
Reducing Hardware Experiments for Model Learning and
Policy Optimization

Sehoon Ha1 and Katsu Yamane2

Abstract— Conducting hardware experiment is often expen-
sive in various aspects such as potential damage to the robot
and the number of people required to operate the robot safely.
Computer simulation is used in place of hardware in such
cases, but it suffers from so-called simulation bias in which
policies tuned in simulation do not work on hardware due
to differences in the two systems. Model-free methods such
as Q-Learning, on the other hand, do not require a model
and therefore can avoid this issue. However, these methods
typically require a large number of experiments, which may not
be realistic for some tasks such as humanoid robot balancing
and locomotion. This paper presents an iterative approach
for learning hardware models and optimizing policies with
as few hardware experiments as possible. Instead of learning
the model from scratch, our method learns the difference
between a simulation model and hardware. We then optimize
the policy based on the learned model in simulation. The
iterative approach allows us to collect wider range of data for
model refinement while improving the policy.

I. INTRODUCTION

Conducting hardware experiments is a cumbersome task
especially with large, complex and unstable robots such as
full-size humanoid robots. They may require multiple people
to operate to ensure safety of both operators and the robot;
control failures can cause major damage; and even a minor
damage is difficult to troubleshoot due to complexity.

For this reason, simulation is often used to replace hard-
ware experiments. Unfortunately, it is difficult to obtain
accurate simulation models, and therefore it suffers from
so-called simulation bias [1] in which policies tuned in
simulation cannot realize the same task with the hardware
system due to differences in the two systems.

This paper presents an iterative approach for model
learning and policy optimization using as few experiments
as possible. Instead of learning the hardware model from
scratch, our method reduces the number of experiments
by only learning the difference from a simulation model.
The policy is then optimized through simulations using the
learned model. We repeat this process iteratively so that we
can refine the model because the improved policy is more
likely to realize wider range of motions.

The assumption is that three things are essential to policy
learning for complex robots:
• Learning only the difference from a model is essential to

reduce the number of hardware experiments. The model
can also be used for optimizing the initial policy.

1Sehoon Ha is with Georgia Institute of Technology. He was at Disney
Research, Pittsburgh when this research was conducted. 2K. Yamane is with
Disney Research, Pittsburgh. kyamane@disneyresearch.com

• Iterative process is important for inherently unstable
robots because we cannot collect enough data using a
policy trained only in simulation.

• The learned model should be stocastic so that it can
model sensor and actuator noises.

Our target task in this paper is balancing of bipedal robot
on a bongoboard. To prove the concept, and to better control
the noise conditions, we shall use two simulation models
instead of a simulation model and a hardware system. One
of the models is derived by Lagrangian dynamics assuming
perfect contact conditions, while the other model is based
on a 2D physics simulation engine with a more realistic
contact model. These models are different enough that a
policy optimized for the former cannot stabilize the latter.

The rest of the paper is organized as follows. In Section II,
we first review the related work in machine learning literature
in the context of robot control. Section III gives an overview
of our framework, followed by more details on the model
learning in Section IV and policy optimization in Section V.
Section VI presents simulation results and analysis. We
finally conclude the paper in Section VII.

II. RELATED WORK

Difference between a robot and its simulation model
becomes a serious problem when we try to use controllers
obtained by model-based optimization or tuned in simulation.
Classical parameter identification techniques [2] partially
solve this problem by fitting model parameters to experimen-
tal data, but they are still limited to factors that can actually
be modeled. Furthermore, these approaches assume that the
data set is large enough to accurately estimate the parameters.
In large and unstable systems such as humanoid robots, it is
often difficult to collect enough data [3].

Another approach is model-free policy optimization,
where the policy is improved through a number of hardware
trials [4], [5]. Unfortunately, these methods generally require
hundreds of trials, which is unrealistic for tasks such as
humanoid balancing and locomotion. One way to overcome
this issue is to limit the parameter space by using task-
specific primitives [6] or to provide a good initial trajectory
by human demonstration [7]. However, it is not clear how to
extend these approaches to dynamically unstable robots or
tasks that cannot described by joint trajectories.

