
VideoSnapping: Interactive Synchronization of Multiple Videos

Oliver Wang∗, Christopher Schroers∗, Henning Zimmer∗, Markus Gross∗†, Alexander Sorkine-Hornung∗
∗Disney Research Zurich, †ETH Zurich

(a) (b) (c)

Figure 1: Four videos are taken of the same scene at different times from roughly similar camera trajectories (a). Spatiotemporal alignment
greatly simplifies complex video editing tasks. Here, we removed the people from all video clips with a simple median filter (b). Our method
efficiently finds a nonlinear temporal warping, synchronizing multiple videos by computing paths in a cost matrix (c) above. This is visualized
by the squeezing of clips in the timeline (c) below, resulting in an intuitive, interactive video alignment tool.

Abstract

Aligning video is a fundamental task in computer graphics and vi-
sion, required for a wide range of applications. We present an in-
teractive method for computing optimal nonlinear temporal video
alignments of an arbitrary number of videos. We first derive a
robust approximation of alignment quality between pairs of clips,
computed as a weighted histogram of feature matches. We then find
optimal temporal mappings (constituting frame correspondences)
using a graph-based approach that allows for very efficient evalu-
ation with artist constraints. This enables an enhancement to the
“snapping” interface in video editing tools, where videos in a time-
line are now able snap to one another when dragged by an artist
based on their content, rather than simply start-and-end times. The
pairwise snapping is then generalized to multiple clips, achieving
a globally optimal temporal synchronization that automatically ar-
ranges a series of clips filmed at different times into a single consis-
tent time frame. When followed by a simple spatial registration, we
achieve high quality spatiotemporal video alignments at a fraction
of the computational complexity compared to previous methods.
Assisted temporal alignment is a degree of freedom that has been
largely unexplored, but is an important task in video editing. Our
approach is simple to implement, highly efficient, and very robust
to differences in video content, allowing for interactive exploration
of the temporal alignment space for multiple real world HD videos.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.4.8 [Image Processing and
Computer Vision ]: Scene Analysis—Time-varying imagery;

Keywords: Video Editing, Alignment, Synchronization

Links: DL PDF WEB

1 Introduction

Most tasks related to handling or manipulating multiple video clips
involve some form of alignment. Exemplary applications include
compositing multiple takes in movie production and visual ef-
fects [Rüegg et al. 2013], video mosaicking and stitching [Agar-
wala et al. 2005], color grading, action recognition and video re-
trieval [Jiang et al. 2007], summarization [Ngo et al. 2005], and
HDR video [Kang et al. 2003].

The majority of existing solutions focus on accurate spatial align-
ment, i.e., computing sparse correspondences or dense mappings
between individual frames of multiple video clips. The necessary
temporal alignment required for successful spatial matching is gen-
erally assumed to be available, e.g., as a pre-specified offset com-
puted using global timecodes like LTC, genlock, or audio [Shrestha
et al. 2007; Bryan et al. 2012].

However, in many of the above mentioned scenarios, explicit syn-
chronization signals may not be available. In practice, a temporal
ordering and alignment of multiple clips often has to be established
manually using video editing software, where clips are typically
represented as bars that can be dragged and positioned relative to
each other on a global timeline. The assistance that such tools pro-
vide the artist is typically limited to snapping video clips at start-
and endpoints, or at pre-specified markers.

The basic motivation for our work is to enable content-based snap-
ping to any location where the video clips share similar content.
But instead of simple temporal offsets or linear time scaling, we
are interested in finding general nonlinear time warps that globally
optimize the matching quality between multiple input video clips.
Intuitively, we would like to temporally “squeeze-and-stretch” the
input clips so that at any point in time their visual similarity is max-
imized. Figure 1c shows an example of such a temporal deforma-
tion, visualized as a literal stretching of the height of the clips in the
timeline.

http://doi.acm.org/10.1145/2601097.2601208
http://portal.acm.org/ft_gateway.cfm?id=2601208&type=pdf
http://www.disneyresearch.com/project/videosnapping/


As potentially many such alignments exist, and only a certain
amount of temporal warping is visually acceptable, our method al-
lows the artist to interactively and intuitively explore the space of
alignments and define temporal constraints with a simplicity that is
comparable to the basic snapping known from existing video edit-
ing tools.

For each pair of input clips our method computes a cost matrix,
whose values represent a robust metric of spatial alignment qual-
ity. A path through this cost matrix gives us a set of corresponding
frames in the two respective videos with implicit temporal conti-
nuity. We compute alignments as constrained, normalized shortest
paths using a modified version of Dijkstra’s algorithm that allows
clips to be aligned with only partial temporal and spatial overlap.
Desired temporal mappings can then be interactively updated given
an artist’s constraints, e.g., when the artist drags a clip to a preferred
temporal position, or when changing distortion limits. We addition-
ally discuss possible parameterizations of these mappings that can
be used to control warping effects. For the alignment of multiple
video clips, we describe a graph-based solution based on an effi-
cient minimum spanning tree that places all video clips aligned on
a single global time axis, and is updated in real-time according to
the artist’s interaction.

