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ABSTRACT

Calibration of multi-projector-camera systems (MPCS) is a cum-
bersome and time-consuming process. It is of great importance
to have robust, fast and accurate calibration procedures at hand
for a wide variety of practical applications. We propose a fully
automated self-calibration method for arbitrarily complex MPCS.
It enables reliable and accurate intrinsic and extrinsic calibration
without any human parameter tuning. We evaluated the proposed
methods using more than ten multi-projection datasets ranging from
a toy castle set up consisting of three cameras and one projec-
tor up to a half dome display system with more than 30 devices.
Comparisons to reference calibrations, which were generated us-
ing the standard checkerboard calibration approach [44], show the
reliability of our proposed pipeline, while a ground truth evalua-
tion also shows that the resulting reconstructed point cloud accu-
rately matches the shape of the reference geometry. Besides be-
ing fully automatic without the necessity of parameter fine tuning,
the proposed method also significantly reduces the installation time
of MPCS compared to checkerboard-based methods and makes it
more suitable for real-world applications.

Keywords: Projector-camera systems, Calibration and registration
of sensing systems, Display hardware, including 3D, stereoscopic
and multi-user Entertainment, broadcast

1 INTRODUCTION AND MOTIVATION

Accurately calibrating cameras is a core requirement for numerous
computer vision tasks. A huge amount of research has been carried
out within this field to solve this task either manually or automati-
cally up to full self-calibrations allowing Rome to be reconstructed
within a day [1]. All these methods vary in their complexity, pre-
requisites, and accuracy.

Projector-camera systems have been used for several decades
within different application fields, such as 3D scanning applica-
tions, light transport decomposition [30], spatial augmented real-
ity (also known as projection mapping) [27], interactive installa-
tions, and adaptive and dynamic color correction tools. All of these
setups require some kind of global device registration, which is
achieved by using the cameras to capture projector patterns and es-
timate the needed information for calibrating the projectors. This
task is mostly carried out in a preprocessing step. Since this is
time consuming and error prone, other methods propose to apply
self-calibration algorithms to achieve this goal. Since, however,
the number of camera views is usually quite low and contains sig-
nificant perspective variations, not all methods (such as the ones
optimized for structure from motion) can work reliably. Although,
recently, researchers have proposed several MPCS self-calibration
methods, they are all limited to specific setups or require additional
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information, such as the geometry to be known or initial estimates
for the camera intrinsics.

The main goals of our work are to overcome these limitations and
develop a generic, reliable, and outlier insensitive self-calibration
method which is sufficiently flexible to handle all kinds of MPCS,
fast to compute, and does not require any initial guesses or manual
parameter tuning.

2 BACKGROUND AND RELATED WORK

Projector camera systems, also called procams, are combined input
and output devices being used, for example, for surface scanning
or augmentation tasks. They contain cameras which observe the
projection onto the surface. Depending on the application purpose,
this information can be used to generate an accurate geometrical
calibration of the projector with respect to the real world. Sample
applications are presented, for example, in [3] and [27].

2.1 Geometric Calibration of Projector-Camera Sys-
tems

Most methods to calibrate projectors usually start with one or multi-
ple cameras, which are either pre-calibrated or uncalibrated during
the process. Calibrating the intrinsics of cameras can be carried
out in various ways, the most widely used ones involve multiple
captured images of a planar marker board of unknown orientation,
often with a checkerboard pattern, to estimate the focal length, prin-
cipal point, and specific amount of parameters to model the lens
distortion. The most commonly used method to apply this calibra-
tion is presented by Zhang et al [44], which is also widely used
as the baseline to compare other calibration methods. Since the
accuracy of such methods strongly depends on the number of sam-
ples and marker orientations within the various captured images,
in [33], efforts were made to actively assist users in selecting the
most useful poses to generate an accurate calibration result: The
authors propose an iterative method to estimate the most suitable
marker orientation for the next capture from the current calibration
results, which could be shown to improve the calibration accuracy.
The same checkerboard method can also be used to calibrate the
relative orientation of the cameras, i.e. the extrinsic properties, by
presenting the same patterns in different camera views. Having at
least two calibrated cameras, a projector calibration can be carried
out using structured light patterns to generate correspondences be-
tween all cameras and projectors. Since the cameras are already
calibrated, the correspondences can be used to triangulate a point
cloud of the surface and then use this information to register the
projectors to the surface.

To avoid the requirement of using multiple calibrated cameras
for projector calibration, methods were proposed to calibrate the
projector via planar surfaces in an equivalent fashion to the afore-
mentioned camera calibration, but this time, by treating the projec-
tor as an inverse of a camera and using structured light patterns to
estimate with a single camera, where each projector pixel is seen
on a planar surface [31, 8, 29, 24]. Recently, this process was
simplified by using self-identifying projected blob patterns, which
can also be robustly detected when projected onto planes which are



placed significantly out of the focus plane of the projector [43]. Re-
lated plane-based methods are presented in [9], which also nicely
summarizes further-related methods and differences between them.