A number of researchers have attempted to overcome the
drawbacks of these approaches by combining simulation and
real-world data [8]–[10]. Abbeel et al. [11] used an inaccu-
rate model to estimate the derivative of the cost with respect
to the policy parameters. Ko et al. [12] used Gaussian Process

Simulation Hardware

Policy

Dynamics Bias Learning

Policy Search

resultsupdate

control input

update

cost

Fig. 1. Framework of our approach.

to model the difference between a nonlinear dynamics model
and the actual dynamics and applied the model to reinforce-
ment learning for yaw control of a blimp. However, they
do not iterate the process to refine the model. Deisenroth et
al. [13] also used Gaussian Process for learning the dynamics
model from scratch. Similarly, Morimoto et al. [14] used
Gaussian Process for learning simplified dynamics of human
locomotion. Sugimoto et al. [15] used sparse pseudo-input
Gaussian Process (SPGP) that accounts both variances of in-
puts and outputs to handle sensor noises. Instead, Tangkaratt
et al. [16] used least-squares conditional density estimation
(LSCDE) to learn the dynamics model without Gaussian
assumption on the transitions. Cutler et al. [17] trained a
policy in multiple fidelity simulators with discretized actions.
Ross and Bagnell [18] theoretically proved that their iterative
system identification method converges even the system is
not in the assumed class. Please refer to Section 6 of [1] for
more complete survey on this topic.

III. OVERVIEW

We developed an iterative reinforcement learning process
to alternatley refine the model and policy. Figure 1 illustrates
the approach.

The three main components are simulation, hardware, and
policy. Simulation is based on a model of the robot hardware,
and cheap to run. Hardware is the real robot and therefore
more expensive to run. Both simulation model and robot
hardware are controlled by control inputs computed by the
policy.

The framework includes two iteration loops that run
with different cycles. The outer loop (solid arrows) is the
dynamics bias learning process that uses the experimental
data from hardware to train the simulation model. The inner
loop (dashed arrows) is the policy search process that uses
the simulation model to optimize the policy based on a given
cost function.

Our framework adapts some of the ideas used in prior
work. Similarly to [12], we use Gaussian Process to model
the difference between a dynamics model and actual robot
dynamics. On the other hand, we also adopt the iterative
learning scheme as in [11] because the performance of the
initial controller is usually not good enough to learn accurate
dynamics model. We also chose to directly optimize the

Hardware

PolicyPolicy Search

control input

update

cost

Fig. 2. Direct policy search.

policy parameters instead of learning the value function, as
in [13].

We compare our framework with conventional direct pol-
icy search represented in Fig. 2. This approach only has the
policy search loop that uses the hardware directly to obtain
the control cost for policy search. It usually requires a large
number of hardware trials, which is unrealistic for our target
robots and tasks.

The goal of this work is to reduce the number of dynamics
bias learning loops that involve hardware experiments. On
the other hand, we can easily run many policy search loops
because we only have to run simulations.

IV. LEARNING THE DYNAMICS MODEL

A. Dynamics Bias Formulation

A general form of dynamics of a system with n states and
m inputs can be written as

xt = xt−1 + f (xt−1,ut−1) (1)

where

x ∈ <n : robot state
u ∈ <m : input

f :<n ×<m → <n : system dynamics function.

The goal of learning is to obtain f such that the model
can accurately predict the system’s behavior. In this paper, we
employ one of the non-parametric models, Gaussian Process
(GP) model. Learning f without prior knowledge, however,
is expected to require a large amount of data to accurately
model the system dynamics.

For many robots, we can obtain an approximate dynamics
model by using, for example, Lagrangian dynamics. We
denote such model by f ′. Instead of learning f that requires
a large amount of data, our idea is to learn the difference
between f ′ and the real dynamics:

xt = xt−1 + f ′ (xt−1,ut−1) + gD (xt−1,ut−1) (2)

where gD:<n × <m → <n is the difference model to be
learned and D represents the set of data used for learning
the model. In this paper, we call gD as dynamics bias.

Our expectation is that f ′ is a good approximation of
the system dynamics, and therefore learning gD requires far
smaller data set than learning f from scratch.

