
Ray-Shooting Algorithms for Robotics

Yu Zheng and Katsu Yamane

Abstract Ray shooting is a well-studied problem in computer graphics. It also oc-
curs in robotics as a collision detection problem in 3-D object space or a contact
force optimization problem in 6-D wrench space. However, the ray-shooting algo-
rithms derived in computer graphics are limited to 3-D polyhedra and not suited for
general convex sets in high-dimensional space. This paper discusses several general
ray-shooting algorithms and their applications to these problems in robotics.

1 Introduction

In computational geometry and computer graphics, the ray-shooting problem deals
with computing the first intersection point on the surface of given objects by a query
ray and has been well studied for over four decades [1, 8, 13, 14]. In these efforts,
most of the practical algorithms are limited to 2-D or 3-D polytopes.

It has been discovered that several fundamental problems in robotics are equiv-
alent to a ray-shooting problem. Ong and Gilbert [10] proposed a unified distance
measure, called the growth distance, for both separated and penetrated objects and
applied it to collision-free path planning [11]. The growth distance computation
can be reduced to a ray-shooting problem. Liu et al. [6, 2, 7] cast several problems
in grasping, such as grasping force optimization and force-closure grasp test and
synthesis, into a ray-shooting problem. However, these ray-shooting problems deal
with the intersection of a ray with a set, which is specified by nonlinear paramet-
ric functions combined with complex operations on sets, such as the Minkowski
sum, rather than a 3-D polytope with given vertices or facets. Some of them are
also in higher-dimensional space than 3-D. Therefore, the ray-shooting techniques
in computational geometry and computer graphics are not suited here. The previ-
ous solutions to these problems relied on general-purpose optimization techniques

Yu Zheng, Katsu Yamane
Disney Research Pittsburgh, USA, e-mail: {yu.zheng, kyamane}@disneyresearch.com

1

2 Yu Zheng and Katsu Yamane

[10, 6] and suffered the low computational efficiency. Recently, two procedures were
proposed to more quickly solve such a ray-shooting problem [16, 18].

In this paper, we extensively discuss the algorithms for a general ray-shooting
problem and their applications in robotics. The original contributions include:

• A better stopping criterion for the algorithm [16] to enhance its accuracy.
• Generalization of the algorithm [18] to any case with guaranteed convergence.
• Discussion on a new algorithm and hybrid uses of these algorithms to gain higher

computational efficiency.
• Application of these ray-shooting algorithms to growth distance computation, in

addition to contact force optimization in the previous work [16, 18].

The rest of this paper is organized as follows. Sect. 2 defines the ray-shooting
problem and summarizes algorithms to be used in developing ray-shooting algo-
rithms in Sect. 3. Sects. 4 and 5 show their applications with numerical examples.
Conclusions and future work are included in Sect. 6. In the following discussion,
we will use many convex geometry concepts, for which we refer readers to [4].

2 Problem Statement and Preliminaries

In this section, we give a mathematical definition of the ray-shooting problem and
summarize two existing algorithms for minimum distances [3, 15].

2.1 Definition of the Ray-Shooting Problem

Let A be a compact convex set with nonempty interior in Rn, r a nonzero vector in
Rn, and R(r) the ray emanating from the origin 0 of Rn in the direction r, i.e.,

R(r),
{

λr ∈ Rn | λ ≥ 0
}
. (1)

The ray-shooting problem first needs to determine

1. whether A and R(r) intersect.

If A and R(r) intersect, then it is also aimed at computing

2. the farthest intersection point zA(r) of A with R(r) from the origin 0;
3. a set of affinely independent points in A, denoted by ZA(r), such that zA(r) can

be written as a convex combination of ZA(r);
4. the normal n of the hyperplane that passes through zA(r) and supports A.

In the algorithms discussed later to solve the ray-shooting problem, the support
function hA and the support mapping sA of A are often used, which are defined by

hA(u), max
a∈A

uT a, sA(u), argmax
a∈A

uT a. (2)

Ray-Shooting Algorithms for Robotics 3

(a)

b H
H'

s
() n

k
v
k

T

(b)

Fig. 1 Illustration of the GJK algorithm in 2-D space. (a) Iteration that leads vk to vA(b). (b)
Stopping criterion hA(nk)−nT

k vk < εGJK. H and H ′ are hyperplanes with normal nk passing vk and
sA(nk), respectively, and bounds vA(b) in the gap between them with the width of hA(nk)−nT

k vk.

2.2 Summary of the GJK Algorithm [3]

Let b be an arbitrary point in Rn. The purpose of this algorithm is to compute the
distance dA(b) between b and A and the closest point vA(b) in A to b, defined by

dA(b), min
a∈A

∥a−b∥, vA(b), argmin
a∈A

∥a−b∥. (3)

Since A is compact and convex, vA(b) exists and is unique. If b /∈ A, then dA(b)> 0
and the hyperplane H with normal b− vA(b) passing through vA(b) supports A at
vA(b), as depicted in Fig. 1a; otherwise dA(b) = 0 and vA(b) = b.