The RoomAlive system presented by Jones et al [21] uses mul-
tiple Kinect depth cameras to register projectors to a static geom-
etry. Although the system can be used to set up living-room-scale
projection based augmentations, the noise characteristics, sensing
range and limited resolution of the depth sensors do not provide a
high-quality, pixel-accurate calibration in very large rooms (up to
domes).

If the geometry of the projection surface is known, manual cor-
respondences can also be generated without using a camera [7].
However, besides the fact that this is often not the case, this process
is cumbersome and error prone.

2.2 Self-Calibration Methods

One of the first methods to fully automatically calibrate a generic
projector-camera pair without using a planar surface has been pro-
posed by Yamazaki et al [42]. They propose an algorithm based on
the decomposition of a radial fundamental matrix into intrinsic and
extrinsic parameters, which requires a close-to-pixel accurate prior
for the principal point. This is hard to achieve in real-world situa-
tions, where it is usually not located close to the center of the image
plane but shifted on the y-axis due to the lens shift optics. In [34],
Sajadi and colleagues present a system which enables the calibra-
tion of multiple cameras and projectors, assuming that the cameras
all share the same focal length and no distortion parameters, which
can be hard to achieve depending on the used lenses.

Garcia et al [12] proposed a method to calibrate a specific MPCS
in which sensors face each other and share a common viewpoint
using translucent planar sheets placed at a series of varying orienta-
tions to generate planar pixel correspondences between all devices.
Using this information, the standard method presented by Zhang
[44], with an additional sparse bundle adjustment (SBA) step [40],
is used to calibrate the devices. Although the approach is able to ac-
curately calibrate multi-projector setups, it is limited for a specific
configuration and, thus, cannot handle the desired variety of com-
plex setups. Recently, a method was proposed by Garrido-Jurado
et al [13], which offers a flexible self-calibration method. Although
they focus on the same goal as our work, their approach has sev-
eral limitations. The most important one is the fact that the authors
assume that the intrinsics of the devices are already known before-
hand, which is quite often not the case, especially since zoom and
focus are often readjusted for each particular setup. Because of
that limitation, their strategy to insert new devices focuses solely
on the number of available correspondences and how to optimize
the device integration strategy using a mixed integer linear pro-
gramming approach. Although their method showed convincing
results for a specific setup, the requirements of having the intrinsics
pre-calibrated, no direct outlier treatment, and a relatively simple
integration strategy when compared to, for example, the strategy
proposed by [37] makes it less flexible for generic usage. Another
recent method presented by Li et al [23] uses priors for the principal
points as well as for the focal lengths. While the principal point can
be roughly estimated to be in the center for cameras, this is usually
not the case for projectors. In order to estimate them the authors
propose a method that requires the zoom level of the projector to
be changed. Not only that not all projectors do have different zoom
levels but also changing the zoom has usually to be done manually
it is impractical for bigger MPCS. Furthermore a rough estimate of
object size and distance is required for the focal length priors. The
semi-automated method presented by Fleischmann et al [11] uses
projected vanishing points to estimate the internal and external cal-
ibration parameters. A physical projection surface with three mutu-
ally orthogonal planes as well as user guidance is required by this
approach. Another semi-automated self-calibration method is pro-

posed by Resch et al [32] which also accurately recovers the global
scale. The latter is derived from the projection surface geometry
which needs to be known beforehand. In contrast to their work, we
are targeting a generic solution which can also handle situation in
which the surface geometry is totally unknown.

Our approach focuses on a generic method to calibrate MPCS for
complex projection mapping installations in which the used cam-
eras, projectors, and optics can vary, not only from setup to setup
but also within particular installations. Therefore, we focus on a
self-calibration method that requires the least amount of initial as-
sumptions and constraints.

2.3 Contribution

Although we are not the first researchers to tackle the problem of
a full geometrical self-calibration of MPCS, we present the first
method, which can be successfully applied to a wide variety of se-
tups, without the need of further modifications, calibration prereq-
uisites, and manual parameter tuning. The following points sum-
marize our main contributions:

• Our proposed method enables to fully automatically calibrate
arbitrary complex MPCS with a minimum number of two
cameras and one projector without an upper limit.

• The method is able to automatically calculate the most robust
sequence of device calibration.

• No initial intrinsic parameters need to be known beforehand.

• The system is able to efficiently make use of the knowledge
of projector-to-camera pixel correspondences.

• Outliers are detected automatically and excluded effectively
during the calibration process

• No manual parameter adjustment is required.

• The method is straightforward to implement and able to cali-
brate large datasets from scratch within several minutes.

We evaluated the method on a range of real-world datasets of vary-
ing complexities and sizes which could all be successfully cali-
brated using the proposed method without any manual parameter
adjustment. In the next section we will describe the individual steps
of our proposed method, followed by an evaluation and comparison
with reference calibrations.