B. Gaussian Process

Gaussian Process (GP) [19] is a stochastic model that
represents the relationship between r inputs x̃ ∈ <r and
a scalar output y. For the covariance function, we use the
sum of a squared exponential and noise functions:

k
(
x̃, x̃′

)
= α2 exp

(
−1

2
(
x̃− x̃′)T Λ−1

(
x̃− x̃′)

)
+δx̃,x̃′σ

2

(3)
where α2 is the variance of the latent function, σ2 is
the noise variance, and Λ−1 is a positive-definite ma-
trix. Assuming that Λ−1 is a diagonal matrix whose el-
ements are {l1, l2, . . . , lr}, the set of parameters θ =(
l1, l2, . . . , lr, α

2, σ2
)

is called hyper-parameters.
With N pairs of training inputs x̃i and outputs yi (i =

1, 2, . . . , N), we can predict the output for a new input x̃∗

by
y∗ = kT∗K

−1y (4)

with variance

σ2 = k(x̃∗, x̃∗)− kT∗K−1k∗ (5)

where K = {k(x̃i, x̃j)} ∈ <N×N and k∗ = {k (x̃∗, x̃i)} ∈
<N .

The hyper-parameters are normally optimized to maximize
the marginal likelihood of producing the training data. In our
setting, however, optimizing hyper-parameters often results
in over-fitting due to the small number of training data. We
therefore manually adjust the hyper-parameters by looking
at the policy optimization results.

C. Learning

We collect the input and output data from hardware
experiments to train the dynamics bias model. For multiple-
output systems, we use one GP for each dimension and train
each GP independently using the outputs obtained from the
same set of inputs.

The inputs to the GP models are the current state and
input, x̃t =

(
xTt−1 u

T
t−1

)T
, while the outputs are the

difference between the measured state and the prediction of
the simulation model:

∆t = xt − xt−1 − f ′ (xt−1,ut−1) . (6)

We collect a set of input and output pairs from hardware
experiments.

The computational cost for learning increases rapidly as
the training data increases. We therefore remove some of the
samples from learning data set. First, we downsample the
data because similar states do not improve model accuracy.
We then remove the samples where the robot and board
are no longer balancing on the wheel. Next, we discard
the samples whose states are too far away from the static
equilibrium state or too difficult to recover balance, since
designing a controller in such areas of the state space does
not make much sense. Finally, we discard the frames that
are far from the prediction by the simulation model in order
to remove outliers that may happen due to sensor errors in
hardware experiments.

To summarize, samples with the following properties are
not included in the training data:

1) The board touches the ground.
2) The board and wheel are detached.
3) The distance from the static equilibrium state is larger

than a threshold.
4) The global angle of the robot body exceeds a threshold.
5) The global angle of the board exceeds a threshold.
6) The norm of the velocity exceeds a threshold.
7) The distance from the state predicted by the La-

grangian model is larger than a threshold.

D. Prediction

In policy search, we use the dynamics bias model to
predict the next state xt given the current state xt−1 and
input ut−1. The GP model predicts the mean ∆̄t and
variance σt of the output, and the mean value is commonly
used as the prediction. A problem with this method is that the
prediction is not accurate if the input is far from any of the
training data, especially when the traning data is sparse as in
our case. Here, we take advantage of the system dynamics
model f ′ by weighing the prediction of the GP such that we
rely on the model as the prediction variance becomes larger,
i.e.,

xt = xt−1 + f ′(xt−1,ut−1) + exp
(−d|σ2|2) ∆̄t (7)

where d > 0 is a user-defined coefficient. If
(
xTt−1 u

T
t−1

)T is
far away from any learning data, then the last term of Eq.(7)
is nearly zero, meaning that we mostly use the prediction by
the model.

V. DATA-EFFICIENT REINFORCEMENT LEARNING

Algorithm 1 summarizes our framework. The algorithm
starts from an empty learning data set D = ∅ and the
assumption that the simulation model is accurate, i.e., g = 0.
At each iteration, we first search for an optimal policy using
the simulation model f ′ + g. If the optimal policy does not
give satisfactory results with the simulation model, we clear
the model and restart from scratch. Otherwise, we evaluate
the policy by a few hardware experiments to obtain the
maximum cost as well as a new data set Di for learning.
If the policy successfully achieves the control objective on
hardware, we terminate the iteration. Otherwise, we append
Di to the existing data set and re-learn the dynamics bias
model g and repeat the same process until the maximum
number of iterations is reached.