Both dA(b) and vA(b) can be computed by the GJK algorithm, as illustrated in
Fig. 1. It starts with any affinely independent set V0 in A and iterates by Vk+1 =
V̂k ∪{sA(nk)}, where V̂k is a minimal subset of Vk to represent vk (the closest point
in CH(Vk) to b) as its convex combination and nk is the unit vector from vk to
b. If hA(nk) > nT

k vk, then dCH(Vk+1)(b) < dCH(Vk)(b). Hence, dCH(Vk)(b) is strictly
decreasing with the iteration and converges to dA(b) while hA(nk)−nT

k vk < εGJK,
where εGJK is the termination tolerance. Then, vk converges to vA(b) and V̂k gives
an affinely independent set in A, denoted by VA(b), to represent vA(b) as its convex
combination. If b ∈ A, then vA(b) = b and b is a convex combination of VA(b).

2.3 Summary of the ZC Algorithm [15]

Let CO(A) denote the convex cone of A [4], which consists of all nonnegative com-
binations of A. This algorithm computes the distance dCO(A)(b) and the closest point
vCO(A)(b) between b and CO(A), defined similarly to (3) with A replaced by CO(A),
as illustrated in Fig. 2. It starts with a linearly independent set V0 in A and iterates
by Vk+1 = V̂k ∪{sA(nk)}, where V̂k is a minimal subset of Vk to represent vk (the

4 Yu Zheng and Katsu Yamane

Fig. 2 Illustration of the ZC algorithm in 3-D space. If b ∈ CO(A), then a linearly independent
subset of A, namely V1 here, is obtained to contain b in its convex cone.

closest point in CO(Vk) to b) as its positive combination and nk is the unit vec-
tor from vk to b. This iteration leads dCO(Vk)(b) to dCO(A)(b) and vk to vCO(A)(b)
while hA(nk) < εZC, where εZC is the termination tolerance. The final V̂k provides
a linearly independent set in A, denoted by VCO(A)(b), to represent vCO(A)(b) as its
positive combination. If b ∈ CO(A), then dCO(A)(b) = 0 and vCO(A)(b) = b, and b
is a positive combination of VCO(A)(b).

3 Ray-Shooting Algorithms

In this section, we discuss procedures to solve the ray-shooting problem and their
hybrid uses for higher efficiency. In general, each procedure generates a sequence
of points on R(r) approaching zA(r). Hence, the convergence of these procedures
can be easily proved by using the monotone-convergence principle [12].

3.1 A GJK-Based Procedure

A procedure based on the GJK algorithm to solve the ray-shooting problem was
proposed in [14, 16, 17]. It computes zA(r) by iterating a point bk on R(r) outside
of A, as depicted in Fig. 3a. Initially, b0 can be taken to be hA(r)r/rT r, which is the
intersection point of the supporting hyperplane H0 = H(r,sA(r)) of A with R(r) and
not in the interior of A. Then, we update the point bk by

bk+1 = bk −
dA(bk)

rT nk
r (4)

where dA(bk) and vA(bk) are the minimum distance and the closest point from A to
bk, respectively, which are computed by the GJK algorithm, and nk is the unit vector

Ray-Shooting Algorithms for Robotics 5

(a) (b)

Fig. 3 Illustration of the GJK-based ray-shooting algorithm in 2-D space. (a) Iteration. b0 is the
intersection point of H0 with R(r). H1 is the hyperplane with normal b0 −vA(b0) passing through
vA(b0) and intersects R(r) at b1, which is closer to zA(r) than b0. (b) Stopping criterion. Upper:
Although dA(b1) is small, this does not guarantee that b1 is close enough to and can be taken to
be zA(r). Lower: A better stopping criterion is that R(r) intersects CH(VA(b2)) (the green line
segment). Then, their intersection point b3 can be adopted as zA(r) and VA(b2) as ZA(r).

from vA(bk) to bk. The iteration (4) can be terminated with the conclusion that R(r)
does not intersect A if rT bk < max{−hA(−r),0}, or rT nk = 0 while dA(bk) ̸= 0, or
rT nk < 0 [17]. Or else, dA(bk) will decrease to zero and bk will approach zA(r).

Instead of the stopping criterion dA(bk) < ε used in [14, 16, 17], we verify
whether R(r) intersects CH(VA(bk)) or r is a nonnegative combination of VA(bk), as
explained in Fig. 3b. If so, we can compute their intersection point, which is equal
to bk+1 from (4) and contained in A, since CH(VA(bk)) is contained in the hyper-
plane Hk+1 = H(nk,vA(bk)). The hyperplane H ′

k+1 = H(nk,sA(nk)) supports A and
intersects R(r) at the point b′

k+1 = hA(nk)r/rT nk, which is outside of A. It is evi-
dent that zA(r) is between b′

k+1 and bk+1. The GJK algorithm stops iterating when
hA(nk)−nT

k vA(bk) < εGJK, which implies nT
k (b

′
k+1 −bk+1) < εGJK. From this we

can derive ∥zA(r)− bk+1∥ ≤ ∥b′
k+1 − bk+1∥ < εGJK∥r∥/rT nk. Therefore, we take

zA(r) = bk+1 and ZA(r) =VA(bk), as depicted in the lower figure of Fig. 3b.

