Real-Time High-Fidelity Facial Performance Capture

Chen Cao™?  Derek Bradley?

1) State Key Lab of CAD&CG, Zhejiang University

Thabo Beeler?
2) Disney Research Zurich

Kun Zhou!

Figure 1: We propose the first real-time facial tracking system that captures performances in online at high fidelity, including medium scale
details such as wrinkles. From a monocular input (left) our system captures both the global shape as well as local details (center). The
method is generic and requires no offline training or manual preprocessing steps for novel users (right).

Abstract

We present the first real-time high-fidelity facial capture method.
The core idea is to enhance a global real-time face tracker, which
provides a low-resolution face mesh, with local regressors that add
in medium-scale details, such as expression wrinkles. Our main ob-
servation is that although wrinkles appear in different scales and at
different locations on the face, they are locally very self-similar and
their visual appearance is a direct consequence of their local shape.
We therefore train local regressors from high-resolution capture
data in order to predict the local geometry from local appearance
at runtime. We propose an automatic way to detect and align the lo-
cal patches required to train the regressors and run them efficiently
in real-time. Our formulation is particularly designed to enhance
the low-resolution global tracker with exactly the missing expres-
sion frequencies, avoiding superimposing spatial frequencies in the
result. Our system is generic and can be applied to any real-time
tracker that uses a global prior, e.g. blend-shapes. Once trained,
our online capture approach can be applied to any new user without
additional training, resulting in high-fidelity facial performance re-
construction with person-specific wrinkle details from a monocular
video camera in real-time.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation—Digitizing and scanning;

Keywords: Real-time face reconstruction, local wrinkle model,
high-fidelity performance capture.

1 Introduction

Mastering facial animation is a long-standing challenge in com-
puter graphics. The face can describe the emotions of a character,
convey their state of mind, and hint at their future actions. Audi-
ences are particularly trained to look at faces and identify these sub-
tle characteristics. Through decades of research, we have learned
that capturing the shape and motion of real human faces can lead to
realistic virtual characters.

Facial motion capture has come a long way from the original
marker-based tracking approaches. Modern performance capture
techniques can deliver extremely high-resolution facial geometry
with very high fidelity motion information. In recent years the
growing trend has been to capture faces in real-time, opening up
new applications in immersive computer games, social media and
real-time preview for visual effects. These methods approximate
the 3D shape and motion of a face during the performance using
either depth or web cameras. To make this tractable, real-time ap-
proaches use generic, low-resolution face models as a basis for the
reconstruction. While these models simplify the capture problem
and facilitate performance retargeting to other characters, they fail
to capture the unique medium and fine scale facial details of the
individual, such as wrinkles on the forehead or the so-called crows
feet around the eyes. As a result, real-time performance comes at
the cost of facial fidelity, and there exists a large gap in reconstruc-
tion quality between current offline and online capture methods.

In this work we aim to reduce the disparity between offline and real-
time facial performance capture by presenting the first high-fidelity
real-time facial capture method. Our core idea is to enhance an ex-
isting low-resolution real-time tracker by adding a local regression
method that targets medium scale expression wrinkles. Our main
observation is that although wrinkles appear at different locations
on the face and with different orientations and scales, they exhibit
very similar local appearance because of the way they are formed.
The local appearance of wrinkles is a direct consequence of the
shading caused by the local shape. By learning the relationship be-
tween local image appearance and local wrinkle formation, we can
reconstruct plausible face wrinkles in real-time from a single RGB
camera. Specifically, we train a regressor with data acquired by a
high-resolution performance capture system, which can predict the
shape of these features given the captured appearance in an image.
The local details are stored in a displacement map that is applied to



the existing global model.

Our approach is general, in that we can extend any existing low-
resolution real-time face model (e.g. those based on blend-shapes).
In this paper we employ the global face tracking method of Cao
et al. [2014]. Our method also provides both robustness and
flexibility, as the training can be performed in a one-time pre-
processing step given high-resolution capture data (e.g. from Beeler
et al. [2011]) and then applied online to any new user.

Our high-fidelity capture approach is made possible through several
new technical contributions, including

1. alocal description of face wrinkles that enables us to develop
a generic model capable of creating user-specific wrinkling in
realtime,

2. a method to extract and apply targeted facial details from
high-resolution training data, avoiding superimposing spatial
frequencies at runtime, and

3. a local regression algorithm specifically designed for
medium-scale expression details, which extends traditional
boosted regression by making use of the structure present in
the data to achieve real-time performance.