The cost function for policy optimization is

Z = c(T − tfail) + max
1≤t≤T

xTt Rxt +
T∑
t=0

uTt Qut (8)

where c is a user-defined positive constant, T is the num-
ber of simulation frames, tfail is the frame at which the
simulation failed, and R ∈ <n×n,Q ∈ <m×m ≥ 0 are user-
defined weight matrices. We set c = Zmax to make sure
that the cost function value always exceed Zmax if a policy
fails to keep the robot balanced for T frames. The first term

Algorithm 1 Data-efficient reinforcement learning
Require: nominal model f

1: initialize D = ∅ and g = 0
2: i← 0
3: while i < Nout do
4: p← policy optimized for g
5: Zg ← evaluate policy p on g
6: if Zg > Zmax then
7: initialize the simulation model: D = ∅ and g = 0
8: end if
9: Zr, Di ← evaluate p with hardware experiments

10: if Zr < Zmax then
11: break
12: end if
13: D ← D ∪Di

14: g ← gD
15: i← i+ 1
16: end while

penalizes policies that cannot balance the model for at least
T frames. To determine failure, we use the criteria 1)–6)
described in Section IV-C. The second term tries to minimze
the maximum distance from the static equilibrium state. The
third term considers the total energy consumption for control.

Any numerical optimization algorithm can be used for
optimizing the policy p using the simulation model. We have
found that the DIRECT algorithm [20] works best for our
problem. Theoretically, the DIRECT algorithm is capable of
finding the globally optimal solution relatively quickly. We
terminate the algorithm when the relative change in the cost
function value in an optimization step is under a threshold
ε, or the number of cost function evaluations exceeds a
threshold Nin. DIRECT also requires the upper and lower
bounds for each optimization parameters.

VI. RESULTS

While the final goal of this work is to optimize a policy for
hardware systems, this paper focuses on proof of concept and
uses two different simulation models in place of a simulation
model and hardware. Using a well-controlled simulation
environment also gives us the opportunity to explore different
noise types and levels.

A. Bongoboard Balancing

The task we consider is balancing on bongoboard of a
simple legged robot shown in Fig. 3(a). Specifically, we
apply the output-feedback controller developed by Nagarajan
and Yamane [21] and attempt to optimize the gains through
model learning and policy search. The state of the system is
x = (αw αb θr1 α̇w α̇b θ̇

r
1)T (see Fig. 3(a)), and the outputs

we use for feedback control are z = (xp ẋp θr1 θ̇
r
1 αf)T as

indicated in Fig. 3(b).
The system has three degrees of freedom, and the only

input is the ankle torque. Therefore the number of states is
n = 6 and the number of inputs to the model is m = 1. Then
the number of inputs to the GP becomes r = n+m = 7.

2

,

,

,

,

Link-2
Pelvis

Link-1

, ̇

, ̇

(a) (b)

Fig. 3. Robot balancing on a bongoboard.

The output-feedback controller takes the five outputs of
the models and compute the ankle torque by

u = Hz (9)

where H = (h1 h2 . . . h5) is the feedback gain matrix.
The policy search process computes the optimal values for
the five elements of the gain matrix. In our implementation,
we optimize a different set of parameters ĥ that are mapped
to the elements of H by

hi =
{

exp(ĥi)− 1 if ĥi ≥ 0
− exp(−ĥi) + 1 if ĥi < 0

(10)

instead of directly optimizing hi.
As mentioned above, we use two models in this paper, one

corresponding to the simulation and the other corresponding
to the hardware blocks for Fig. 1.

The first model is derived by the Lagrangian dynamics
formulation as described in [21]. This model assumes perfect
contact condition, i.e. no slip or detachment of contacts
between the floor and wheel, the wheel and board, as well
as the board and robot feet.