3.2 An Internal Expanding (IE) Procedure

A preliminary version of this procedure was proposed in [18]. However, its con-
vergence was unclear in some rare singular situations. Here we solve this issue and
present a generalized version with guaranteed convergence.

Assume that we have a facet F0 in A such that R(r) passes through its interior. Let
Fk be a collection of facets in A and initially F0 = {F0}. In the following iteration,
Fk may comprise more than one facet, but R(r) intersects every facet in Fk at the
same point, which is on the face CH(Sk) shared by those facets and denoted by bk,

6 Yu Zheng and Katsu Yamane

F

R()r

s
A()n0b1==b2

F2
F3

(a)

R()rs
A()n1

F1b0

(b)

Fig. 4 Illustration of the IE ray-shooting algorithm in 3-D space. (a) F0 = {F0} and R(r) passes
through an interior point b0 of F0. Then, F+

0 = F0. Assume that R(r) happens to pass sA(n0). Then,
F1 = {F1,F2,F3}. Suppose that F2 is the facet in F1 closest to the origin and sA(n2) lies on the
different side of F2 or F3 from the origin. Then, F+

1 = {F2,F3} and F4 and F5 are generated to
replace F2 and F3. As a result, F2 = {F1,F4,F5}. (b) Suppose that F1 is the facet in F2 closest to the
origin and sA(n1) lies on the different side of any facet in F2 from the origin. Then, R(r) intersects
a new face, i.e., F6, at a point b3 closer to zA(r) than b2. As b3 is in the interior of F6, F3 = {F6}.

where Sk is the set of vertices of the face. Let ni be the unit normal to each facet
in Fk such that nT

i r > 0. Then nT
i bk is the distance from the origin to facet i in Fk.

We find facet i∗ in Fk whose distance from the origin is the minimum and compute
hA(ni∗) and sA(ni∗). If hA(ni∗)−nT

i∗bk > ε , we extract a sub-collection F+
k from Fk

such that nT
i sA(ni∗) > nT

i bk for any facet in F+
k , which implies that sA(ni∗) lies on

the different side of the facet from the origin. Let R be the collection of facets of all
facets in F+

k , which are ridges in Rn, and Ri the collection of facets of a facet in F+
k

that contain CH(Sk). Then, we will meet two situations, as depicted in Fig. 4a:

1. F+
k is equal to Fk: In this case, sA(ni∗) lies on the different side of every facet in

Fk from the origin. Then, R(r) intersects one of the facets formed by each ridge
in R\∪iRi with the point sA(ni∗) and the intersection point, which is assigned to
bk+1, is farther from the origin than bk. Hence, we reconstruct the facet collection
Fk+1 with the facets intersected by R(r) and the ridge collections Ri for each
facet in Fk+1 accordingly. Note that R(r) may pass through a common face of
some of the newly formed facets. In that case, Fk+1 consists of all such facets
and Sk+1 consists of vertices of the face.

2. F+
k is a proper sub-collection of Fk: In this case, we construct Fk+1 as follows.

First, Fk+1 contains Fk \F+
k . Besides, for each ridge in Ri that is not contained

in other Ri or shared by other facets in F+
k , we add the facet formed by the ridge

with the point sA(ni∗) to Fk+1. After doing this for every ridge collection Ri, we
obtain a new facet collection Fk+1. However, bk+1 and Sk+1 remain the same as
bk and Sk, respectively.

By the iteration in case 2, though bk and Sk do not change, the minimum distance
from the origin to the facets in Fk is increased. On the other hand, the minimum
distance is bounded above by the distance from the origin to the common face shared
by the facets in Fk. Hence, by repeating this iteration, case 1 will become true, and
bk will be updated with a new point closer to zA(r) (see Fig. 4b). As bk approaches
zA(r), the stopping condition hA(ni∗)−nT

i∗bk < ε will reach, where i∗ indicates the

Ray-Shooting Algorithms for Robotics 7

(a)

h ()
v

A ()rbCO()2

H

'

VCH(2)

z
A()r

r

b

s
A()n3

b2

n3

n3A b2

(b)

Fig. 5 Illustration of the ZC-based algorithm for ray-shooting in 2-D space. (a) It computes a
subset Vk of A in every iteration such that r is a positive combination of Vk −bk−1. Then bk is the
intersection point of CH(Vk) with R(r) and approaches zA(r) as the iteration proceeds. (b) The
iteration can be stopped by hA−bk (nk+1) < εZC, where nk+1 is the unit vector from vCO(A−bk)(r)
to r. Then the point bk and the hyperplane H with normal nk+1 passing through sA(nk+1) bounds
zA(r) between them, which implies that bk is close enough to zA(r).

facet in Fk closest to the origin. Then, we can derive ∥zA(r)−bk∥< ε∥r∥/nT
i∗r, and

the hyperplane H(ni∗ ,bk) supports A at zA(r) = bk. This procedure can handle the
situation that R(r) passes through a face of dimension lower than n−1 with ensured
convergence and generalizes the algorithm proposed in [18].