To our knowledge, our method is the first for real-time facial per-
formance capture that achieves high-resolution facial fidelity, and
we achieve this with a monocular tracking approach. As we will
demonstrate, our results are on par with offline reconstruction meth-
ods. By offering more realistic facial capture in real-time, our tech-
nique allows advances in various application domains including on-
line preview for high-quality offline capture methods, more immer-
sive gaming and social experiences, and the potential for more re-
alistic online facial retargeting to virtual characters.

2 Related Work

Facial performance capture has received a lot of attention over the
past decade. During this time, researchers have attacked the prob-
lem from two different sides. One line of research has investigated
ways to capture the spatio-temporal shape of the face at very high
resolution and accuracy. Based on methods designed to acquire
single static expressions [Ma et al. 2007; Beeler et al. 2010; Ghosh
et al. 2011], researchers have proposed various methods to establish
temporal correspondence [Zhang et al. 2004; Furukawa and Ponce
2009; Bradley et al. 2010; Beeler et al. 2011; Huang et al. 2011;
Klaudiny and Hilton 2012]. These methods can capture facial per-
formances at very high resolution but require complex setups with
multiple cameras and controlled illumination. Therefore, more re-
cent approaches have investigated how to reduce the hardware com-
plexity to binocular [Valgaerts et al. 2012] and lately even monocu-
lar setups [Garrido et al. 2013; Suwajanakorn et al. 2014; Shi et al.
2014]. Still, all these approaches can be considered offline methods
as they require substantial amounts of time to process the data and
typically can integrate both forward and backward information to
improve the quality.

Another line of research has focused on online, real-time facial
performance capture. The first approaches in this domain lever-
aged depth information provided by active techniques such as cus-
tom built structured light setups [Weise et al. 2009] and depth sen-
sors [Weise et al. 2011; Bouaziz et al. 2013; Li et al. 2013; Chen
et al. 2013]. More recently, methods have started to emerge that
operate only on a single monocular camera [Chai et al. 2003; Rhee
et al. 2011; Cao et al. 2013; Cao et al. 2014]. To provide real-time
performance and remain robust, these online methods typically em-
ploy a strong prior of the face, such as a blend-shape rig. While pro-
viding robustness, this global prior also limits the accuracy that may

be achieved. Thus the resulting performances lack person-specific
details, such as accurate wrinkling, which are very important for
the visual appearance.

Researchers have long recognized the importance of these medium-
scale details. Several approaches have been proposed to handle
medium-scale details explicitly, either by spectrally decomposing
the captured face geometry into multiple scales [Bickel et al. 2007;
Ma et al. 2008; Bermano et al. 2014] or by acquiring only the de-
tails [Dutreve et al. 2011; Li et al. 2015]. These can then be added
to the low-frequency shape provided, for example, from mocap
tracking or transferred to other characters. All of these methods,
however, are non-generic and require either an offline preprocess-
ing stage to build up an actor-specific dataset or an artist to specify
where wrinkles should appear on the character.

Most related to the proposed method is the recent work of Li et
al. [2015], in which they propose to synthesize a displacement map
from a pool of training examples using texture synthesis. As their
method is offline, they do not apply the wrinkle enhancement to ev-
ery frame, but instead require an offline preprocessing step, where
they acquire 20 expressions of a user which are augmented by their
wrinkle synthesis method. These 20 shapes form the blend-shape
prior for their global tracker, which is consequently limited to re-
main within the confines of this linear prior. Our method does not
require any offline pre-processing for a novel user but only a few
seconds of unsupervised online training at the beginning and can
capture the complex, non-linear dynamic wrinkling behaviour of
skin.

3 Method Overview

The core idea proposed in this paper is to augment a low reso-
lution face mesh L?, tracked in real-time to frame ¢ by a global
tracker [Cao et al. 2014], with appropriate details D* computed
with a local regressor to produce the final high fidelity mesh H*.
This combines the robustness of a global tracker with the flexibility
of local regressors, while still maintaining real-time performance.
The proposed pipeline consists of two main stages, Training and
Online Performance Capture, as outlined in Figure 2.
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Figure 2: This figure summarizes the various data types used
throughout the paper as well as their interdependencies. The left
side shows how the high-resolution sample data provided by an of-
fline reconstruction system is used to train the proposed detail re-
gressor (Section 4). The right side focuses on runtime dataflow and
shows how the coarse mesh provided by a global tracker is refined
and augmented with medium-scale frequencies (Section 5).