3 ROBUST GEOMETRIC SELF-CALIBRATION OF GENERIC
MULTI-PROJECTOR CAMERA SYSTEMS

The main goal of our work is the generation of a robust, reliable,
and flexible MPCS calibration. This should be easy to carry out,
fast to process, and sufficiently insensitive to work with noisy and
partially faulty data, which is quite often the case during complex
real-world installations. Furthermore, the algorithm should be in-
sensitive to the hardware used which, currently, might range from
XGA up to 4K projectors, as well as VGA machine vision cam-
eras or DSLRs containing sensors with dozens of megapixels. Our
method is currently focused on devices approximating a perspective
pinhole projection.

Therefore, each of the individual steps are focused on these spe-
cific requirements and will be explained in detail in the following
sections, starting with the preprocessing, to generate accurate pixel
correspondences, followed by the significantly important step of the
initial pair selection and the outlier insensitive global system cali-
bration.



Figure 1: A simplified structured light pattern sequence to generate
sub-pixel accurate correspondences between the devices. Comple-
mentary Gray codes are used to reliably generate coarse references.
The additionally projected blob patters are then used to refine them
down to sub-pixel accuracy. Depending on the application require-
ments, all, or only a subset of all projector pixels, are used for cor-
respondence generation.

3.1 Preprocessing: Pixel Correspondence Generation

Most pinhole device calibration algorithms usually require some
kind of correspondence information between either world features
and image plane or between the image planes of different devices
to calibrate. While this is a non-trivial task in standard multi-view
reconstruction methods and requires feature detectors and match-
ers, such as, for example, SIFT[25] or SURF[2], within MPCS, the
correspondences can be generated reliably using projected patterns
which uniquely encode information about the according projector
pixels. To generate a large amount of sub-pixel accurate correspon-
dences between the different devices, we project such structured
light patterns and capture them with the cameras. A large variety of
patterns with different pros and cons exist, and an in-depth evalua-
tion of the existing strategies is out of the scope of this paper (the
interested reader is referred to [35] and [36] for an overview). We
developed a method which has been adapted from Gray code [20]
patterns in combination with the sub-pixel accurate line shift ap-
proach presented by [17]. Since the latter has accuracy issues when
carried out on complex shapes and tilted cameras and we are fo-
cusing on a reliable method for generic diffuse surfaces, we devel-
oped a robust structured light method using complementary Gray
code patterns [6], plus several dense blob patterns for further sub-
pixel accurate refinement (cf. Figure 1, which presents some sim-
plified sample patterns). After projecting and capturing these pat-
terns, they are used to generate a series of precise correspondence
maps between each individual projector and camera. To speed up
the process, only a subset of all projector pixels are used for cor-
respondence generation. Usually, several thousand pixels are used,
but the method can also be applied to generate mappings for all
projector pixels, if desired, for example, for surface reconstruction.
However, this enormous amount of correspondences is not required
for calibration. Depending on the camera capture rate, the projec-
tion of these patterns usually takes several seconds up to minutes
per projector. All cameras can obviously capture one projection in
parallel. Currently, the processing takes approximately 20s per de-
vice pair, using a straightforward CPU implementation, but might
vary depending on the number of blobs shifts and device resolution.

Most structured light projection methods are intended to operate
on mostly diffuse surfaces [36], so is our method. Non-diffuse sur-
faces can generate illumination effects such as indirect reflections,
scattered light, caustics, refractions, and highlights. These effects
might lead to non-unique mappings of projector pixels to camera
coordinates. Another cause for false mappings can be uncontrol-
lable, dynamic light sources during the acquisition process. In such

cases, influenced areas have to be masked out before processing.
However, any static illumination patterns such as, for example, exit
sign lights are fully automatically removed by capturing a minimum
and maximum intensity image of each projector and discarding all
areas without any significant change from the correspondence esti-
mation. To our knowledge the mentioned limitations are common
in all structured light methods and not specific to our approach.

3.2 Correspondence Analysis and Initial Pair Selection
Having computed all projector-to-camera correspondences, they
are transformed into a series of camera-to-camera correspondences
C2Cij ; i, j ∈ [0, k − 1] for all k cameras. This results in

m =

k−1∑
i=1

(k − i) (1)

camera-to-camera maps. For each projector pixel which has been
observed by both cameras via the structured light patterns, the maps
store the according floating point image plane coordinates on the i-
th and j-th camera, as well as the index to the according projector.
As mentioned in [18], [13], and [38], finding the optimal camera
pair to initiate the self-calibration process is a highly critical step
to achieve an accurate result. If this initial calibration fails due to
too many outliers or a nearly degenerate configuration, the whole
calibration process is likely to fail. Although several schemes to
determine the optimal pairing for multi-camera setups have been
presented in the literature, MPCS incorporates further constraints
since it is known that the projector pixels are arranged in a regular
two-dimensional grid. Using this information, we developed a reli-
able voting scheme to rank the differentC2C correspondence maps
with respect to their usability to initiate the self-calibration process.
Each individual step is described in the following and an overview
of the initial pair selection scheme is provided in Figure 3.