Besides interactive video alignment, we demonstrate novel applica-
tions such as the automatic arranging of a set of clips of the same
or similar events. We also show how our method can be used for
synchronizing multiple cameras, aligning motion capture data, and
improving the results of existing spatial alignment algorithms.

2 Prior Work

When addressing video alignment, a natural approach is to extend
the broad range of literature on image alignment. The latter is a
very well-studied problem in the computer vision community in the
context of motion estimation (optical flow) [Baker et al. 2011] and
stereo correspondence estimation [Scharstein and Szeliski 2002].
However, when aligning frames between videos, further challenges
arise. For one, if we align videos taken from different camera trajec-
tories and at different times, the scene content and appearance may
vary greatly due to the change in perspective, moving scene content
and lighting differences. Thus frames to align can have a arbitrar-
ily different appearance, violating the basic assumptions of many
image alignment methods. Some techniques have been proposed
that address these issues directly for images [Baker and Matthews
2004]. More recently, promising results have been shown using ro-
bust pixel descriptors [Liu et al. 2011] or content adaptive weight-
ing functions [Yücer et al. 2012] but these methods have focused
on recognition and editing tasks where some degree of inaccuracy
in the alignment is still tolerable. Even more important, is the ad-
ditional dimension of time in video. Slight alignment errors that
might be invisible in still images are generally much more notice-
able in video due to our attention to temporal changes.

Basic temporal alignment, i.e., finding the closest frames between
two or more videos, has been studied in the field of human behavior
analysis where one needs to align similar human actions to study
similarities and differences. Most methods are based on dynamic
time warping (DTW), with extensions to improve efficiency and to
accommodate various sensor modalities like skeleton tracking or
accelerometer data [Zhou and la Torre 2009; Zhou and la Torre
2012]. Rao et al. [2003] perform DTW-based video alignment
using estimated 3D point trajectories. As this relies on an accu-
rate tracking of image features over time and cameras with a fixed
(rigid) setup, application to real world filming scenarios is an issue.
This work also considers only temporal frame-to-frame alignment,
leaving out spatial alignment.

In addition to temporal alignment, most applications however also
require computing spatial alignment. Spatial alignment establishes
pixel correspondences between temporally aligned frames, a basic
requirement for any compositing operation, e.g. blending. One of
the first methods that tackled the problem of spatiotemporal align-
ment was proposed by Caspi and Irani [2002], which computes an
affine temporal warping and a fixed spatial homography per video.
Affine temporal warps are, however, not suitable for general align-
ment scenarios with unconstrained camera motion and scene con-
tent, and fixed homographies cannot compensate for depth variation
or relative change in camera placement. The same limitations ap-
ply to the later works [Pádua et al. 2010; Ukrainitz and Irani 2006]
which also assume fixed or jointly moving cameras. Notably, the
alignment of Pádua et al. [2010] can handle more than two videos,
however, it does so for linear temporal mappings only. Li and Chel-
lappa [2010] allow for nonlinear time warps but require fixed time
spans and full video overlap.

Targeting accurate spatiotemporal alignment for general scenarios,
Sand and Teller [2004] proposed a method that can handle vary-
ing scene content and arbitrary camera configurations. While their
main contribution is a very robust spatial alignment, they also pro-
pose an adaptive search algorithm that finds the frames that best
align temporally. They achieve impressive results, but their ap-
proach is computationally intense, requiring several minutes per
second of video, and only considers pairs of videos. Diego et
al. [2011; 2013] and Evangelidis and Bauckhage [2013] also pro-
pose methods for spatiotemporal alignment that leverage similar
frame-to-frame cost matrices. The former performs an expensive
MAP inference, or relies on GPS information for robustness, while
the latter computes quad descriptors and finds a multiscale spa-
tiotemporal mapping by dynamic programming. Both approaches
also assume that one sequence is contained entirely within the other,
and are limited in the types of temporal and spatial warps allowed;
as such they are not suitable for our main application scenarios.

In contrast to all above approaches, our method enables flexible,
artist directed nonlinear temporal warping of multiple videos at in-
teractive rates. All of these differences are necessary criteria for
practical usage in a video editing framework where instant feed-
back is critical.

3 Synchronizing Two Videos

In this section, we first propose a method for temporally synchro-
nizing two videos v1 and v2, before generalizing the concepts to
multiple videos (Section 4). We begin by defining the requirements
that have to be fulfilled.

Requirements In order to be useful in a video editing context, it
is essential to support partial overlap of video clips (see Figure 1c),
as solutions that require one video to be contained entirely in the
other are not practical. Additionally the method should be symmet-
ric, i.e., aligning v1 and v2 or v2 and v1 should result in the same
set of frame-correspondences.