In the training stage (Section 4) we train a boosted regressor
with data acquired by a high-resolution performance capture sys-



Figure 3: A subset of the high-fidelity training data used to learn
the wrinkle regression.

tem [Beeler et al. 2012]. Training takes place on small patches
which are automatically detected in the UV domain. From these
patches the regression aims to learn a function ® that infers local
shape from local shading, or more formally

®(t:) = ds, (¢Y)

where t; is the local image texture and d; the local displacement
map of the i-th patch. An important component is the proper def-
inition and computation of the detail displacement d as explained
in Section 4.1 to avoid superimposing spatial frequencies, which
would lead to undesired artifacts. Training takes place only once,
after which the system can be applied to any number of novel users.

At runtime (Section 5), the system first fits the low resolution face
mesh to the input image I* using the global tracker to get an initial
estimate. This estimate is then refined using optical flow to produce
accurate tracking and thus a temporally stable texture 7. From this
texture, the trained local regressors compute the displacement map
D?, which is used to create the high-resolution face mesh H* on
the GPU. In the following we discuss the individual steps in detail.

4 Training

We train a local detail regressor on a sparse set of high-quality 3D
face scans, consisting of various extreme expressions that demon-
strate wrinkles, from several different actors, including the captured
images. We assume that within the same actor, the subset of meshes
have the same topology, and that one of the meshes contains a neu-
tral expression. Such a dataset can be acquired with existing facial
capture systems, such as the method of Beeler et al. [2012], which
we use in this work.

We begin by extracting the details from the high-resolution meshes
as displacement maps, paying close attention to encode only the de-
tails that would not already be present in the low-resolution online
tracker. We then automatically detect wrinkle patches in the dis-
placement maps, and train a regressor to learn the mapping from
local image appearance to wrinkle displacements.

4.1 Detail Extraction

Our training dataset consists of a total of 18 meshes captured from
four different actors. A subset of the training data is shown in Fig-
ure 3. In order to describe the detail extraction, let us consider the
subset { M7}, which consists of the meshes of a single actor, and
assume M is the neutral expression. All other actors are processed

G(M7)

G(M?)

Figure 4: We extract medium expression details from the high-
resolution training expression M’. We remove the medium fre-
quencies from both the expression M7 and the neutral mesh M 0
and transfer the deformation G(M®) — G(M?) to M°. The re-

sulting mesh Mg does not contain the medium expression details
but preserves all other frequencies (bottom right).

analogously. One expression and a neutral mesh are shown in Fig-
ure 4, top left and center. The proposed detail regression is only
concerned with the medium frequency details and we thus need to
remove both the low and high frequency bands from the training
data. Removing the high frequencies (e.g. pores) is straightforward
and is achieved by smoothing the meshes with a narrow Gaussian
filter { M7} « {G"F (M7)}. Removing the low frequencies how-
ever is more involved, as these depend on the coarse tracking mesh
L. We define a lowpass filter G which will serve as bandpass to
separate low and medium frequencies. With this bandpass filter we
wish to extract the medium expression frequencies from the train-
ing mesh. Before we can do so, however, we have to ensure that the
coarse mesh is compatible.

The coarse tracking mesh may also contain medium frequency ex-
pression details that need to be removed to avoid interference dur-
ing detail regression. These are expression details that most humans
have in common, such as the nasolabial fold. In other areas, such as
the forehead, the medium expression frequencies tend to be missing
from the coarse model, since the wrinkles form very differently for
every person. The naive way to remove these frequencies would be
to filter L with the lowpass filter G to produce G(L). This, however,
would not only remove the frequencies caused by the expression but
also attenuate spatial frequencies important for the identity, such as
parts of the nose. To separate the identity and expression frequen-
cies from each other, we thus propose to compute the deformation
from G(L°) to G(L?) and to transfer it to L° using deformation
transfer [Sumner and Popovi¢ 2004] in order to create Lg, which
preserves the identity frequency bands while removing the medium
expression frequencies. We process all basis shapes B of our global
tracker in this way and thus make it compatible for detail regression.
From now on L refers to the compatible coarse mesh.