Unsuitable Pair Removal First, all C2Cs are analyzed for
their number of pixel correspondences and a threshold tcorr = 100
is defined. Any C2C containing less than tcorr correspondences
will be removed from the initial pair selection process to increase
stability.

Outlier Removal For all remaining C2C’s, the Fundamen-
tal matrix Fji between both cameras is estimated with a ro-
bust algorithm [16], using RANSAC [10] to make the proce-
dure insensitive to outliers. During this process, the outlier
threshold is set to an aggressive value of tF = 0.00004 ∗
min(max(wi, hi),max(wj , hj)), where wi, hi is the width and
height of the i-th image. The resulting tF is only a fraction of the
one proposed by [37] to ensure that all outliers were excluded. If
the number of detected inliers falls below tcorr , the accordingC2C
gets removed from the voting process. Otherwise, we estimate the
focal lengths of both devices using Bougnoux’s formula [5]:

f2
i = −

pTj [ej ]× Î3Fjipip
T
j Fijpj

pTj [ej ]× Î3FjiÎ3Fijpj

f2
j = −

pTi [ei]× Î3Fijpjp
T
i Fjipi

pTi [ei]× Î3Fij Î3Fjipi

(2)

where it is assumed that the principal points in homogeneous coor-
dinates pi and pj of the cameras are located at the respective image
centers. [ei] and [ej ] are skew-symmetric matrices of the left and
right null vectors of Fij , and Î3 defined as:

Î3 =

 1 0 0
0 1 0
0 0 0

 (3)



This method is very sensitive to already small errors in the estima-
tion of F and can potentially generate negative values, which does
not allow to draw the required square root to get the focal length.
If this is the case, the according camera pair is also excluded from
the voting process. In case both focal lengths are positive than fi,
fj , and the according Fundamental matrix Fij are stored for later
processing, and all detected outliers within C2Cij are removed.

Overlap Computation For all remaining ones, the normalized
overlaps on the image planes are computed: For all remaining en-
tries in C2Cij , we find the two axis-aligned bounding boxes that
contain all image plane correspondences to the cameras i and j.
To avoid a device-dependent bias, the width bbw and height bbh
of the bounding boxes are normalized to generate a resolution-
independent measure. For both cameras, we calculate the normal-
ized area of their bounding box A = bbw ∗ bbh, and multiply the
two normalized areas Ai↔j = Ai→j ∗ Aj→i. If Ai↔j is less than
tA = 0.01 which means 1% of the multiplied normalized image
planes, the pair gets discarded as well since the small area might
lead to a poor calibration accuracy.

Gradient Difference Estimation Having removed all poten-
tially unsuitable C2C’s, the remaining ones are analyzed to esti-
mate whether they have a potentially wide baseline and are observ-
ing a sufficiently varying surface to avoid a degenerate configura-
tion. To estimate how different the cameras i and j are observing
the unknown projection surface, allC2Cs are analyzed for their 2D
gradient difference on each projector image plane. As already men-
tioned, these maps store indices to the according projector for each
correspondence. From this information, the individual projector
correspondences are separated and used to compute a per-projector
gradient map, which stores the normalized local gradient change
of the camera correspondences on the projector’s image plane: for
each entry in the C2C, the according normalized pixel correspon-
dence to camera i and j is selected, and its difference to the clos-
est next correspondence on the projector image plane is computed.
This value then is normalized by dividing it by the normalized L2
distance on the projector pixels. This is done individually for all
correspondences per projector. Since we know that the projector
projects pixels in a regular manner, the variance within these gradi-
ent changes are a measure of the projection surface variation. Since
we have two gradient maps∇(i)xy and∇(j)xy , where x and y are
all projector pixels storing correspondences, we can compare them
to estimate whether both cameras observe the surface from different
directions. Therefore, the two gradient maps are used to generate a
series of absolute gradient differences by subtracting both values:

Γ(ij)xy = |∇(i)xy −∇(j)xy| (4)

From these maps the mean µ(Γ(ij)), and standard deviation
σ(Γ(ij)) are computed to indicate whether both devices i and j
are well suited for an initial calibration step: The higher both val-
ues, the more likely the cameras observe the surface from signifi-
cantly different observation angles and orientations. Figure 2 gives
a schematic explanation for this process.

Voting With all this information, votes are computed for each
remaining C2C to select the best initial pair:

V(ij) = Ai↔j ∗ (µ(Γ(ij)) + σ(Γ(ij))), (5)

weighting the pairs with the normalized overlap area multiplied by
the sum of the mean and standard deviation of the gradient differ-
ences as most suitable for calibration. From all V s, the highest
ranked correspondence pair is chosen for an initial calibration and
point cloud reconstruction.

