of control points controls. Dimension of spline d.

Network layers {encoder,decoder,T5}_layers.
Output: Predicted sequence x̃.

1 /* components */
2 MLPEnc = Sequential(encoder_layers)
3 MLPDec = Sequential(decoder_layers)
4 TEnc = TransformerEncoder(T5_layers)
5 TDec = TransformerDecoder(T5_layers)
6 p = ParameterList([Parameter(d) for _ in range(controls)])
7 /* forward pass */
8 feat_in = MLPEnc(x)
9 enc_inp = cat(∗p, feat_in) ▷ concat control points

10 enc_out = TEnc(enc_inp)

11 c_points = enc_out[:controls]
12 latents = EVALUATE(c_points, seq_len) ▷ Eq. (1)

13 feat_out = TDec(latents)
14 x̃ = MLPDec(feat_out)

Algorithm 2: EVALUATE CubicBézier
Input: Four control points c_points and sequence length seq_len.
Output: Uniformly evaluated latent spline s.

1 t = linspace(0, 1, seq_len)
2 s = ((1− t)3 · c_points[0]
3 +3.0 · (1− t)2 · t · c_points[1]
4 +3.0 · (1− t) · t2 · c_points[2]
5 + t3 · c_points[3])
6 return s

Spline-based Transformers only require simple modifications to a traditional
transformer model and easily fit into various existing setups. Alg. 1 presents a
general implementation of Spline-based Transformers using a torch-like syntax.
Different layers can be chosen for MLP encoder/decoder, e.g ., in the case of
image data, 2D convolution layers can be used. Similarly, different transformer
blocks can be stacked together to build our transformer encoder/decoder. Our
control tokens p are learnable parameters (Line 6) and are initialized from a
normal distribution. These learnable control tokens are concatenated to the se-
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quence of tokens after the MLP encoder (Line 9) to result in the transformer
encoder’s input sequence enc_inp. The tokens corresponding to the control to-
kens are interpreted as latent control points at the output of the encoder, which
are then evaluated as a spline (Line 11-12). In our experiments, we used cu-
bic Bézier splines (with four control points), and Alg. 2 shows how we evaluate
them to obtain a latent token sequence for the decoder. Finally, the interpolated
latents are passed through the transformer decoder and the shared MLP de-
coder and ultimately mapped back into their original space. An L2 loss function
between the input and output sequence is used to train our system end-to-end.

Table 1: Parameters and Hyperparameters.

Sec Experiment Param. d n h c FFN BS lr PS

4.1

Lissajous (3D) 0.20M 3 4 4 64 1 256 1e−3 -
Hypotrochoids (4D) 0.20M 4 4 4 64 1 256 1e−3 -
Bézier (2D) 0.20M 2 4 4 64 1 1024 1e−3 -
Bézier (64D) 0.43M 64 4 4 128 1 1024 1e−3 -

4.2
CIFAR10 0.85M 25,6,7 4 8 128 1 512 3e−4 4
AFHQ 1.65M 25,6,7 4 8 128 1 512 3e−4 32
Face images 1.65M 25,6,7 4 8 128 1 512 3e−4 32

4.3 Faces 12.3M 25,6,7,8 4 8 256 1 32 5e−5 -
Motions 0.63M 24,5,6 4 8 128 1 1024 3e−4 -

4.4 Strands 0.21M 23,4,5 4 8 64 1 128 1e−3 -

Tab. 1 summarizes the parameters and hyperparameters used to conduct the
experiments presented in the paper. The latent dimension d, number of stacked
transformer layers n, number of transformer heads per layer h, and the feature
size of each layer c. Internally, the transformer layers consist of Feed-Forward
Networks (FFN), two fully connected layers with non-linear activation GELU.
FFNs can have an inner dimension that is 1-4x larger than their outer dimension.
We keep the inner structure equal and set the factor to 1x. BS is the batch size,
and lr is the learning rate. For the image results, we used a patch size PS.
The number of parameters corresponds to the model with the largest latent
dimension.

3 Additional Results

Additional results for reconstructing synthetic curves, facial images, and hair
strands are shown in Figs. 3, 4, and 5, respectively.
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Fig. 3: Additional reconstruction results for 2D curves.
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GTALiBi ALiBi-Cat Spline (Ours) GTALiBi ALiBi-Cat Spline (Ours)

Fig. 4: Additional reconstruction results for test images.
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GT ALiBi ALiBi-Cat Spline (Ours)
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Fig. 5: Additional reconstruction results for test hairstyles.
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