The goal during runtime will be to add expression wrinkles to the
low-resolution result of a global face tracker. We use the recent
real-time tracker of Cao et al. [2014], which uses an underlying
face model with parameters for identity, expression and rigid trans-
formation. After ensuring the coarse mesh L is compatible as de-
scribed above, we solve for the identity parameter given all expres-



Figure 5: Given the expression M’ and the aligned mesh M (a)
we compute the positive (red) and negative (blue) displacements
along the normal (b). These displacements are stored as a dis-
placement map D’ (c) in the texture uv-layout (d).

sions {M7}. We assume the face model has a low-distortion UV
mapping, which we transfer from the aligned neutral mesh L° to
the high-resolution counterpart M°.

To extract the expression details, we proceed analogously to prepar-
ing the coarse mesh by transferring the deformation from the fil-
tered meshes G(M°) — G(MY) to the unfiltered neutral shape
MO (Figure 4). The result is a mesh M, which exhibits the same
overall expression as M7 but lacks the medium frequency expres-
sion details. These are exactly the relevant details that we aim to
retrieve and encode as a displacement map. The displacement map
D7 is computed from M} by tracing rays along the normal (in both
directions) for all vertices and computing the signed distance to the
intersection with M. This process is visualized in Figure 5.

4.2 Local Wrinkle Patches

At this point we have image textures and displacement maps for
each of the training expressions. We now define our local wrinkle
model, which consists of small rectangular patches of both texture
and displacement, oriented along wrinkle lines in UV-space.

The training expressions contain extreme facial wrinkles, which ap-
pear with strong shadows in the texture images. For a given actor,
even though wrinkles may be spread over different parts of the face,
the spatial location of wrinkle lines remains fixed over time and thus
wrinkles will always appear in the same locations in UV-space. For
this reason we can combine wrinkle information from all poses into
a single wrinkle map for each actor, which encodes the per-pixel
likelihood of a wrinkle forming at this location.

As before, let us consider the subset of textures {77} and displace-
ment maps {D?} that correspond to a single actor, and as before
each actor is processed analogously. The actor-specific wrinkle
map is created by identifying features in the individual texture im-
ages that potentially correspond to wrinkles. To this end, we apply
a Difference of Gaussians (DoG) filter to each texture image, and
then set the wrinkle map to the average filter response across tex-
tures for each filtered pixel value above a user-defined threshold a.
A subset of texture images and the combined wrinkle map is shown
in Figure 6. We similarly define a 2-channel gradient image by av-
eraging the texture gradients of those pixels that contributed to the
wrinkle map.

We now define local wrinkle patches of user-defined size w X w
aligned with the wrinkle map. Due to the anatomy of the face, ex-
pression wrinkles are most likely to appear on the forehead, around
the eyes, and along the crease of the cheek. We therefore constrain
our computation to these areas. Even still, it is not necessary to
create densely overlapping wrinkle patches, so we prioritize patch
placement by creating a list ¢ of all pixels within the valid regions,
sorted in decreasing order by probability. Wrinkle patches are then
created iteratively by choosing the pixel p with highest probability
from /¢, placing a rectangle centered at p, and orienting the rectangle
with the gradient at p (see Figure 6). A local wrinkle patch is then

Textures (T7)

Local Patch Creation

Wrinkle Probability Map

Patch Layout Closeup Patch Layout
Figure 6: From the sample textures T? (top row) the method au-
tomatically determines the locations where wrinkling may occur by
computing a wrinkle probability map (bottom, left). Guided by this
map, patches are placed and oriented at these locations to extract
texture patches {t;} for training (bottom, center+right).

defined by the pair of vectors (t, d), representing the image texture
and displacement pixels within the rectangle, respectively. For each
pixel p we generate a new patch for every expression j where the
filtered texture image at p is larger than «. Once the patches for a
pixel location are created, we remove all the pixels from ¢ that are
covered by the sub-rectangle of size pw X pw centered at p, and
continue until ¢ is empty. The parameter p allows us to control the
patch density.