3.3 Initial Pair Calibration
Having chosen the initial camera pair, the self-calibration process is
initiated by estimating a local intrinsic and extrinsic calibration for
these two devices. In a first step, we therefore use the already esti-
mated Fij , which we can use to estimate fi and fj , as described in
the last section. To account for potential matrix degradation due to
lens imaging imperfections, distortion parameters are estimated and
optimized together with Fij , as well as pi and pj , in a constrained
non-linear minimization step: Assuming that the generated initial
guesses for fi and fj are relatively accurate, we constrain the opti-
mized focal lengths to not deviate more than 50% from the initial
guess during the optimization, which successfully limits the risk to
optimize for too large distortion parameters.

For the optimized Fij , pi, and pj , we again estimate the focal
lengths of both devices using Bougnoux’s formula [5] (cf. Equation
2) and assemble the two calibration matrices Ci and Cj . Having
computed the latter, the essential matrix E is computed by:

Eij = CT
i ∗ Fij ∗ Cj . (6)

For a more reliable estimation, E is constrained since we know that
SV D(E) = U ∗W ∗ V T , as proposed by [18]. With

Wc = Î3 (7)

as defined in Equation 3 and computed using:

Ec = U ∗Wc ∗ V T . (8)

For Ec, we can finally estimate the relative extrinsic values for ro-
tation R and translation t between the two cameras i and j, as also
described in [18].

For this step, a pair of intrinsic and extrinsic calibration data is
computed, and a point cloud for all point correspondences within
C2Cij is calculated by triangulation using iteratively weighted
least squares as proposed in [19].

Outlier Removal Having generated the 3D point cloud, an
iterative refinement procedure is started similar to the one pro-
posed in [38] but adaptive, as well as resolution independent. A
threshold to classify outliers is generated depending on the re-
projection errors for the 3D ↔ 2D correspondences to both cam-
eras. These errors are transformed into a resolution-independent
value by setting the diagonal to 1000 pixel (diag == 1000) such
that cameras having significantly varying resolutions do not lead
to a biased re-projection error estimation. For each 3D point, the
largest (normalized) reprojection error of the devices i and j is
stored in a list from which, finally, the mean and standard devia-
tion are computed to estimate an adaptive outlier threshold, defined
as tadapt = mean+ 2 ∗ stddev.

The calculated re-projection errors are clamped to err =
min(max(err, 1.0), 100.0), and all 3D points with err > tadapt
are removed. The remaining points, as well as the intrinsic and ex-
trinsic camera parameters of both devices, are further optimized in
a sparse bundle adjustment (SBA) step [41], and the outlier removal
strategy is applied again. These two steps, outlier removal followed
by an SBA optimization, are repeated as long as the change of the
average reprojection error is larger then 10% compared to the last
iteration and there has been at least one point removed during the
outlier removal step.

3.4 Consecutive Device Integration
As soon as the first reconstruction is carried out and optimized, the
remaining devices can be directly integrated iteratively by using the
now existing 3D ↔ 2D correspondences. Therefore, the remain-
ing cameras are integrated in an order depending on the amount of
existing correspondences by carrying out the following steps: The



Figure 2: Initial pair selection: The regular projector pixel pattern is used to estimate local pixel difference gradients for each captured
camera. This information is then used to estimate the camera pair in which the mean gradient difference plus its variance is maximized.
In the zoom-in, Γ(RG)) is larger and more diverse than Γ(RY ) and Γ(GY ) for the two gradients (light blue & orange) between the three
highlighted correspondences to projector M. This measure is calculated for all pixels and, in combination with the overallC2C camera sensor
area coverage, the most well suited camera pair for initiating the calibration process is chosen.

C2CijC2Cij

C2C > tcorr

f  > 0i f  > 0j&

A      > tA i   j

  V    =  A     i   j(ij) *

C2Cinitial

(μ(Г(ij))  +
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Figure 3: Flowchart for the different selection criteria for the initial
C2C pair. Only device pairs that fulfill all criteria (in solid boxes)
are candidates for being calibrated as first devices. If one of the
checks fails, the next C2C pair is evaluated (dashed arrows) .

direct linear transformation (DLT) method [39] is used to gener-
ate a first initial guess of the new device’s calibration data. This is
further refined, and distortion parameters are estimated in an addi-
tional non-linear optimization step. The point cloud is now regener-
ated and extended by also triangulating the newly added correspon-
dences of camera l, which had not been available within the point
cloud before, i.e. all the correspondences which are not shared by
cameras i, j, and l, but only exist in C2Cil and C2Cjl. Then,
one iteration of the same outlier removal strategy is applied to this
dataset.