Another essential aspect for any video editing tool is interactivity.
In our case this means that the artist should be able to specify a pair
of frames that should be in temporal alignment. This is achieved by
dragging clips in a timeline-style interface similar to existing video
editing tools, s.t. frames that should be in correspondence line up
under the current time indicator bar (vertical red line in Figure 1c).
From an artist’s perspective, the most helpful and innovative func-
tionality required is that clips automatically snap into an optimal
temporal alignment within a vicinity of a specified alignment con-
straint.



Frame 100 Frame 450
R

ef
er

en
ce

L
in

ea
r

N
on

lin
ea

r

(a) (b)

Figure 2: A linear path (red line in the cost matrix shown in (a))
is unable to model differences in camera motion. By aligning the
beginning of a sequence (left column, above), large parallax effects
occur towards the end (right column, above). Nonlinear snapping
matches the full range of motion (b), better synchronizing the cam-
era positions at each frame. This can be seen in the visibly reduced
parallax differences of the bench (inset), which then makes the spa-
tial alignment a much easier task.

Additionally, the degree of temporal warping that is allowed may
change depending on the context. Therefore, the artist should be
able to control the limits of temporal distortion, preventing or allow-
ing effects such as backwards motion, pausing, or playing videos at
high speed.

Notation We use subscripts to denote the video index, while argu-
ments correspond to frame indices, e.g., vi(j) denotes the jth frame
of video i where j ∈ [1...Ni] andNi is the number of frames of the
ith video sequence. Our goal is to find a simple curve (i.e., without
self intersections) p : R → R2, where p(t) = (p1(t), p2(t)) asso-
ciates a global time t with two corresponding frames v1(p1(t)) and
v2(p2(t)).

As we allow both object and camera motion to be differ-
ent, determining a constant temporal offset between two videos,
p(t) = (t, t+ b), or linear transformation, p(t) = (t, a · t+ b),
will not allow for a good temporal synchronization in many cases.
Instead, we find a constrained nonlinear mapping, allowing for vari-
ation in the timing of both scene content and camera trajectory. Fig-
ure 2 shows the difference between a linear and nonlinear mapping.

We now describe how we compute the mapping p as a continuous
temporal warp that maximizes the expected spatial alignment, while
adhering to constraints. First, a cost matrix is constructed that ap-
proximates alignment scores for pairs of frames, and then this cost
matrix is used to compute the unknown mapping p.

3.1 Cost Matrix

As the basis of our method, we need a robust estimate of the align-
ment quality for all pairs of frames. We observe that two frames
are more likely to be “alignable” if they contain a large number
of similar features. Using this concept, we compute a histogram
from feature matches from v1 to v2 and vice versa. Each feature
match contributes to one bin of the histogram based on the frames
that those features come from. Subsequently, we transform the his-
togram into a cost matrix C ∈ RN1×N2 , in which each entry cjk
specifies a cost for aligning a pair of frames (v1(j),v2(k)).

More formally, we consider a video and the set of all features found
in all of its frames. We denote the lth feature of the ith video by
fi(l). It contains the image space coordinate xi(l) ∈ R2, the frame
number zi(l) ∈ [1 . . . Ni] and a descriptor di(l) ∈ Rd. We gen-
erally use SIFT feature descriptors [Lowe 1999], where d = 128.
However, the choice of descriptor can be made based on the spe-
cific application. In Section 5, we discuss other potential frame
descriptors.

We then build a set of matches M ⊂ N2 by finding the nearest
neighbor of each feature f1(l) in the set of all features from the
second video and vice versa, based on the L1 distance of their de-
scriptors. A match (a, b) ∈ M indicates that f1(a) matches to
f2(b). For a pair of frames v1(j) and v2(k), we write Mjk as the
set of all matches (a, b) ∈ M such that z1(a) = j and z2(b) = k,
that is, where a feature in frame j matches to a feature in frame k.

Besides L1 descriptor difference, we also consider image space
distance and prefer matches that are close in image space (which
generally lead to more reliable spatial alignment). The affinity his-
togram H has entries

hjk =
∑

(a,b)∈Mjk

ρd (‖d1(a)− d2(b)‖) ρs (‖x1(a)− x2(b)‖) . (1)

We use a common decaying weighting function that gives a higher
weight to closer matches

ρw(x) = exp(−w · x), (2)

where ρd and ρs control the rate of decay for descriptor and spatial
weights respectively. For most examples, we use d = 1 and s = 2,
however for harder examples such as Figure 9, we use s = 5 to
account for a higher number of incorrect matches.

Finally, we transform H to obtain the cost matrix C in which low
values indicate frames that are likely to have a good match. The
entries of the cost matrix C are given by

cjk =

(
1− hjk

hmax

)α
, (3)

where hmax is the value of the maximum bin, and α is a scaling
parameter that penalizes high cost bins. We use α = 4 in almost
all examples, the exception being for noisier matrices (e.g. Fig-
ures 9, 16) we used α = 10.