3.3 A ZC-Based Procedure

We propose a novel procedure based on the ZC algorithm, which iterates a point in
A towards zA(r). We first let b0 = 0 and compute dCO(A)(r) using the ZC algorithm.
Then, R(r) intersects A if and only if r ∈ CO(A) or equivalently dCO(A)(r) = 0.

If R(r) intersects A, the ZC algorithm gives dCO(A−bk)(r) = 0 and a set of linearly
independent points in A−bk, denoted by a1 −bk,a2 −bk, . . . ,aL −bk, such that

r =
L

∑
l=1

cl(al −bk) (5)

where al ∈ A and cl > 0 for all l. Let Vk = {a1,a2, . . . ,aL}, σ = ∑L
l=1 cl , and

bk+1 = bk +
1
σ

r =
L

∑
l=1

cl

σ
al . (6)

From (6) it follows that bk+1 is a point on R(r) and it is also a convex combination
of Vk, which implies that bk+1 ∈ A∩R(r), as depicted in Fig. 5a. Since σ > 0, bk+1

8 Yu Zheng and Katsu Yamane

is strictly farther from the origin and strictly closer to zA(r) than bk. By repeating
this iteration, bk+1 will converge to zA(r) and Vk will become ZA(r).

As bk approaches zA(r) and the boundary of A, the ZC algorithm in a cer-
tain iteration will terminate with hA−bk(nk+1) < εZC and dCO(A−bk)(r) > 0, where
nk+1 is the unit vector from vCO(A−bk)(r) to r, as depicted in Fig. 5b. The hyper-
plane H(nk+1,sA(nk+1)) supports A and intersects R(r) at b′ = hA(nk+1)r/rT nk+1.
Then, b′ and bk bound zA(r) between them and nT

k+1(b
′−bk) = hA−bk(nk+1)< εZC.

Therefore, we can derive ∥zA(r)−bk∥ ≤ ∥b′−bk∥< εZC∥r∥/rT nk+1. Furthermore,
H(nk+1,bk) can be regarded as a hyperplane of support to A at zA(r) = bk.

3.4 Hybrid Uses

3.4.1 A Bi-GJK Procedure

From Sect. 3.3, we know that whether R(r) intersects A can be easily determined
by the ZC algorithm and, if so, a point in A∩R(r) can be obtained, as depicted by
b1 in Fig. 5a, which we denote by b̂ here. On the other hand, b̌ = hA(r)r/rT r is
a point on R(r) outside the interior of A, as depicted by b0 in Fig. 3a. Apparently,
zA(r) lies on the line segment between b̂ and b̌, which allows us to use the bisection
method to compute zA(r). We call the GJK algorithm to compute the minimum
distance dA(b) between the midpoint b = (b̌+ b̂)/2 and A. If dA(b)> 0, i.e., b /∈ A,
then we can update b̌ with the point from (4) by setting bk = b and nk = (b −
vA(b))/∥b−vA(b)∥, which is a point on R(r) closer to zA(r) than b̌ but still outside
of A. Otherwise, we can replace b̂ by b. This procedure can stop as the GJK-based
procedure in Sect. 3.1, as shown in Fig. 3b, or once ∥b̌− b̂∥< ε .

3.4.2 A ZC-IE Procedure

The IE procedure can be much faster than the other two procedures if R(r) always
passes through the interior of a new facet in every iteration. In that case, the only
computation in an iteration is to determine the facet intersected by R(r) among n
new facets and record its vertices. By contrast, the GJK-based or ZC-based pro-
cedure needs to run the GJK or ZC algorithm in every iteration, whose computa-
tion cost is much higher. However, there is no guarantee that R(r) can always pass
through the interior of a facet. In case that R(r) happens to pass through only a
low-dimensional face shared by several facets, we have to compute and maintain a
facet collection and a ridge collection for each facet as discussed in Sect. 3.2, which
increases the computation cost of every iteration. To keep a relatively lower compu-
tation cost, instead we can call the ZC-based iteration as discussed in Sect. 3.3. If
Vk resulting from the ZC algorithm consists of n points, which implies that CH(Vk)
is a facet in A and R(r) passes through its interior, then we can switch back to the
IE procedure; otherwise, we continue the ZC-based iteration.

Ray-Shooting Algorithms for Robotics 9

A
A()

B

n

0

o

p
A

B()o

p
B

p
A

p
B

n

z

AB

(a)

A

B

A()o

p
A

B()on
p
B

AB

n

z
p
A

p
B

0

(b)

Fig. 6 Illustration of reducing the growth distance between two (a) separated or (b) penetrated
convex sets A and B to a ray-shooting problem in 2-D space.

4 Application to Collision Detection

Determining the status (i.e., separation, contact, or penetration) between two objects
is a fundamental problem in robotics and other fields, such as computer animation
and haptics. To do this, a natural way is to compute the minimum Euclidean distance
between them [3, 5], but the distance computation for penetrated objects is difficult
due to the existence of many local minima. To overcome this trouble and have a uni-
fied distance measure for both separated and penetrated objects, the growth distance
was proposed [10]. So far, however, there is no efficient algorithm to compute it,
which significantly impeded its application. In this section, we show that the com-
putation of growth distance can be reduced to a ray-shooting problem and present
numerical results obtain using the aforementioned algorithms.