Next, the new camera, as well as the 3D point locations, are fur-

ther refined by applying SBA by fixing the calibration data of all
other cameras and another outlier removal step is applied again,
as long as the average reprojection error has changed more than
10% and at least one outlier has been removed. After that step, a
full SBA optimization is applied, optimizing all points and cam-
eras, and outlier removal is carried out again in the same fashion,
as mentioned above. In order to accelerate the relatively expensive
SBA calls, for each device within the SBA call, a random subset
of a maximum of 500 inlier points per device is used during these
operations.

At this point, the newly added camera is fully integrated. How-
ever, since many correspondences were potentially removed during
the outlier analysis, all initial point correspondences are now trian-
gulated again, and only one single outlier removal step is applied
afterwards before proceeding with the next camera device. These
steps are repeated until all cameras are calibrated.

Having calibrated all cameras, the projectors are subsequently
integrated into the reconstructed point cloud following the same
strategy as before until no device is left.

Finally, all devices are successfully geometrically registered into
one global coordinate frame, and the system is ready to be used for
projection. The overall process flow is illustrated in Figure 4. The
generation of consistent, blended, and color adjusted content is out
of the scope of this work, thus, the interested reader is referred to
[26] and [3].

4 EVALUATION

Since the main goal of this work is the reliable calibration of arbi-
trarily arranged, intrinsically and extrinsically uncalibrated MPCS,
we evaluated the proposed algorithm on a variety of datasets with
different complexities (four to 33 devices) and volume sizes (sur-
face width from 0.5m up to 30m). The projectors varied in their
lenses, as well as resolutions, from 800x600 up to 4K. The cam-
eras were either machine vision or DSLR cameras with a variety of
lenses ranging form extreme wide angle to normal field of view and
resolutions between one and 24 MP. We also set up a system with a
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Figure 1: The preprocessing flowchart. Boxes are processes, dashed boxes data.

Figure 4: Simplified flow diagram of the proposed self-calibration algorithm. After the correspondence generation using structured light
projection, the optimal initial pair selection is carried out considering outliers, spatial pixel correspondence distribution as well as their
variations between the different devices. After that step, this pair is calibrated and an adaptive outlier removal step in combination with SBA
is carried out. In the following all other cameras and projectors are integrated. Please refer to Section 3 for more details.

series of known issues, such as reflections, and complex geometry
to evaluate how well the proposed method is able to calibrate such
a setup. The algorithm has been implemented in C++ and all eval-
uations were carried out on a Intel R© Xeon R© CPU E5-1620 v4 @
3.5GHz with 64 GB of RAM.

4.1 Universality Assessment

To evaluate the developed self-calibration method, we used datasets
of 12 MPCS of a variety of setups ranging from small toy castle
projections up to massive MPCS within half domes with dozens of
devices. We applied our method to all of them using the default
parameters as they were described in Section 3. It should be noted
that no manual fine tuning was carried out at all. Details about the
used datasets, as well as the results, are all summarized in Table
1 1. As it can be seen, our proposed method is able to fully auto-
matically calibrate all of these datasets significantly faster than the

1Please note that due to confidentiality reasons the device placement,
hardware details, and the reconstructed geometries cannot be presented for
the datasets #1-#10.

time which would be required to carry out a high quality checker-
board calibration. Obviously, the processing time of our adaptive
method increases with the number of devices used, but even the
largest dataset, containing 33 devices, was calibrated accurately in
less than 45 minutes. Please note that the resulting reprojection er-
ror, although normalized, has been sufficient to generate a seamless
projection surface on all of them.

4.2 Comparison to Checkerboard Calibration

Dataset #9 and #12 were also compared to a checkerboard calibra-
tion carried out by an expert, using Zhang’s checkerboard method
for camera calibration plus additional DLT and SBA step. The re-
sulting focal lengths of the devices are compared for #9 visually in
Figure 5 and in table form for #12 (Table 2). As it can be seen, the
differences are within a few percent, which makes both methods
comparable in terms of accuracy.

4.3 Outlier Removal

One experimental setup (#11) generated several outliers during the
structured light based correspondence generation due to surface re-



Table 1: Summary of the 12 evaluated datasets. The application scenarios and system complexities varied a lot giving the wide range of
surface structure, size and number of devices involved. Nevertheless, the proposed algorithm was capable to accurately calibrate all of
them, as can be seen by the resulting average pixel re-projection errors (* To become device-independent, these values were all normalized
by rescaling the dimension of the image plane diagonal to 1000, as described in Section 3). The # of 3D points lists the number of final
reconstructed and outlier removed points at the end of the method