We note that the frame number zi(l) is not a part of the descriptor,
meaning our method has no prior bias for matching features in one
frame to a specific frame in the other video. As a result, we are able
to align vastly different camera timings, such as videos played in
reverse, or with highly nonlinear differences.

As it does not directly rely on the accuracy of individual matches,
but rather the overall statistical distribution of a large set of fea-
ture matches over the entire video, the cost matrix is highly robust



to incorrect correspondences. In principle, additional pruning such
as RANSAC using epipolar geometry or homography relationships
could be used to increase basic matching reliability. However, they
do so at the cost of increased computation time and fragility; com-
mon effects such as rolling shutter and motion break assumptions
of the above methods. Our approach has proved to work robustly
even in very challenging scenarios (e.g., Figures 8, 9), where such
standard feature refinement techniques fail.

3.2 Computing Mappings

So far we have described mappings in the continuous sense. We
now first explain how to find a discrete mapping p : N → N2 in
our cost matrix. Subsequently, we discuss how we turn this into a
continuous mapping and how we can use different curve parame-
terizations to embed the alignment into a global time frame.

We refer to the discrete representation of a mapping p as a “path”
through the cost matrix, and consider a graph based solution to find
optimal paths. Furthermore, we associate a cost

φ(p) =
1

T

T∑
t=1

C(p(t)) (4)

with each path, that is the average of all entries in the cost matrix
that it crosses. Here T denotes the number of steps in the path and
we use the notation C(j, k) = cjk for better readability. We chose
the average cost to not bias our preferences to shorter paths.

Given a cost matrix C, we can trivially compute the best path
assuming a constant temporal offset between videos by quickly
searching the space of feasible offsets for the minimal costs ac-
cording to Equation 4. In a similar fashion, one can solve for the
best linear transformation (slope and offset). The slope can either
be computed using the ratio of frame rates of the cameras or it can
be treated as a additional unknown leading to a small 2-D search
problem. These concepts alone would provide a useful extension
to video editing tools, and are sufficient for snapping to optimal
linear paths. However, as mentioned before, linear mappings are
often not enough to obtain accurate temporal alignments. Instead,
we compute arbitrary nonlinear paths.

If we interpret the cost matrix as a directed graph, paths be-
come a set of connected edges. We identify a node by its posi-
tion (j, k) in the cost matrix and an edge as an ordered pair of
nodes. In the simplest case where backwards motion is not allowed,
each node is connected to its three neighbors, i.e., has the edges
((j, k), (j+1, k)), ((j, k), (j, k+1)), and ((j, k), (j+1, k+1)).
The weight of each edge is the value of the cost matrix at the node
that the edge points to. To allow backwards motion we add full
8-way connectivity.

Minimum distance paths can be found using Dijkstra’s algo-
rithm [Dijkstra 1959], which we describe briefly as a recap. The
basic algorithm finds the shortest distance d from a source node s to
all other nodes, maintaining a set of nodes that are being processed
called the “working set”. Until all nodes are marked as finished,
the node in the current working set with the lowest d is picked for
processing. All of its neighbors are then checked and added to the
working set if their new distance is shorter than their current best
known d. Once all neighbors of a node have been checked, that
node is set to finished and is removed from the working set.

By computing a path from the start of both clips (1, 1) to the end of
both (N1, N2) we can solve basic alignment problems. However,
a number of our requirements would not be met. In the next few
paragraphs we discuss the details of our path computation, and how
they allow us to meet all the requirements.

Figure 3: Computing a path in the cost matrix, given a user con-
straint (green). Source nodes (red and blue) are connected to the
first frames (top row and left column) and last frames (bottom row
and right column) of each video. Min-path trees are then computed
from each source node. Tracing the user constraint back to source
nodes (red and blue lines) yields the final path.

Partial Overlap As discussed above, when working in a video-
editing context it is essential to support nonlinear alignment of clips
with partial temporal overlap. Partial overlap implies that a path
can start at any frame in either video, and end at any frame in either
video. We construct a modified graph, adding an additional super-
source node S (the red circle in Figure 3). This source node is
connected to a set of start nodes Ŝ that correspond to the first frames
of v1 and v2, i.e.,

Ŝ = {(1, 1), . . . , (1, N2)} ∪ {(1, 1), . . . , (N1, 1)}. (5)

The shortest path is then computed from S to all end nodes

Ê = {(N1, 1), . . . , (N1, N2)} ∪ {(1, N2), . . . , (N1, N2)}. (6)

This gives us a set of alignments from any start frame to any end
frame from which we must select one. If we simply choose the path
with the least distance, this approach will inherently prefer paths
that contain fewer edges. Instead, we evaluate the cost of each fea-
sible path according to Equation 4 (i.e., normalizing by the number
of nodes in the path), and select the one with the lowest cost. We
note that trivial solutions are possible, e.g., when a corner of C has
a low cost, very short paths can be selected. To prevent this, we set
a minimum path length Tmin = 10, ensuring a reasonable number
of samples within the cost matrix.