In all our examples, the resolution of the image texture and dis-
placement maps is 1024 x 1024, and the Difference of Gaussians
filter has a small kernel of size 6 and large kernel of size 8. The
threshold « is fixed to 0.005, the patch size w is 32, and the den-
sity parameter p is set to 0.5. The training data comes from 18
meshes captured from four different actors undergoing different
expressions. In our experience, too little training data can result
in more pronounced wrinkle reconstructions but the result will be
unstable, where too much training data can lead to over-smoothed
wrinkle results. The dataset we employ produces a suitable trade-
off. The type of wrinkles used for training can also have an impact
on the regressed results, as some wrinkles are thin and deep while
others are wide and contain only low-frequency shape. We selec-
tively target the main expression wrinkles, which occur around the
forehead, eyes and cheeks, however additional training sets could
be used to target different types of wrinkles.

4.3 Detail Regression Training

To reduce the complexity and to better constrain the regression we
aim to explore the structure present within the data. With this in
mind we chose the patches in Section 4.2 such that they are centered
at wrinkles and oriented consistently. Since these patches are there-
fore all aligned to each other we can reduce the dimensionality of
our regression space substantially using principal component anal-
ysis (PCA) on the full set of N displacement patches {d; } from all
training data, and extract the 16 dimensions with the largest vari-
ance. These capture approximately 85% of the energy present in
the training data. Figure 7 shows that these dimensions intuitively
capture the predominant variations in wrinkle shape. In our expe-
rience, using higher dimensions does not significantly improve the
wrinkle quality but can introduce noise and increase computation
time, and fewer dimensions can lead to a loss of some high fre-
quency details. Projecting the original displacement patches {d;}
into this subspace gives us the ground truth displacement coeffi-
cients {¢&;}, which we use as the regression target. The input to the
regression are the N corresponding patches {t; } extracted from the
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Figure 7: The average and 16 major eigenvectors of the displace-
ment patches from the training set capture about 85% of the energy
and intuitively encode the predominant variations in wrinkle shape.

image textures {77}.

From these patches we learn a regression function ®* that maps t;
to ¢; by minimizing the energy

E™ = le@ (t:) —&]*. @)

Reconstructing the output of ®* with the PCA subspace basis links
®* back to ® defined in Equation 1.

Our regression function ®* is similar in spirit to the boosted re-
gressor proposed by Cao et al. [2012], which has shown to provide
good results for similar tasks [Cao et al. 2013; Cao et al. 2014]. The
boosted regressor has a hierarchical character by cascading K weak
Iegressors {Rk }. This provides both robustness and accuracy since
early regressors handle large scale variation which is progressively
refined at later stages by regressing on the remaining residual from
the previous stage ef‘l =¢; — c . Cao et al. [2012] propose
a two-level boosted regressor con31st1ng of an external level, which
is concerned with global alignment, and an internal level, which re-
gresses the “normalized target” as the authors call it. Normalization
is provided by the external level, which transforms the target into a
canonical space. In our case however, we do not require the exter-
nal level as our data is explicitly structured such that it is aligned. It
is thus inherently normalized, which allows us to simplify the algo-
rithm to a one-level regressor. Unlike the two-level weak regressor
R¥ (ts, cf‘l) used in Cao et al. [2012], our one-level weak regres-
sor R*(t;) does not depend on the previous result cff !, which they
only required for regressing the external level. This removes the se-
quential interdependency of the K weak regressors during runtime
and allows to evaluate them in parallel.

Note that during training we still have the sequential interdepen-
dency as we train the weak regressor R* on the residuals {sffl}
from the previous stage, which is desired as it preserves the hier-
archical character. As weak regressors we use random ferns which
we train on the input samples by minimizing

—argmanHCz (™" + R(t:))]]. 3)

As an initial estimate of ¢ we choose the average over the training
set € = avg ({¢;}).