4.1 Computation of the Growth Distance

Assume that A is a compact convex set with nonempty interior in Rn, which rep-
resents an object and can be specified by triangles meshes or parametric functions,
as long as its support function and mapping can be computed. The object A in the
global coordinate frame can be expressed as

A = pA +RA(A0) (7)

where pA ∈ Rn is an interior point of A indicating its position with respect to the
global coordinate frame and RA ∈ SO(n) denotes the orientation of A, and A0 is the
description of the object in the local coordinate frame attached at pA.

As depicted in Fig. 6, the growth model of A is defined by

A(σ), pA +σRA(A0) (8)

where σ ≥ 0. Let B be another object and B(σ) its growth model defined in the same
way as A(σ). The growth function of the object pair (A,B) is defined by [10]

10 Yu Zheng and Katsu Yamane

g(A,B), σ∗ = min
A(σ)∩B(σ)̸= /0, σ≥0

σ . (9)

The growth function (9) computes the minimum scale factor σ∗ such that A(σ∗)
and B(σ∗) are not strictly separated from each other, which implies that A(σ∗) just
contacts B(σ∗), as shown in Fig. 6. Then, we can deduce that A and B separate if
σ∗ > 1, A and B contact if σ∗ = 1, and A and B penetrate if σ∗ < 1. Since A(σ)∩
B(σ) ̸= /0 is equivalent to 0 ∈ A(σ)−B(σ), from (8) we can rewrite (9) as

g(A,B) = min
1
σ (pB−pA)∈∆AB, σ≥0

σ (10)

where ∆AB =RA(A0)−RB(B0). Equation (10) implies that the calculation of g(A,B)
is a ray-shooting problem between ∆AB and R(pB −pA), as depicted in Fig. 6. It can
be deduced that g(A,B) = ∥pB −pA∥/∥z∆AB(pB −pA)∥. Furthermore, from the set
Z∆AB(pB −pA) and the normal n of the supporting hyperplane of ∆AB at z∆AB(pB −
pA), we can derive the contact point between A(σ∗) and B(σ∗) and the normal at
the contact. Due to the page limit, we omit this derivation here.

4.2 Numerical Examples

We implement the aforementioned ray-shooting algorithms in MATLAB on a laptop
with an Intel Core i7 2.67GHz CPU and 3GB RAM and apply them to computing
g(A,B) between an ellipsoid and a truncated cone, as depicted in Fig. 7. The surface
of an ellipsoid or truncated cone is specified by parametric functions, but their sizes
and relative positions and orientations are randomly generated. First, we set the two
objects to be in contact with each other (Fig. 7a) and shrink (Fig. 7b) or enlarge
(Fig. 7c) them by 2 times such that they become separated or penetrated. Then, the
true values of g(A,B) are 1, 2, and 0.5 in the three cases (contact, separate, and pen-
etrate), respectively. We generate 3000 such pairs of ellipsoids and truncated cones
for each case and report the average absolute error between the computed g(A,B)
and the true values and the average CPU running time of each algorithm, as exhib-
ited in Tables 1 and 2, respectively. As a comparison with the existing approach, we
also write g(A,B) as a convex programming problem as in [10] and solve it using the
active-set algorithm provided by the Optimization Toolbox of MATLAB with default
settings. Fig. 8a shows the average error in g(A,B) computed by the ray-shooting al-
gorithms versus their termination tolerance for the three cases. Finally, we randomly
generate 100 ellipsoids and truncated cones and compute g(A,B) between any two
of them. Then, the average running time of each algorithm is listed in the last row
of Table 2. Fig. 8b plots the running time versus the termination tolerance. Table 2
also displays the number of iterations of each algorithm in the above tests.

From the numerical results, we can see that the ray-shooting algorithms are as
accurate as the active-set algorithm in MATLAB and their running times are one or-
der of magnitude shorter. It is no surprise that the result accuracy can be improved

Ray-Shooting Algorithms for Robotics 11

(a) (b) (c)

Fig. 7 Growth distance computation between an ellipsoid and a truncated cone. (a) An ellipsoid
contacting the side surface (upper), one edge (middle), or one base (lower) of a truncated cone.
Then g(A,B) = 1. (b),(c) An ellipsoid and a truncated cone obtained by shrinking or enlarging
those in (a) by 2 times about their centroids. Then g(A,B) = 2 or g(A,B) = 0.5.

2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

10

−log
10

 ε

−
lo

g 10
 o

f e
rr

or

GJK−based
IE
ZC−based
Bi−GJK
ZC−IE

(a)

2 3 4 5 6 7 8
0

1

2

3

4

5

6

−log
10

 ε

C
P

U
 ti

m
e

(m
s)

GJK−based
IE
ZC−based
Bi−GJK
ZC−IE

(b)

Fig. 8 Absolute error and CPU time versus the termination tolerance ε (εGJK = εZC = ε). (a)
Absolute error in the computed g(A,B). (b) CPU running time of each ray-shooting algorithm.

by simply reducing the termination tolerance. It should be noted that the computa-
tion costs for one iteration of these algorithms are different. Although the number of
iterations of the IE or ZC-IE procedure is bigger than or close to those of the other
algorithms, they are still faster because the computation in each of their iteration is
much simpler. Moreover, the running time of the IE or ZC-IE procedure increases
much slower as the termination tolerance decreases.