Interactivity To support interactive modification of paths, we in-
troduce the notion of an alignment constraint provided by an artist.
An alignment constraint a = (j, k) specifies that a pair of frames
v1(j),v2(k) are in correspondence, i.e., that the path must pass
through (j, k). Using the described graph-based approach, we
could compute the shortest path from S to a, and then another
shortest path from a to Ê to achieve this.

However, this would be too slow to support real-time interaction as
the artist drags the clip in the timeline. We use an approach inspired
by Panorama Weaving [Summa et al. 2012], which allows users to
drag control points while visualizing optimal seams in a panorama.
This approach involves computing two shortest-path trees, one from
S to Ê and an inverted tree from a super-sink node E to Ŝ. Min-
cost paths that pass through a can then be computed by simply
tracing the paths from a to S and from a to E, illustrated in Fig-
ure 3. Finally, to achieve “snapping”, we can simply evaluate a
window around a, and pick the minimum cost path that is below
some threshold.

Allowing arbitrary paths could create unrealistic mappings that dis-
tort the videos when played. To allow the artist to have full control
over the amount of temporal distortion that is acceptable, we also
introduce warping constraints.

On a geometric level, we can interpret the relative warping of v1

and v2 as the slope of the path. The artist provides two bounds,



K

σmin

σmax

(a)

v1

v2 v3

v4

2 + γ 4

1

(b)

Figure 4: Warping constraints. When processing the green node,
neighbors (yellow) are considered for addition to the working set
(a). If the slope of the line between these candidate locations and
the point K steps up the tree (blue) is outside of the constraints, a
large constant γ is added to the edge weight (b).

σmin and σmax that specify the minimum and maximum slope al-
lowed, respectively. As our path is discrete, we compute an estimate
of the slope by using a point a fixed K steps back up the shortest
path tree. For all examples, we use K = 10.

These constraints are used in a modified version of Dijkstra’s algo-
rithm. Before adding any node to the working set we check whether
the slope of the path up to that node is within σmin and σmax. If
these bounds are violated, we increase the edge weight by a high
constant factor γ. This has the effect of enforcing that the edge ap-
pears in our final path only if no other paths that do not violate the
slope constraint are possible. This is demonstrated in Figure 4a; the
blue node is used to compute the slope at points under considera-
tion (yellow). In this case, the bottom node is outside σmin, and
is therefor assigned a high penalty weight (Figure 4b). The order
that the nodes will be visited in the working set of the modified
Dijkstra’s algorithm is: v4, v3, v2.

For all results we used γ = 1000. The σmax and σmin are dataset
dependent, but usually if no special restrictions exist we can use
very generous bounds, e.g. σmax = 10 and σmin = 1

10
.

Sub-frame Rendering So far we have discussed the discrete set-
ting of computing an optimal path. In order to achieve a continu-
ous temporal mapping with values at sub-frame positions, we filter
our discrete path using Laplacian smoothing and linearly interpo-
late and extrapolate. After smoothing, our path has fractional in-
dices into the cost matrix, which we evaluate by interpolating from
neighboring points in C, and eventually when rendering by frame-
interpolation using optical flow [Zimmer et al. 2011]. As comput-
ing optical flow is relatively slow, we perform frame interpolation
only during final rendering, and for the purpose of visualization we
show the nearest-neighbor frames in the GUI.

Global Time Frame A path uniquely determines a set of frames
in correspondence in two videos. However, the path does not define
the global time frame, i.e., the rate at which we walk along the path,
and at which each video is played. There are several valid options
for parameterizing p, depending on the preferences of the artist or
the requirements of the application. Sometimes it can be desirable
for the temporal warping to be distributed among videos, so that
no single video exhibits as extreme temporal changes. This can be
achieved by using the arc length parameterization (See Figure 5a),
which amounts to walking along the path in equal size steps, and
rendering corresponding frames from each video. However, many
times it can also be advantageous to leave one video unchanged as
a reference video, and adapt only the speed of the second one, i.e.,
choosing a parameterization that maintains equal steps in one video
(Figure 5b).

We provide a high-level summary of the required tasks for aligning
two videos in Algorithm 1.

v
1

fr
am

es

v2 frames

(a)

v
1

fr
am

es

v2 frames

(b)

Figure 5: Effect of path parameterization. Using an arc-length
parameterization (a) causes steps along the curve at evenly spaced
intervals (red circles), distributing temporal warping in both videos
(black ticks on axes). Using a reference video for the parameteri-
zation (b) results in a constant playback speed of one video (v1 in
this case), and all the distortion in the other (v2).

Algorithm 1 Computing an optimal temporal path between two
videos v1,v2 and rendering corresponding frames.