The weak regressor R consists of F' features and randomly selected
thresholds, which divide the training samples into 2F bins. As fea-
tures we use intensity differences of two pixels in the image patch
t;. Due to the inherent normalization of our regression data we do

not need to employ shape indexed features as suggested by Cao et
al. [2012], but instead can just randomly sample P pixels in the
patches. These P pixels provide P? pixel pairs, from which we
pick F' good candidates according to the correlation-based feature
selection proposed in Cao et al. [2012]. The regression output dc
for each bin b is calculated as

Dicq, (€ —ci)

AES I “

(SCb =

where 25 is the subset of training samples falling into bin b and
is a free shrinkage parameter that prevents overfitting when there
is insufficient training data in the bin. Subsequently, we update the
coefficients c; for samples in €2 as ¢; < ¢; + dcp to prepare for
the next regression level. For the results generated in this paper, we
choose K = 1280, F = 5, P = 50 and 8 = 1000.

5 Online Performance Capture

After training our algorithm on a sparse set of example expressions,
our online capture method can reconstruct high-fidelity facial per-
formances of novel users from a single camera. We start by tracking
the low-resolution face mesh using the global face tracker. This face
mesh is refined using optical flow (Section 5.1) to generate tempo-
rally consistent and drift bounded textures for each frame. Based
on patches extracted from the textures, the regression function ®
(Section 4.3) predicts the local wrinkle shape (Section 5.2). Af-
ter combining the local estimates into a global displacement map,
the final high-resolution mesh is reconstructed and rendered on the
GPU (Section 5.3).

5.1 Coarse Mesh Refinement

The coarse mesh produced by the global face tracker [Cao et al.
2014] is robust but typically not very accurate. This poses problems
for our system since we rely on temporally stable textures for the
detail regression. We therefore propose to refine the coarse mesh
using optical flow [Lucas and Kanade 1981] as follows. We project
the vertices {v}} of the coarse mesh L at time ¢ into the image
I* using the projection matrix P of the camera to compute the cor-
responding 2D pixel coordinates {u‘} = P({v}}). Given the 2D
pixel coordinates {1} ™'} of the refined mesh L'~* from the pre-
vious frame, we aim to compute refined current positions {1t} by
solving the linear system

Z@a' —a't) =e, (%)

where the matrix Z and the vector e contain the spatial and tempo-
ral intensity gradient information in the surrounding region, respec-
tively. We solve for 1’ using the GPU implementation of Lukas-
Kanade in OpenCV'.

Lucas-Kanade flow requires only local information (we employ a
21 x 21 neighborhood), which makes it extremely fast to compute
and thus well suited for our real-time application, but at the same
time it is also prone to errors and outliers. We thus cannot trust
the flow unconditionally and we filter outliers in two cases, (1) if
the intensity values 7*~*(@!™") and I*(@}) differ by more than a
threshold &,,, and (2) if the Euclidean 2D distance between the flow
estimated position @} and the projected position u} = P(v}) of the
mesh vertex v! is larger than a threshold £g. The thresholds were
set to £, = 0.02 and £g = 5 pixels.

The positions of the outliers are recovered from trustworthy neigh-
bors using moving least squares (MLS) [Schaefer et al. 2006] in

Thttp://opencv.org
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Figure 8: From input image I' the method first computes a texture
map T* using the coarse mesh L*. The local regressor then predicts
a displacement map D' from this texture which is applied to the
coarse mesh to produce the final high-fidelity mesh H".

the 2D image domain. As distance metric we employ the geodesic
distance, which is precomputed in the first frame. To verity if the
recovered point is satisfactory, we check if the second condition
mentioned above holds. If not we reset it to u’.

Finally we reconstruct the refined coarse mesh Lt by adopting the
post-processing step in Cao et al. [2014] to include the 2D mesh
positions as constraints in the 3D fit. This will deform the vertices
of the coarse mesh to be as close as possible to our refined locations
within the limits imposed by the underlying prior. To allow for
shapes outside of the prior, we employ fast Laplacian deformation
following Li et al. [2013] using both the 2D landmarks provided by
the global tracker and the refined 2D mesh positions as constraints.

This way of combining the local flow with the global face tracker
bounds error accumulation or drift, which is a common problem
for optical flow methods. The image textures {1"} computed from
the refined meshes are therefore not only accurate but also robust,
which is an essential property for the detail regression discussed in
the next section.

5.2 Detail Regression

From the temporally stable texture 7" computed in the previous
step, the detail regression will predict a displacement map D* con-
taining the medium-scale details missing in the low resolution face
mesh L!. As a first step we construct the wrinkle probability map
from the first NV frames as described in Section 4.3, where NV is a
user controlled parameter. Since the wrinkle map will determine
the possible locations wrinkles may appear later on, it is important
that these /V frames contain as many facial wrinkles of the user as
possible. This is achieved by performing a small set of extremal
expressions and takes only a few seconds.