12 Yu Zheng and Katsu Yamane

Table 1 Absolute error of each algorithm from the ground truth g(A,B). (εGJK = εZC = ε = 10−5)

GJK-based IE ZC-based Bi-GJK ZC-IE Active-Set
contact 9.62×10−7 2.91×10−6 1.24×10−6 1.68×10−7 9.10×10−7 5.14×10−7

separate 3.92×10−6 5.92×10−6 5.10×10−6 4.60×10−6 3.52×10−6 5.42×10−6

penetrate 2.42×10−7 1.51×10−6 4.82×10−7 7.04×10−7 2.18×10−7 4.85×10−7

Table 2 Average CPU running time (in milliseconds) and number of iterations (rounded up to the
next highest integer in parentheses) of each algorithm to compute g(A,B). (εGJK = εZC = ε = 10−5)

GJK-based IE ZC-based Bi-GJK ZC-IE Active-Set
contact 2.05 (2) 1.48 (15) 2.51 (20) 1.95 (5) 1.16 (17) 12.77 (9)
separate 1.85 (2) 1.43 (15) 2.36 (19) 1.60 (5) 1.08 (16) 13.23 (10)
penetrate 2.23 (2) 1.44 (15) 2.61 (20) 2.14 (5) 1.17 (18) 13.23 (10)
random 2.08 (2) 1.28 (17) 2.01 (21) 2.02 (6) 0.97 (18) 20.05 (16)

5 Application to Contact Force Optimization

5.1 Problem Description

Consider a robot system making m contacts with the environment, such as a multi-
fingered robot hand grasping an object or a legged robot standing on the ground. To
maintain the whole system in equilibrium, the resultant wrench wres from all contact
forces must counterbalance the external wrench wext (sum of the other wrenches)
[9], which can be formulated with respect to the global coordinate frame as

wres =
m

∑
i=1

Gifi =−wext (11)

where Gi =
[ni oi ti 0

pi×ni pi×oi pi×ti ni

]
∈ R6×4, pi is the position of contact i, and ni, oi

and ti are the unit normal and tangent vectors at contact i in the global coordinate
frame and satisfy ni = oi × ti. The contact force fi has four components, i.e., three
pure force components fi1, fi2, fi3 along ni, oi, ti, respectively, and a spin moment
fi4 about ni. To maintain a stable contact, fi must stay within the friction cone [9]

Fi ,
{

fi ∈ R4 | fi1 ≥ 0,

√
f 2
i2 + f 2

i3

µ2
i

+
f 2
i4

µ2
si
≤ fi1

}
(12)

where µi and µsi are the tangential and torsional friction coefficients, respectively.
A major problem in the research of multi-contact robotic systems is to determine

whether there exist feasible contact forces fi ∈ Fi, i = 1,2, . . . ,m to resist a given
external wrench as (11) and compute the minimum contact forces if so. The overall
contact force magnitude is often measured by

σL1 ,
m

∑
i=1

fi1 or σL∞ , max
i=1,2,...,m

fi1. (13)

Ray-Shooting Algorithms for Robotics 13

(a) (b)

Fig. 9 Examples for contact force optimization. (a) Four contacts grasping a sphere. (b) Four
contacts grasping an ingot (also used in [16, 18]).

As described in [6, 16, 18], this problem can be reduced to a ray-shooting problem
between the ray R(−wext) and the set

WL1 , CH
(m∪

i=1

Wi

)
or WL∞ , CH

(m⊕
i=1

Wi

)
(14)

where Wi = Gi(Ui) and Ui ,
{

fi ∈R4 | fi1 = 1, (f 2
i2+ f 2

i3)/µ2
i + f 2

i4/µ2
si = 1

}
. It can

be derived that the minimum values of σL1 and σL∞ equal ∥wext∥/∥zWL1
(−wext)∥

and ∥wext∥/∥zWL∞ (−wext)∥, respectively. Also, the corresponding contact forces can
be computed through the computation of ZWL1

(−wext) or ZWL∞ (−wext). The detailed
derivation can be found in [6, 16, 18] and is omitted here due to the page limit.

As an extension to the previous work [6, 16, 18], we would like to point out here
that the ray-shooting algorithms also work in the case where the overall contact
force magnitude is measured and needs to be minimized as

σ̄L1 ,
m

∑
i=1

∥fi∥ or σ̄L∞ , max
i=1,2,...,m

∥fi∥ (15)

where ∥fi∥ ,
√

f 2
i1 + f 2

i2 + f 2
i3 +(µ2

i /µ2
si) f 2

i4 is the magnitude of fi rather than its

normal component fi1 used in (13). To do this, we only need to redefine Ui ,
{

fi ∈
Fi | f 2

i1+ f 2
i2+ f 2

i3+(µ2
i /µ2

si) f 2
i4 = 1

}
. The derivation and the test of the ray-shooting

algorithms to compute minimum contact forces in terms of a different force magni-
tude measure will be included in a complete version of this paper.