F1 ← features(v1)
F2 ← features(v2)
M ← match(F1, F2)

H ← histogram(F1,F2,M ) . See Eq. 1
C ← costMatrix(H) . See Eq. 3

u← minPathTreeConstrained(C,S,Ê) . See Sec. 3.2
v ← minPathTreeConstrained(C,E,Ŝ)

while true do . interactive loop
(j, k)← getUserConstraint()
pu ← trace(u, j, k)
pv ← trace(v, j, k)
p← connect(pu, pv)

end while

p← reparameterize(p)
for all t ∈ [tstart, tend] do

render v1(p1(t)),v2(p2(t))
end for

4 Synchronizing Multiple Sequences

In video editing software, working with multiple clips in a single
timeline is common. A significant contribution of our work is pro-
viding a practical extension to support joint synchronization for an
arbitrary number of videos.

In theory it would be straightforward to extend the previously de-
scribed approach to multiple videos by increasing the dimensional-
ity of the cost matrix and finding a mapping p : R → RD , where
D is the number of videos. However, in practice this quickly be-
comes intractable due to the size of the D-dimensional cost matrix
(N1 ·N2 · . . . ·ND). Let us conservatively assume that Ni ≈ 300,
which would cover 10 seconds of video at 30 frames per second.
With just five videos, this would result in 3005 entries, or roughly
8.8 TiB of memory when using 32-bit floats, which clearly exceeds
current hardware capabilities.

Furthermore, it is often undesirable to match all sequences simulta-
neously, as pairs of video clips can have little or no overlap. Align-
ment estimates for such pairs would degrade the overall alignment
quality. Therefore, rather than matching “all-to-all” videos, we in-
stead use only the best pairwise alignments to obtain a global rela-
tionship. This strategy relies only on the most accurate alignments,
and also reduces the problem to a size that is easily tractable.



V1

V2

V3V4

V5

Video 1

Video 2

Video 3

Video 4

Video 5

p12
p13

p34
p35

Time

Figure 6: A minimum spanning tree representing the optimal set of
pairwise alignments (left), and the same tree displayed as videos on
a timeline (right).

We describe our approach in two stages. First, we define a way to
measure the associated cost of how well we expect a pair of video
clips to align. Second, we use these costs to find an optimal set
of pairwise temporal alignments that best describes the global rela-
tionship of all clips.

Computing Matching Costs Between Videos The basic idea is
to use the cost of the best path φ(pij) as a measure of how well
videos vi and vj can be aligned. Using the method from Section 3
we compute cost matrices and mappings for each pair of videos.
By design, our method for temporally aligning two videos is sym-
metric, i.e. φ(pij) = φ(pji). Therefore, only

(
D
2

)
different cost

matrices have to be considered.

Finding Optimal Alignment Pairs Given all matching scores be-
tween videos, the task is to find the optimal set of pairwise matches
such that every video is aligned to at least one other. To do this, we
construct a undirected graph G where each node Vi corresponds to
a video, and each edge Eij defines a pairwise alignment between
videos Vi and Vj . The weight of the edge Eij is then equal to the
cost of aligning the two videos, i.e., φ(pij). A spanning tree of G
gives a set videos, each aligned to at least one other, and the min-
imum spanning tree (MST) of G corresponds to the one with the
globally minimal error.

We use Prims algorithm for MST computation [Prim 1957]. This is
efficient to compute, as our graph has onlyD nodes and

(
D
2

)
edges,

where D is usually quite small. The MST computation can be up-
dated in real-time as the artist changes constraints (and therefore
changes φ(pij)). Figure 6 shows an example of G, the MST, and
corresponding tree of pairwise relationships of video clips.

Global Time Axis Now that we have determined the optimal
pairwise relationships, we need to know which frame from each
of the D videos to display at a given point in time t. In other
words, we need a mapping p̃ : R → RD . We define this map-
ping by means of the individual pairwise mappings pij and the
MST. To find all corresponding frames, we simply traverse the
MST recursively evaluating frame positions. We note that for this
to work, each path must describe the graph of a 1D function, i.e.
can be expressed as pij(t) = (t, pij(t)), where pij : R → R.
We can ensure this by choosing σmin > 0 and using appro-
priate graph connectivity that prevents either video from playing
backwards. This is the one restriction over the pairwise case that
we introduce when processing multiple videos. For the exam-
ple shown in Figure 5, the global mapping would be defined as:
p̃(t) = (t, p12(t), p13(t), p34(p13(t)), p35(p13(t))).

Art Directability We have included simple and intuitive oppor-
tunities for interaction to give the artist detailed control over the
multiple clip alignment. First of all, the tree obtained from the
MST computation comes without the notion of a root, so we se-

Figure 7: Cyclical motion (orbiting around a static object) results
in numerous good paths, visible in the cost matrix (right). Our
interface allows an artist to easily snap between them.