The second model, used in lieu of hardware, is based on
a 2D physical simulation engine called Box2D [22], which
uses maximal (Eulerian) coordinate system and a spring-and-
damper contact model. To make the simulation realistic, we
add three types of noise:
• Torque noise: a zero-mean gaussian noise of variance
σ2
τ is added to the robot’s ankle joint torque.

• Joint angle noise: a zero-mean Gaussian noise of vari-
ance σ2

p is added to the wheel (αw), board (αb), and
robot (θr1) angles used for feedback control.

• Joint velocity sensor noise: a zero-mean Guassian noise
of variance σ2

v is added to the wheel (α̇w), board (α̇b),
and robot (θ̇r1) anglular velocities.

We also randomly choose the initial states in Box2D simu-
lations for collecting training data for dynamics bias model
learning because it is impossible to set exact initial states in
hardware experiments.

Even though both are simulation, the results may be
different due to different contact models and coordinate

t Policy for Lagrangian model Policy for Box2D model

0s

1s

2s

3s

4s

5s

Fig. 4. Simulation result of a policy optimized for the Lagrangian model
(left column) and Box2D model (right column). In each snapshot, the
left and right figures are the Box2D and Lagrangian model simulations
respectively.

systems. In fact, a policy optimized for the Lagrangian model
does not always balance the robot in the second model, which
justifies the need for our framework even in this simple setup.
Figure 4 show an example of using a policy optmized for the
Lagrangian and Box2D models for both the Box2D model
and the Lagrangian model. Both policies can successfully
balance the model for which they are designed, but not the
other model. With the policy designed for the Lagrangian
model, the Box2D simulation fails before t = 3 sec when
the board leaves the wheel. The Lagrangian model simulation
with the policy designed for Box2D model fails when the
board hits the ground before t = 2 sec.

Table I summarizes the parameters we used for the exper-
iments.

B. Dynamics Bias Learning

To ensure that the GP models can accurately predict the
dynamics bias, we draw the vector field in the 3-dimensional
subspace (αw αb θr1) of the state spate. An example is shown
in Fig. 5, where the cyan arrows represent the training data
and red and blue arrows depict the prediction and ground
truth computed at different states. This example uses 571

TABLE I
PARAMETERS USED FOR THE EXPERIMENTS.

Dynamics Bias Model
Λ−1 diag(1, 1, 1, 1, 1, 1)
α2 1
σ2 e−4

d 1.0
Policy Optimization

c 200
T 5000
Q 10−6

R diag(10, 10, 10, 0.1, 0.1, 0.1)
Nout 10
Zmax 200

experiments per iteration 2
DIRECT parameters

parameter bounds −10 ≤ ĥi ≤ 10
Nin 1000
ε 10−6

Simulation Setting
maximum torque 100 Nm

timestep 0.001 s

samples obtained from four Box2D simulations. As shown
here, the corresponding red and blue arrows match well,
indicating that the GP models can accurately predict the
dynamics bias.

C. Policy Search

We run our method for different noise levels and inertial
parameter error magnitudes to investigate the relationship
between the number of experiments required and the dis-
crepancy between the model and hardware. Furthermore, to
test the robustness against model errors, we conducted the
same set of experiments when the inertial parameters of the
Box2D model are 20% larger than those in the Lagrangian
model.

Table II shows the average number of experiments required
to obtain a policy that can successfully balance the robot
in Box2D simulation for 5 seconds. For reference, a 12-
bit rotary encoder combined with a 50:1 gear measures the
output joint angle at a resolution of 3.1× 10−5 rad.

The results do not show any clear relationship between the
noise level and the number of experiments required, which
implies that larger noise or error does not necessarily require
more experiments. Also, it is interesting that the numbers
of experiments with inertial parameter errors are generally
lower than their counterparts without errors. We suspect that
the larger inertia lowered the natural frequency of the system,
making the control easier in general.

Figure 6 shows three examples of cost function value
change in Box2D simulation. The cost generally remains flat
for a few iterations and then declines rapidly, probably when
the dynamics bias model becomes accurate enough.

D. Policy Performance

Since the Box2D simulation includes noise, simulation
results vary even if the robot starts from the same initial state
and uses the same policy. We therefore compute the success
rate from various initial states to evaluate the performance
of a policy.