From the wrinkle probability map we determine where to retrieve
patches {t;} to estimate the local shape. The displacement patches
{d;} are estimated using the trained regressor as d; = ®(t;). In
practice we do not regress on the displacement directly but rather
in PCA space on the coefficients c; as

K
ci=c+ Y R(t:), ©)
k=1

where c is the average coefficients of all training samples.

This equation can be evaluated very efficiently and in parallel since
the proposed one-level regressors do not exihibit any interdependies
at runtime anymore. From the regressed coefficients the local dis-
placements can be reconstructed via the PCA basis.

These reconstructed displacement patches {d;} are then merged to
generate the displacement texture D', Pixels in D* which belong
to multiple patches average the predicted displacements, and pix-
els which are not covered by any patch are smoothly filled in by
solving a Poisson system on the texture domain. Since the patch

Figure 9: The proposed system is both robust and accurate since
it combines a global model to track the overall pose and expres-
sion with local models to reproduce medium scale details such as
wrinkles, which are essential to convey expression and identity.

coverage is fixed once the wrinkle map has been computed, we can
pre-factorize the Poisson matrix to achieve real-time performance.

5.3 High-Fidelity Model Reconstruction

The previous steps provide both low (e.g. overall expression) and
medium (e.g. wrinkles) scale frequencies. To also add in the high
frequency details (e.g. pores) we resort to a simplified version of
mesoscopic augmentation [Beeler et al. 2010]. From the first frame
we compute a mesoscopic map by filtering the image with a narrow
band DoG filter (3x3 for the high and 9x9 for the low kernel), which
we convert into the displacement map D® ¥ with a user defined
scale parameter . We fixed v = 5 in the results of this paper.

The final step is to augment the refined low-resolution mesh Lt
with the combined displacement map (D + D) to produce the
high-fidelity mesh H. This step is straightforward, since modern
graphics hardware natively supports displacement mapping.

6 Results

The proposed method can track facial performances including
medium scale details such as wrinkles in real-time. Being able to
faithfully capture and reproduce these details adds greatly to the vi-
sual quality and perceived intensity of facial expressions as shown
in Figure 9.

Our system is generic and runs on novel users without requiring
any offline training or manual preprocessing steps. We demonstrate
the robustness and flexibility of the system in Figure 10, where we
show results for different people exhibiting a large variety in shape,
location and intensity of skin wrinkles. From this huge variety it is
obvious that a purely global model would probably not be able to
faithfully represent all of these details and motivates the use of our
coupled global/local model.

For the local model to work, temporally stable textures are required.



Figure 10: Our system is generic and can accurately track novel users without any offline training or manual preprocessing steps. This figure

shows users of varying age and different amounts of skin wrinkling.

Our global tracker is based on the DDE tracker [Cao et al. 2014],
which exhibits substantial tracking error due to the strong underly-
ing face prior (Figure 11 (center)). Such a strong prior is required
for robustness, but prevents accurate tracking. The proposed re-
finement step (Section 5.1) improves tracking substantially using
optical flow as shown in Figure 11 (right). The price to pay is an
increase in computation time. Our system is implemented mostly
on the GPU using CUDA and runs at 18 fps on a standard desktop
computer (Intel i7 3.6 GHz with NVidia Gtx980). Global tracking
takes up ~58% of the runtime, roughly half of this falls to the re-
finement using optical flow. The remaining ~42% are spent by the
local detail regressor.

When comparing our method with previous work on offline high-
fidelity reconstruction, we found that our method produces results
on par with other monocular reconstruction techniques [Garrido
et al. 2013; Shi et al. 2014] but in real-time. Figure 12 (left) shows
a comparison to the monocular system of Garrido et al. [2013] and
on the right to the multi-view stereo system of Beeler et al. [2011].
While the global shape is not as accurate since we do not have depth
constraints, the wrinkles produced by our detail regression are more
pronounced.