Figure 9: A temporal mapping for a difficult case where the image
appearance differs greatly.

lect one and use it to define the reference time, but the artist can
easily change the root video simply by double clicking on it. Ad-
ditionally, MST connections can be visualized in the timeline (Fig-
ure 16), and we allow the artist to manually constrain certain pairs
of videos to be connected by control-clicking both of them. This is
useful for example if the artist would like to synchronize a specific
event occurring in one pair of videos. We achieve this interaction
technically by setting the weights of these edges in G to 0, and re-
computing the MST as usual. When one video is dragged in the
timeline, all of the children of that video will move as well, keep-
ing their optimal synchronizations fixed. This gives an intuitive
way for the artist to modify the temporal placement of one video,
and see the result on the entire set immediately. Please refer to our
supplemental video for an example of such an interaction.

5 Applications

In the following section we demonstrate a number of different ap-
plications using our algorithm, ranging from basic video editing in-
terface enhancements to more complex compositing tasks. Please
refer to the supplemental video for complete examples of these ap-
plications.

VideoSnapping Content aware video snapping provides a useful
and intuitive extension to modern video editing software. Allowing
the artist to specify alignments by dragging clips in a timeline has
numerous advantages, besides to being an established metaphor.
For one, it allows her to select from numerous potentially well
aligned paths within a pair of videos (Figure 7). Additionally, it
provides a useful way to specify which clips should be aligned at
all, which is especially useful in cluttered timelines with many clips
present. By inferring the artist’s intents from this simple gesture,
our method can be used with minimal hassle.

Robust Temporal Alignment Because we do not rely on the ac-
curacy of individual feature correspondences, but rather on accu-
mulated statistical differences over entire video sequences, our cost
matrix robustly captures frame similarities. Figure 8 shows an ex-
ample where a car drives down a road with a hood-mounted camera.
In this case, the small regions above and through the windscreen
provide all the alignment cues available. Still, a clear path can be
derived from the associated cost matrix.



Figure 8: Even with only a small portion of the video containing shared content, we can still find a clear path through the cost matrix,
synchronizing the car’s location.

Figure 10: Our solution computes an alignment globally, and can find an optimal path even with a region in the middle of the videos where
no similar content exists.

In Figure 9, we temporally synchronized two camera pans taken
during different times of the day. In this case, feature correspon-
dences were insufficient to find any kind of reliable spatial align-
ment between frames, but the correct path in the cost matrix could
still be accurately detected. Because we compute a global path
within the cost matrix, we can also handle large areas where no ac-
tual alignment is possible. In Figure 10, the middle half of the video
is taken from two different routes with no common content. How-
ever, our method is able to smoothly interpolate in the unknown
region, and reconnect as the content starts to be shared again.

Multi-Camera Synchronization Camera arrays are useful for ac-
quiring high resolution, field-of-view, or parallax effects that would
not be possible with a single camera. However, synchronizing large
numbers of video cameras can be a challenging task, and often syn-
chronization problems result in unusable data. We used our method
to synchronize an array of 15 cameras entirely based on visual cues.
Our method automatically determines an optimal tree of video pairs
where content is the most similar (e.g., cameras that overlap). Fig-
ure 11 shows the detected temporal relationship of all input videos,
and a successfully reconstructed frame of a video panorama. In ad-
dition to finding small offsets between videos, we also successfully
detected one camera that completely failed.

Figure 11: By finding relative temporal offsets of clips from a
15 camera array (left), it becomes possible to construct a video
panorama without ghosting on moving objects (right).

Figure 12: Pixel accurate spatiotemporal alignment allows us to
compute an HDR video by per-frame exposure fusion, despite sig-
nificant differences in camera motion and illumination conditions.

Spatiotemporal Alignment Accurate spatiotemporal alignment
is an extremely important open problem in video processing and
visual effects pipelines. High quality alignments make otherwise
extremely complex tasks much easier, such as video segmentation,
matting, blending and compositing. A major benefit of our tem-
poral snapping is that it can greatly reduce the difficulty of find-
ing good spatial alignments. In fact, we show that by applying a
simple, out-of-the-box method for spatial alignment after tempo-
ral synchronization, we can achieve similar or better quality when
compared to state-of-the-art spatiotemporal approaches.

Our spatial alignment method is simple. We first compute per-
frame homography matrices, and then filter each entry indepen-
dently using a temporal median filter with a width of 15 frames
so as to improve temporal stability. Finally, to correct for small
parallax effects, we warp the images using optical flow [Zimmer
et al. 2011]. Figure 14 shows the importance of nonlinear temporal
synchronization before spatial alignment. With only the best linear
alignment, parallax effects are too large to correct.

We compare our method to two prior spatiotemporal alignment ap-
proaches. Figure 13 and the video show difference maps computed
for similar scenes. We can see that our method performs equal



Figure 13: Comparison of spatiotemporal alignment to Sand and
Teller [2004] (whiter is better). (Note: The input videos made
available differed slightly from publicly posted results)

(a) linear (b) nonlinear

Figure 14: Inverted difference images (whiter is better) after tem-
poral and spatial alignment. With the best possible linear temporal
mapping (a), larger alignment errors are visible, most noticeably in
the bench which cannot be correctly aligned due to parallax, and
in the boundary, where overlapping content is not available. Af-
ter nonlinear temporal alignment, much better spatial alignment is
possible (b). Images have been darkened for visibility.

to, or better than these approaches. Significantly, our method uses
simple methods for spatial alignment, not relying on complex fea-
ture refinement [Sand and Teller 2004], or MAP inference and GPS
data [Diego et al. 2011].