5.2 Numerical Examples

We first verify the accuracy of the ray-shooting algorithms applied to the contact
force optimization with the example shown in Fig. 9a, where four contacts are lo-
cated symmetrically on a sphere and have the same elevation angle α . Then, it
can be derived that the minimum normal contact force for holding the sphere is

14 Yu Zheng and Katsu Yamane

Table 3 Relative error of each algorithm to minimize σL1 .

λ GJK-based IE ZC-based Bi-GJK ZC-IE Active-Set
10−1 6.86×10−16 4.93×10−6 0 0 0 3.63×10−9

10−2 1.35×10−14 1.98×10−6 0 1.83×10−16 0 1.65×10−6

10−3 1.38×10−13 5.38×10−6 6.88×10−14 6.91×10−14 6.88×10−14 2.88×10−8

10−4 0 2.84×10−6 6.89×10−13 6.89×10−13 6.89×10−13 3.92×10−3

10−5 6.89×10−12 infeasible infeasible infeasible infeasible 1.09×10−1

10−6 infeasible infeasible infeasible infeasible infeasible infeasible

G/4(µ cosα − sinα) for each contact and no feasible contact forces exist to do so
if α ≥ tan−1 µ , where G is the gravity of the sphere and µ is the tangential fric-
tion coefficient. Thus, the minimum values of σL1 and σL∞ are G/(µ cosα − sinα)
and G/4(µ cosα − sinα), respectively. Here, we take G = 10 N, µ = 0.2, and
α = (1 − λ) tan−1 µ for λ = 10−1,10−2, . . . ,10−6, respectively. The termination
tolerance is 10−5 for each ray-shooting algorithm. For comparison, we also for-
mulate the contact force optimization as a convex programming problem and solve
it using the active-set algorithm provided by MATLAB, for which the maximum
number of function evaluations and the maximum number of iterations are both set
to be sufficiently big such that its result can be comparably accurate. Tables 3 and
4 display the relative error in the result of each algorithm compared with the true
minimum value of σL1 or σL∞ . It is shown that, in this particular case, the results of
the ray-shooting algorithms except the IE procedure are highly accurate. Actually,
they compute the minimum contact forces by evaluating the support mapping of WL1
or WL∞ only once, which can be done analytically as discussed in [15], and the error
in their results is just the round-off error. As the elevation angle α of each contact
approaches tan−1 µ , some algorithms report that the problem becomes infeasible.
This is because the termination tolerance ε is too big for those cases. To relieve this
numerical issue and obtain a more accurate result, we have to choose a smaller ε .

We also verify the efficiency of these algorithms with the grasping example used
in [16, 18], as shown in Fig. 9. We compute contact forces with minimum σL1 or
σL∞ with respect to 103 random wext and report the average CPU running time and
number of iterations of each algorithm, as exhibited in Table 5. It can be seen that
the ray-shooting algorithms are several times faster than the active-set algorithm in
MATLAB. In particular, the IE and ZC-IE procedures are more efficient than the
other ray-shooting algorithms due to the much simpler computation in their itera-
tions, though they need more iterations. Also, their running times rise slower along
with the decrease of the termination tolerance, as revealed in Fig. 10. Furthermore,
the ZC-IE procedure is even faster than the IE procedure because it saves the com-
putation for maintaining the facet and ridge collections, which is only required on
the rare occasion that the ray passes through a face of low dimension. In our imple-
mentation of algorithms, the IE and ZC-IE procedures have the same initialization.
Then, the difference in their numbers of iterations shown in Table 5 implies that the
occasion happens and causes the two procedures to follow different iteration steps.

Ray-Shooting Algorithms for Robotics 15

Table 4 Relative error of each algorithm to minimize σL∞ .

λ GJK-based IE ZC-based Bi-GJK ZC-IE Active-Set
10−1 0 6.53×10−6 0 0 0 7.50×10−9

10−2 0 5.49×10−6 0 6.96×10−15 0 1.18×10−8

10−3 1.38×10−13 5.19×10−6 1.38×10−13 1.38×10−13 1.38×10−13 5.63×10−6

10−4 0 5.39×10−6 0 0 0 9.65×10−5

10−5 1.38×10−11 infeasible infeasible infeasible infeasible 3.00×10−4

10−6 1.50×10−16 infeasible infeasible infeasible infeasible 1.70×10−3

Table 5 Average CPU running time (in milliseconds) and number of iterations (rounded up to
the next highest integer in parentheses) of each algorithm for contact force optimization.

