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ABSTRACT
We address the problem of identifying when a child playing
an interactive game in a small group is speaking to an ani-
mated or robotic character versus conferring with his friend.
This judgment about addressee is critical for turn-taking.
We explore a machine learning approach using a Support
Vector Machine (SVM) to integrate audio and visual fea-
tures that we believe can be sensed accurately. We extend
the basic model by including a simple form of group infor-
mation, limited speech recognition, and limited game state
to improve classification accuracy. Our results demonstrate
high accuracy in detecting when the character is being ad-
dressed. This model improves our understanding of chil-
dren’s group behavior in interacting with an agent.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]; H.5.3 [Group
and Organization Interfaces]

General Terms
Human factors, Experimentation

Keywords
Human character interactions, Machine learning experiments

1. INTRODUCTION
We are interested in autonomous, language-based inter-

action between animated or robotic characters and small
groups of children. The interaction can be brief but should
be fun. The age group studied is four to ten year olds,
entailing high variability in articulation, vocabulary and be-
havior. Key problems include identifying when speech is
present, who is producing it, and to whom it is directed, as
well as producing an appropriate response. The focus here is
the use of machine learning to perform addressee identifica-
tion and understand which features play important roles. In
particular, we want to determine whether a child is speaking
to the character or conferring with other participants.

Copyright is held by the author/owner(s).
HRI’12, March 5–8, 2012, Boston, Massachusetts, USA.
ACM 978-1-4503-1063-5/12/03.

!
Figure 1: Family playing Mix-and-Match

2. USER STUDY
Twenty-seven compensated children and seven adult vol-

unteers participated in groups of two to four players. Partic-
ipants stood side-by-side, facing a large flat-screen display,
about six feet away. Audio and video were captured, the
former with both close-talk microphones and a linear micro-
phone array collocated with the display.

Two games were available and could be played multi-
ple times. The games required verbal interactions that in-
cluded greetings, responses to yes/no questions, and refer-
ring phrases to choose from among three or six objects (Fig-
ure 1). Because participants were free to confer with each
other prior to choosing, non-task utterances were also likely
to include the same referring vocabulary.

The character’s behavior was controlled via a Wizard of
Oz set-up. The wizard’s interface allowed only a small num-
ber of classifications: long silence, unclear speech, multi-
ple people speaking, clear reference to an object not on the
board, or a choice of one of the objects shown. The first four
options caused the character to use specific reprompts, while
a clear reference to a pictured item resulted in character ac-
tion that changed the game state. Thus, in addition to act-
ing as a voice activity detector, speaker identifier, addressee
identifier, and speech recognizer, the wizard’s behavior im-
plicitly defined the character’s turn-taking strategy as part
of the overall natural language processing task.

All speech during game play was transcribed and anno-
tated with the judgment CHAR or NCHAR to indicate if
it was directed to the character. Annotators also labeled
a small vocabulary of gestures (head shake yes, head shake
no, pointing, emphasis) and movements (head turn away,
head turn back, head incline). Gesture and orientation la-
bels were based both on available technologies for sensing
the relevant features and prior work in addressee identifica-
tion and turn-taking in adults, e.g. [5, 4]. In particular, we
follow [1] by substituting head orientation for eye gaze in
designating addressee.



Children did most of the talking (1371/1895 utterances)
during game play, addressing the character 71% of the time
and gesturing during about 12% of their utterances. Chil-
dren’s NCHAR utterances were primarily requests for help
in naming an object in the game or negotiations over the
next choice. Adults acted largely in a support role, address-
ing the character only 12% of the time, and gesturing about
the same amount (14% of utterances). In a physical set-up
like ours, Bakx and colleagues [1] described the effect of “sit-
uational attractors” on facial orientation, noting that their
adult dyads faced the system about 60% of the time they
were actually speaking to each other. We observed simi-
lar behavior in our adults, who were oriented toward the
screen during about 68% of NCHAR interactions, but more
violation of the conversational convention in the children,
who oriented toward the screen 82% of the time they were
speaking to another person.