−2

−1

0

1

2

3

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

wheel angle αw (rad)
board angle αb (rad)

jo
in

t
an

g
le

 θ
1
 (

ra
d
)

training data

prediction

ground truth

Fig. 5. Velocity field of the learned dynamics model. Cyan: training data; red: prediction; blue: ground truth.

TABLE II
AVERAGE NUMBER OF EXPERIMENTS REQUIRED AT DIFFERENT NOISE

LEVELS AND INERTIAL PARAMETER ERRORS.

Torque Position Velocity # of experiments
σ2
τ σ2

p σ2
v no error 20% error

0 0 0 6.4 2.8
0.001 0 0 7.3 3.5
0.01 0 0 9.5 4.8
0.1 0 0 5.5 2.5
0.1 1.0× 10−6 1.0× 10−3 7.5 3.5
0.1 2.0× 10−6 2.0× 10−3 4.4 4.4
0.1 4.0× 10−6 4.0× 10−3 7.0 3.3
0.1 8.0× 10−6 8.0× 10−3 9.6 5.0
0.1 1.6× 10−5 1.6× 10−2 4.6 5.5
0.1 3.2× 10−5 3.2× 10−2 4.0 3.5
0.1 6.4× 10−5 6.4× 10−2 6.0 4.0
0.1 1.28× 10−4 1.28× 10−1 4.0 3.6

0 1 2 3 4 5 6 7
10

1

10
2

10
3

10
4

10
5

10
6

number of iterations

c
o

st
 i

n
 B

o
x

2
D

 s
im

u
la

ti
o

n

Noise= 0.01, 1e−6, 1e−3

Noise= 0.1, 4e−6, 4e−3

Noise= 0.1, 8e−6, 8e−3 , Mass=20%

Fig. 6. Change of cost function value in Box2D simulations over iterations.

Figure 7 depicts the balancing success rates starting from
various wheel and board angles, using a policy optimized
with Box2D simulation without noise (a) and with noise (b).
This result clearly shows that the policy optimized in noisy
environment can successfully balance the robot from a wider
range of initial states under noisy actuator and sensors.

VII. CONCLUSION AND FUTURE WORK

This paper presented a framework for model learning and
policy optimization of robots that are difficult to conduct
experiments with. The key idea is to learn the difference
between a model and hardware rather than learning the
hardware dynamics from scratch. We also employ an iterative
learning process to improve the model and policy This
approach is particularly useful for tasks such as humanoid
balancing and locomotion where a dynamics model is nec-
essary to obtain a controller to collect the initial set of data.

We conducted numerical experiments through bongoboard
balancing task of a simple bipedal robot, and demonstrated
that the framework can compute a policy that successfully
completes the test task with only several hardware exper-
iments. The policy obtained from noisy simulation proved
to have higher balancing performance than the one obtained
from clean simulation. The number of hardware experiments
did not show clear correlation with the noise level or mag-
nitude of inertial parameter error.

Future work besides experiments with actual hardware
system includes establishing a guideline for determining the
hyper-parameters of GP. Also, we want to test the scalability
of our framework by testing it on more complex robot
models. Although Wang et al. [23] successfully predicted
the fullbody motion with GP, learning dynamics of complex
robots is likely to be suffered from the curse of dimension-
ality. One possible solution is learning a low dimensional
projection of the full space using an abstract model [14] or a
dimensionality reduction technique [24]. Another interesting
direction would be to explore different representation of
dynamics bias instead of the additive bias considered in this
paper.

REFERENCES

[1] J. Kober and J. Bagnell, J.A. amd Peters, “Reinforcement learning in
robotics: A survey,” the International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[2] W. Khalil and E. Dombre, Modeling, identification and control of
robots. London, U.K.: Hermès Penton, 2002.