GJK-based IE ZC-based Bi-GJK ZC-IE Active-Set
minimize σL1 13.80 (4) 6.50 (33) 10.22 (26) 12.11 (8) 4.57 (30) 38.94 (24)
minimize σL∞ 22.23 (4) 10.55 (54) 18.27 (47) 19.25 (10) 7.93 (53) 47.36 (31)

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

−log
10

 ε

C
P

U
 ti

m
e

(m
s)

GJK−based
IE
ZC−based
Bi−GJK
ZC−IE

(a)

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

−log
10

 ε

C
P

U
 ti

m
e

(m
s)

GJK−based
IE
ZC−based
Bi−GJK
ZC−IE

(b)

Fig. 10 CPU running time versus the termination tolerance ε (εGJK = εZC = ε) of each ray-
shooting algorithm to minimize (a) σL1 or (b) σL∞ .

6 Conclusions and Future Work

In this paper, we discussed general ray-shooting algorithms and their applications
in robotics. We first described three individual procedures and their hybrid uses to
compute the ray-shooting problem. They do not use any existing optimization tech-
niques and their implementation is very straightforward. Then, their performance
qualities, including the computational accuracy and efficiency, have been verified
and compared with each other in the application to growth distance computation
and contact force optimization. Numerical examples show that the ray-shooting al-
gorithms provide better ways to solve these fundamental problems in robotics than
some existing methods. Particularly, the ZC-IE procedure, which is newly proposed
in this paper, is notably faster than the other ray-shooting algorithms and able to
compute results at the same level of accuracy.

Because of the page limit, we could not go into the implementation details of
these algorithms and leave it for future publications. As future work, we also would
like to apply the algorithms to a dynamic environment, such as collision detection
for moving objects or contact force optimization with respect to a time-varying
external wrench. Then, by taking advantage of time coherence, they may achieve
constant time complexity. We will conduct more experiments on the algorithms,

16 Yu Zheng and Katsu Yamane

especially in dynamic environments, and report their results in a complete version
of this paper. By doing this, we expect to give a comprehensive evaluation of their
performance and figure out how to choose an algorithm for a specific problem. In
addition, we are exploring other applications of these ray-shooting algorithms.

References

1. P. K. Agarwal and J. Matous̆ek. Ray shooting and parametric search. In Proceedings of the
24th ACM Symposium on Theory of Computing, pages 517–526, 1992.

2. D. Ding, Y.-H. Liu, Y. Wang, and S. G. Wang. Automatic selection of fixturing surfaces and
fixturing points for polyhedral workpieces. IEEE Transactions on Robotics and Automation,
17(6):833–841, 2001.

3. E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing the distance
between complex objects in three-dimensional space. IEEE Transactions on Robotics and
Automation, 4(2):193–203, 1988.

4. S. R. Lay. Convex Sets and their Applications. John Wiley & Sons, New York, NY, USA,
1982.

5. M. Lin and J. Canny. A fast algorithm for incremental distance calculation. In Proceedings
of the IEEE International Conference on Robotics and Automation, pages 1008–1014, Sacra-
mento, CA, 1991.

6. Y.-H. Liu. Qualitative test and force optimization of 3-D frictional form-closure grasps using
linear programming. IEEE Transactions on Robotics and Automation, 15(1):163–173, 1999.

7. Y.-H. Liu, M.-L. Lam, and D. Ding. A complete and efficient algorithm for searching 3-D
form-closure grasps in the discrete domain. IEEE Transactions on Robotics, 20(5):805–816,
2004.

8. J. Matoušek and O. Schwarzkopf. On ray shooting in convex polytopes. Discrete Computa-
tional Geometry, 10(1):215–232, 1993.

9. R. M. Murray, Z. X. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manipula-
tion. CRC Press, Boca Raton, FL, USA, 1994.

10. C. J. Ong and E. G. Gilbert. Growth distance: New measures for object separation and pene-
tration. IEEE Transactions on Robotics and Automation, 12(6):888–903, 1996.

11. C. J. Ong and E. G. Gilbert. Robot path planning with penetration growth distance. Jounral
of Robotic Systems, 15(2):57–74, 1998.

12. W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York, NY, USA, third
edition, 1976.

13. L. Szirmay-Kalos, V. Havran, B. Balázs, and L. Szécsi. On the efficiency of ray-shooting
acceleration schemes. In Proceedings of the Spring conference on Computer Graphics, pages
97–106, Budmerice, Slovakia, 2002.

14. G. van den Bergen. Ray casting against general convex objects with application to continuous
collision detection. http://www.dtecta.com, 2004.

15. Y. Zheng and C.-M. Chew. Distance between a point and a convex cone in n-dimensional
space: computation and applications. IEEE Transactions on Robotics, 25(6):1397–1412, 2009.

16. Y. Zheng and C.-M. Chew. A numerical solution to the ray-shooting problem and its applica-
tions in robotic grasping. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 2080–2085, Kobe, Japan, May 2009.

17. Y. Zheng, C.-M. Chew, and A. H. Adiwahono. A GJK-based approach to contact force fea-
sibility and distribution of multi-contact robots. Robotics and Autonomous Systems, 59(3-
4):194–207, 2011.

18. Y. Zheng, M. C. Lin, and D. Manocha. A fast n-dimensional ray-shooting algorithm for
grasping force optimization. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 1300–1305, Anchorage, Alaska, May 2010.