3. ADDRESSEE CLASSIFICATION
We cast the problem of automatically identifying whether

an utterance is addressed to the character (and so should re-
sult in character action) as a binary classification problem.
We represent each time slice of a child’s participation with
a set of features and learn one or more Support Vector Ma-
chine (SVM) classifiers to map the time slice to CHAR or
NCHAR. Performance depends on the size of the time slice,
the feature set, and the topology of the model. We report on
four models, all of which use a time slice of 500 msecs and
the following basic features, either derived from the hand-
annotated data or generated automatically:

• Child speech (hand): present or absent over most
of the time slice, independent of the content of the
utterance

• Animation (hand/computer): prompt or not, whether
the animation is generating speech or sound effects
that are prompting for a response

• Orientation (hand): head turn away and head turn
back

• Sound (computer): pitch and volume, averaged over
the time slice

Basic SVM: This model is an SVM classifier [3] trained
to predict binary CHAR/NCHAR values based on the basic
feature vector at each time slice. It represents the ability
to predict the addressee independent of speech recognition
and focused on only the current time slice (500 msecs) of
the child’s behavior.

SVM-group: Speech not directed to the character is usu-
ally directed toward another person in the group, typically
an adult. To take advantage of this regularity, we add the
feature vector for the group leader to the feature vector for
each child at each time slice. This model would require the
additional ability to identify the group leader.

SVM-group-words: This model considers the effect of
accurate speech recognition over a small, task-independent
vocabulary. We add a Content Marker feature to the vector,
capturing whether the participant’s speech contained a small
set of discourse markers (e.g., um, ok) or WH question words
(e.g., what, where) in the transcribed data.

SVM-group-words-history: Both the Animation fea-
ture and the leader’s vector have the potential to be most
useful when they are considered over time. For an initial test
of temporal effects, we change to a two-layer topology. In
the first layer, we use the SVM-group-words model to com-

Approach Max f1 AUC TPR TNR
SVM 0.88 0.48 0.80 0.61

SVM-group 0.89 0.54 0.90 0.61
SVM-group-words 0.90 0.59 0.89 0.67

SVM-group-words-history 0.90 0.63 0.88 0.72

Table 1: Results of applying our method under different

conditions

pute the CHAR/NCHAR score for the time slice. For the
second layer, we train a new SVM whose features include
values returned by the first-layer SVM for k = 1 previous
and l = 2 next time steps. At test time, we use the learned
SVM models in both layers to assign CHAR/NCHAR la-
bels. This model would increase the delay in a real-time
application of the classifier.

3.1 Results
We used the LibSVM implementation [2] under all condi-

tions, holding out one child’s data at a time during training,
and balancing the data set (balancing factors 2 and 5 in Lib-
SVM) to compensate for the uneven distribution of CHAR
and NCHAR utterances in the corpus. Table 1 reports aver-
age values over all sets of remaining children, for each con-
dition in terms of Max F1, area under the precision-recall
curve (AUC), true positive rate (TPR), and true negative
rate (TNR).

Using only the basic features (SVM), F1 and TPR are
high for our interactions, but the TNR is relatively low and
therefore the area under the precision/recall curve is low
as well. Adding the basic features of a group leader to the
child’s data (SVM-group)gives increased performance across
all measures. SVM-group-words shows how even a small
amount of accurate speech recognition could further improve
F1, by helping to achieve a more balanced true positive/true
negative rate. Finally, for classifications that could be done
off-line or with an extra one second delay to buffer the look-
ahead, the best AUC value is achieved.

Our current model improved our understanding of the ef-
fect of children’s visual and audio features in interacting with
an agent. We plan to advance the two-layer SVM model by
adding the pairwise relations among all the people in the
group (thus, eliminating the need to identify the leader). In
addition, we intend to use automatic sensors for speech ac-
tivity, orientation, and gesture recognition with our audio
and video data, and compare the results to what has been
achievable with human annotation.

4. REFERENCES
[1] I. Bakx, K. van Turnhout, and J. Terken. Facial

orientation during multi-party interaction with
information kiosks. In INTERACT, pages 701–704,
2003.

[2] C. Chang and C. Lin. LIBSVM: A library for support
vector machines. ACM Trans. on Intellig. Sys. and
Tech., 2:27:1–27:27, 2011.

[3] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20, 1995.

[4] N. Jovanovic, H. op den Akker, and A. Nijholt.
Addressee identification in face-to-face meetings. In
EACL, pages 169–176, 2006.

[5] M. Katzenmaier, R. Steifelhagen, and T. Schultz.
Identifying the addressee in human-human-robot
interactions based on head pose and speech. In ICMI,
pages 144–151, 2004.