# cams # projs surface shape processing time reproj. err.* std. dev. # 3D points

#1 8 5 Tube 3m 35s 0.0608 0.0526 34828
#2 8 8 Cave 15m 36s 0.6825 0.5741 126408
#3 11 1 Face 5m 58s 0.0700 0.0700 47681
#4 3 1 Toy castle 0m 30s 0.2322 0.2565 10886
#5 9 24 Half dome 41m 40s 0.0898 0.0619 196342
#6 6 2 Statue 4m 39s 0.1414 0.2137 66214
#7 11 1 Face 6m 13s 0.2540 0.6505 21289
#8 8 6 Rounded cube 5m 11s 0.1097 0.1016 38189
#9 4 5 Living room 1m 33s 0.1081 0.1249 17613
#10 5 3 Furniture pieces 4m 20s 0.4578 1.0686 98528
#11 6 3 Cardboard boxes 3m 19s 0.1353 0.2263 8406
#12 4 2 Wall corner (CAD) 2m 6s 0.0572 0.0917 52610

Table 2: Resulting focal lengths of the checkerboard and self-
calibration of the ground truth data set.

Device Checkerboard Self-Calibration Difference

Allied 6981.325 6984.001 2.676
Canon 1 8011.988 8001.571 10.416
Canon 2 2836.783 2837.006 0.223
Ximea 2272.990 2275.018 2.027
BenQ Proj. 1 4154.256 4159.207 4.951
BenQ Proj. 2 4171.227 4171.615 0.387

flections and scattering of light. An overview of the setup is given
in Figure 6. This setup used DSLRs 2 with lenses, having focal
lengths ranging from 24mm to 200mm, and used three projectors,
one with short throw optics 3 and two with standard zoom lenses 4.
The outliers influenced the reconstruction accuracy, but since they
are automatically estimated and removed during our reconstruction,
they did not significantly influence the overall calibration process.
As mentioned before, we are aware that the proposed structured
light methods are only reliable using mainly diffuse surfaces; this
setup has been used to demonstrate the robustness when used in
those inappropriate situations.

4.4 Ground Truth Comparison

Another MPCS (#12) was generated using a computer generated
geometrical model of a three-sided wall corner. This digital model
was then used to manufacture a real-world setup with minimal de-
viations to enable a comparison of the self-calibration output to
ground truth data (cf. Fig. 7). This heterogeneous system consists
of four cameras 5 and two projectors 6. The applied self-calibration

22xCanon EOS 600D, 3xCanon EOS 1100D, 1xCanon EOS 5D Mark II
3Benq MW843UST
4Mitsubishi MH2850U, Mitsubishi WL2650U
52xCanon EOS 1100D, 1xAllied Vision Manta G-504C, 1xXimea xiQ

MQ013MG-E2
62xBenQ W1100

1000
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1600

cam 1 cam 2 cam 3 cam 4 cam 5 proj 1 proj 2 proj 3 proj 4

proposed method

ground truth

Figure 5: Focal length comparison of the devices of dataset #9,
calibrated with the proposed self-calibration method, and a manual
checkerboard calibration, carried out by an expert.

required 2 min 6 sec to process and generate a calibration with re-
projection errors as summarized in Table 3.

Since ground truth data was available for this setup, further eval-
uations were carried out. In order to compare the reconstruction as
seen in 8 with the digital model (cf. Fig. 7a ) , fiducial 2D markers
using the Aruco library [14, 15] were embedded in the projection
surface (cf. Fig. 7b ). They were detected in the camera images
and their spatial orientations with respect to the cameras were used
to apply a global coordinate transformation. This transformation
ensures that the extrinsic calibration resulting from the proposed
self-calibration algorithm correlates to the coordinate system of the
ground truth geometry definition. Since only a single consistent
transformation should be applied to the individual extrinsics of the
cameras and projectors, a Procrustes transformation [4] was applied
which computed one consistent rotation and translation as well as a
uniform scaling in all three dimensions for all estimated marker po-
sitions. To achieve a highly accurate transformation the following
workflow was applied:

• Detect marker positions in all camera images

• Triangulate markers visible by at least 2 devices to generate



Figure 6: The six camera views for dataset #11. Even though the
structure of the scene is rather complex including several reflec-
tions, our self-calibration procedure manages to successfully cali-
brate all devices within less then 4 minutes.

(a) Digital model (b) Setup

Figure 7: The ground truth model. Left: Rendering of the digital
model, right: photograph of the real-world evaluation setup. The
manufactured wall, both projectors and 2 of the 4 cameras are visi-
ble in the image.

3D point clouds

• Constrain 3D points positions ensuring equal marker sizes and
planarity using a Levenberg-Marquardt optimization [28]

• Calculate Procrustes transformation between reference
marker locations and the optimized reconstructions

• Apply single transformation to all cameras and projector ori-
entations

Having registered the devices to the reference geometry, allows to
also evaluate the reconstruction accuracy with respect to the known
ground truth. Therefore, each vertex of the reconstructed point
cloud was projected onto the three planes of the ground truth model
and the distance to the closest one was evaluated. As it can be
seen in Table 4, the deviation is relatively low (coordinate system
scale 1unit = 1mm) with less than a millimeter average deviation
to the ground truth which is approximately within the tolerances of

Table 3: Comparing checkerboard (CB) vs self-calibration (SC) re-
projection errors. The average ∅ reprojection errors are normalized
to a diagonal of 1000 pixels for the CB and SC approach. In paren-
theses ( ) the unnormalized values are given.