Figure 13 shows a comparison to the method of Li et al. [2015]
which employs texture synthesis in an offline preprocessing step to
produce user-specific blendshapes with baked in wrinkles. Unlike
our method, which regresses displacements only at the wrinkle lo-
cation, they synthesize displacements for every pixel. This does not
only require more time but will also introduce noise for small radii
or break the structure of the wrinkles for larger neighborhoods. In-
creasing the regularization factor A helps to reduce noise but will
also attenuate the wrinkle intensity.

In summary, we have shown a wide variety of results demonstrating
the versatility, robustness and accuracy of our generic facial perfor-
mance capture system. Compared to previous offline techniques
on high-fidelity performance capture, we produce results of similar
visual quality but in real-time from a single input video.

Input Mesh Error Mesh Error

[Cao et al. 2014]

Refined (ours)

Figure 11: When comparing the tracking error of Cao et al. [2014]
with ours, we can clearly see the improvement achieved using op-
tical flow. The red vectors show the difference to ground truth,
tracked by the offline system of Beeler et al. [2011].

7 Conclusion

In this work we present the first method capable of capturing facial
performances in real-time at high fidelity, including medium scale
details such as wrinkles. Combining real-time facial performance
tracking with high-fidelity reconstruction opens up a variety of new
applications, ranging from casual home users who, for example,
wish to control a game character that resembles their own likeness,
to commercial applications where, for example, a customer can ap-
ply and view virtual makeup, to production applications, such as
virtual production where the director can observe and assess an ac-
tor’s performance transferred to a digital creature as he is filming.

The proposed method is both robust and accurate since it combines
a global face prior to track the overall shape with local regressors to
produce the local detail. In doing so we present a number of novel
technical contributions, including (1) a generic model that describes
local detail on human faces and (2) an automatic technique to ex-
tract them such that they can be applied at runtime without inter-
ference, and (3) a novel local regressor that leverages the structure



Input [Garrido et al. 2013] ours
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Figure 12: Compared to previous offline techniques, such
as monocular [Garrido et al. 2013] or multi-view systems
[Beeler et al. 2011], the proposed method produces results of simi-
lar quality but in real-time.
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Figure 13: The method of Li et al. [2015] employs texture synthesis
to construct user specific blendshapes in an offline pre-processing
step. Applying texture synthesis to every pixel in the displacement
map is not only slow but also introduces noise for small radii r.
Increasing X reduces noise but attenuates detail intensity and in-
creasing the radius breaks the structure of the wrinkles.
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Figure 14: Strong illumination changes can cause inaccurate wrin-
kles if such illumination is not present in the training data. This
split-screen shows the same expression with directional light from
the front (left) and from above (right). The resulting wrinkles (also
shown in split-screen) essentially slide along the surface to follow
the shadow.

present in the data to achieve real-time performance.

Our method has a few limitations which open up for future re-
search. The optical flow employed to improve tracking accuracy
of the global model can fail when there is fast motion or motion
blur. While any introduced error will be bounded by the global
tracker and thus cannot cause the system to diverge, it might lead
to a subtle local shift in tracked texture. This could potentially be
addressed by relating the current frame back to the neutral expres-
sion, but so far we have not noticed a degradation of the final results
due to this. Another source of error for the flow would be chang-
ing illumination. Changing illumination and especially hard shad-
ows can also impact the local regressor. If the illumination during
runtime differs substantially from the illumination during wrinkle-
training, the resulting wrinkles can be inaccurate. We demonstrate
this drawback in Figure 14, which shows a performance under a
moving directional light. When the light comes from above, fore-
head wrinkles tend to be higher on the face than when the light
comes from the front, as the wrinkles essentially slide on the face
to follow the shadow. We expect that this problem would be allevi-
ated by expanding the training data either with more samples or by
synthetically relighting them. Another problem are (partial) occlu-
sions, which will confuse the system. However, once the occluder
is removed, it will quickly recover thanks to the robust global model
(please see the accompanying video for a demonstration). Finally,
with increasing quality and resolution of the capture hardware we
might soon be able to also capture the temporal behaviour of meso-
scopic detail such as pores with a consumer grade camera.

While most existing methods for facial capture so far aim for ei-
ther high quality or speed, we believe these two lines of research
are going to converge eventually. The proposed method presents a
substantial step towards this goal, providing real-time performance
capture at high visual quality for the first time. The system requires
only a single uncalibrated camera as input and is generic in that
it does not require any offline training or manual steps for a novel
user.
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