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

initial wheel angle αw (rad)

in
it

ia
l

b
o
ar

d
 a

n
g
le

 α
b
 (

ra
d
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s

ra
te

(a)

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

initial wheel angle αw (rad)

in
it

ia
l

b
o
ar

d
 a

n
g
le

 α
b
 (

ra
d
)

su
cc

es
s

ra
te

(b)

Fig. 7. Balancing success rate in Box2D simulation with noise, starting
from various initial wheel and board angles. (a) The policy has been
optimized with Box2D simulation without noise. (b) The policy has been
optimized with Box2D simulation with noise.

[3] K. Yamane, “Practical kinematic and dynamic calibration methods for
force-controlled humanoid robots,” in Proceedings of IEEE-RAS Inter-
national Conference on Humanoids Robots, Bled, Slovenia, October
2011, p. (in press).

[4] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a
real robot using hierarchical reinforcement learning,” Robotics and
Autonomous Systems, vol. 36, no. 1, pp. 37–51, 2001.

[5] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems, 2008, pp. 849–
856.

[6] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato, “Learning from demonstration and adaptation of biped
locomotion,” Robotics and Autonomous Systems, vol. 47, pp. 79–91,
2004.

[7] C. Atkeson and S. Schaal, “Robot learning from demonstration,” in
International Conference on Machine Learning, 1997, pp. 12–20.

[8] R. Sutton, “Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming,” in Proceedings of the
7th International Conference on Machine Learning, 1990, pp. 216–
224.

[9] A. Moore and C. Atkeson, “Prioritized sweeping: Reinforcement
learning with less data and less time,” Machine Learning, vol. 13,
pp. 103–130, 1993.

[10] J. Peng and R. Williams, “Incremental multi-step Q-Learning,” Ma-
chine Learning, vol. 22, pp. 283–290, 1996.

[11] P. Abbeel, M. Quigley, and A. Ng, “Using inaccurate models in

reinforcement learning,” in Proceedings of the 23rd International
Conference on Machine Learning, 2006, pp. 1–8.

[12] J. Ko, D. Klein, D. Fox, and D. Haehnel, “Gaussian processes and
reinforcement learning for identification and control of an autonomous
blimp,” in IEEE International Conference on Robotics and Automa-
tion, 2007, pp. 742–747.

[13] M. Deisenroth and C. Rasmussen, “PILCO: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on Machine Learning, 2011, pp. 465–472.

[14] J. Morimoto, C. G. Atkeson, G. Endo, and G. Cheng, “Improving
humanoid locomotive performance with learnt approximated dynam-
ics via Gaussian processes for regression,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4234–4240, 2007.

[15] N. Sugimoto and J. Morimoto, “Trajectory-model-based reinforcement
learning : Application to bimanual humanoid motor learning with
a closed-chain constraint,” IEEE-RAS International Conference on
Humanoid Robots, 2013.

[16] V. Tangkaratt, S. Mori, T. Zhao, J. Morimoto, and M. Sugiyama,
“Model-based policy gradients with parameter-based exploration by
least-squares conditional density estimation.” Neural networks, vol. 57,
Sep. 2014.

[17] M. Cutler, T. J. Walsh, and J. P. How, “Reinforcement learning with
multi-fidelity simulators,” 2014 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3888–3895, 2014.

[18] S. Ross and J. Bagnell, “Agnostic system identification for model-
based reinforcement learning,” in International Conference on Ma-
chine Learning, 2012.

[19] C. Rasmussen and M. Kuss, “Gaussian Processes in reinforcement
learning,” in Advances in Neural Information Processing Systems,
vol. 16, 2003.

[20] D. Jones, C. Perttunen, and B. Stuckman, “Lipscitzian optimization
without the Lipschitz constant,” Journal of Optimization Theory,
vol. 79, no. 1, pp. 157–181, 1993.

[21] U. Nagarajan and K. Yamane, “Universal balancing controller for
robust lateral stabilization of bipedal robots in dynamic, unstable
environments,” in Proceedings of IEEE International Conference on
Robotics and Automation, 2014, pp. 6698–6705.

[22] “Box2d — a 2d physics engine for games,” http://box2d.org/.
[23] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dy-

namical models,” Advances in neural information processing systems,
pp. 1441—-1448, 2005.

[24] E. L. Snelson, “Flexible and efficient Gaussian process models for
machine learning,” Ph.D Thesis, 2007.