Device Resolution ∅ error CB ∅ error SC
Allied 2452x2056 0.008 (0.026) 0.008 (0.026)
Canon 1 4272x2848 0.044 (0.228) 0.044 (0.228)
Canon 2 4272x2848 0.027 (0.140) 0.027 (0.139)
Ximea 1280x1024 0.020 (0.033) 0.019 (0.031)
BenQ Proj. 1 1920x1080 0.042 (0.093) 0.045 (0.099)
BenQ Proj. 2 1920x1080 0.065 (0.145) 0.087 (0.192)

Figure 8: Reconstruction of dataset #12.

the manufacturing process. As it can be seen, the proposed method
better approximates the geometry than the checkerboard calibration
method. The resulting focal lengths can be compared in Table 2.

4.5 Scalability

Finally, a last evaluation is carried out to show the scalability of the
proposed method. This MPCS consists of totally 8 cameras and 4
projectors. In Figure 9 we see how the normalized reprojection er-
ror changes depending on how many cameras are used to calibrate
the system. We let the calibration procedure run with initially using
only 2 cameras (cam6 and cam8), the remaining cameras not used
at all. As the red bars in the corresponding devices show, the error
is comparably large when using only two cameras. However, the
method was still capable of successfully calibrate the 4 projectors
and the 2 cameras. The error decreases rapidly when a 3th and 4th
camera is used to calibrate the system. After that, adding more cam-
eras might increase the errors again slightly since the system tries
to find an optimal solution, which gets harder the more devices are
involved. Figure 10 displays the relationship of required processing
time, involved devices and number of vertices. Even with all 12 de-
vices calibrated into the system, the calibration process took only 8
minutes.

5 SUMMARY AND CONCLUSIONS

In this paper, we proposed a robust and adaptive algorithm to enable
a reliable self-calibration for arbitrarily complex MPCS. In contrast
to previous research, it is not limited to specific setups (as long as at
least two cameras and one projector is present) nor requires the ge-
ometry structure to be known in advance. It eliminates the need of
expert knowledge to successfully calibrate the system and does not
require any manual parameter tuning since it is self-adapting. Fur-
thermore, it does not expect any initial focal length information and
is able to reconstruct and calibrate even in situations where a sig-
nificant amount of false correspondences are present. We demon-
strated its flexibility by successfully calibrating a variety of differ-
ent setups which go far beyond experimental and minimal lab se-
tups. The comparison to reference calibrations shows the reliability
of our proposed method. Finally, the algorithm is able to fully cal-
ibrate MPCS within a small time frame of less than a minute for
systems consisting of a few devices but is also able to calibrate a
complex system with more than 30 devices in less than 45 minutes.

Again, it should be noted that all of the evaluated MPCS var-
ied not only in their complexity and physical size but also by the
used camera and projection hardware. All the setups were entirely
calibrated by the proposed adaptive method without applying any
single manual parameter adjustment. Besides the lack of existence
of any related generic self-calibration method not requiring initial



Table 4: Distance to the digital ground truth model. All units are in millimeters. As can be seen, the reconstruction of the proposed self-
calibration approach closer resembles the ground truth data compared to a checkerboard based calibration.

avg median std deviation 75th percentile 99.9th percentile max min # pts
Checkerboard 1.4846 1.4913 1.1209 2.6340 4.6678 21.4142 2.83E-05 46074

SelfCalibration 0.9390 0.8481 0.6144 1.3726 2.1334 21.3255 8.68E-05 46074

Figure 9: Calibration of the same setup with varying number of
devices. The calibration was performed from only 2 cameras up to
totally 8 cameras. The normalized reprojection errors are displayed
along the x-axis. Although the reprojection erros were larger with
only 2 cameras (red bars), the proposed self-calibration method was
still capable to successfully calibrate all devices.

guesses this is an evaluation that, to our knowledge, has not been
carried out by any known related work so far.

Currently, we assume that all the devices use lenses with per-
spective projections. For the usage of fisheye lenses, the algorithm
needs to be adapted to a distortion model which is as well suited
for fisheye lenses as, for example, the one proposed by [22]. Imple-
menting and evaluating this will be part of future research. Presum-
ably, the weakest part of the current method is the requirement to
have expert knowledge to reasonably choose the appropriate num-
ber and locations of camera views to successfully calibrate the sys-
tem, which still requires a specific amount of expert knowledge to
guarantee an accurate and reliable self-calibration. Overcoming this
to facilitate the optimal camera placement is one future research di-
rection.
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