Additional Modalities of Data While we propose using SIFT
features to describe frames, these can be easily substituted with
other kind of frame descriptors. In Figure 15b, it is possible to syn-
chronize multiple actions performed by the same person using only
SIFT features. However, when considering an action performed by
different people (Figure 15d), there is not enough visual similarity
to correctly determine frame compatibility. As a result, we can see
that the corresponding cost matrix is largely noise, and no reason-
able paths can be found.

We augment the use of SIFT descriptors with skeleton data auto-
matically tracked from a Kinect sensor [Bloom et al. 2012]. At
each frame, there are 20 joint positions, given in world space co-
ordinates. We subtract the centroid from each frame, and concate-
nate the relative joint positions into a single per-frame descriptor
di(j) ∈ Rd, where d = 60 (20 joints and one 3D position per
joint). We then use the exact same pipeline as described in Sec-
tion 3 to build the cost matrix and compute paths. As we have
many fewer features per frame (one rather than thousands), we use

Figure 16: Five frames from different input devices capturing the
same event at different times (above). The timeline before and after
alignment (below). Optimally determined minimum spanning tree
edges are shown in black. Please see the supplemental material for
a complete video.

8-nearest neighbors when building C instead of just finding the best
match. By adding these features, we can correctly synchronize the
actions of the different people.

Crowdsourced Video Being able to synchronize multiple videos
enables novel applications, such as automatically arranging a set of
uncalibrated videos in the same global time frame based only on
similarities of visual data. Popular events today are recorded by a
large number of cameras, each filming a distinct temporal subset of
the event. In this case, it is possible that no single camera records
the whole sequence, and there may be little to no overlap between
all pairs of videos.

In Figure 16, we show an example where we take a series of un-
ordered videos of a pool game, filmed from different positions on
different devices, each with its own framerate, resolution, and vi-
sual appearance. Our approach can place all clips in a global time
axis by matching optimal pairs of videos, after which we can create
a single video that cuts between available cameras (please see the
supplemental material for this result).

6 Implementation

Our prototype interface was written in C++ using QT, and con-
sists of parallelized, but otherwise unoptimized code. We use the
VLFeat open source library to perform SIFT feature computation
and feature matching [Vedaldi and Fulkerson 2008], using a KD-
tree with approximate nearest neighbor queries for efficiency.

Timing The entire preprocessing stage, which consists of com-
puting SIFT features, building and querying the KD-tree, and com-
puting cost matrices and shortest path trees takes on average 295ms
per 1440×810 frame on a modern desktop computer (Intel 3.20Ghz
i7-3930K, 6 Cores). Most of this running time (265ms) is spent
computing SIFT features; if needed, much faster preprocessing
times could be achieved by replacing SIFT with a different feature
detector and descriptor. Additionally, we can handle the multiple
video case with minimal overhead, as SIFT feature computation
grows only linearly with the number of videos. Even though the
number of cost matrices grows quadratically with the number of
videos, they are efficient to compute and easy to store in memory,
or cache for later interaction sessions, requiring roughly 3.4 MiB
for all matrices considering the example size discussed in the be-
ginning of Section 4. The cost of evaluating a path given a frame



(a) (b) (c) (d) (e) (f) (g)

Figure 15: A series of actions is repeated by a person. Each column shows matched frames from a pair of videos. Using the best linear
mapping, it is not possible to align all actions (a). With nonlinear warping (b), the entire sequence can be aligned (cost matrices shown in
(c)). However, with two different people, there is not enough similarity using visual features alone, resulting in poorly aligned frames (d), and
a noisy cost matrix (g), above. By including skeleton data from a Kinect sensor (e), the videos can be correctly aligned (f). The correct path
and multi-modal cost matrix is visible in (g), below.

constraint (during the interaction stage) takes 3ms, allowing us to
query numerous constraints at interactive rates, and snap to the best
one.

For longer clips, it is often not necessary to process every frame.
Instead, we subsample the video temporally and compute cost ma-
trices on these. For Figures 8 and 10, we temporally subsampled
by a factor of 1

5
. This greatly reduces running time, allowing us

to generate results for sequences with 4000+ frames. We then use
the full video to compute interpolated images at fractional frame
indices, without loss of temporal resolution.

User Interface We have developed a prototype interface that al-
lows temporal alignment of multiple videos in a timeline, well
known from standard video editing tools. We introduce a visualiza-
tion of the amount of temporal warping by stretching and squeezing
the bar representing each clip (see e.g. Figure 1(c)), which gives a
quick and intuitive way to visualize the relative speed of the entire
warped video when setting constraints.

We also provide a quick visual reference for how well the current
path aligns the two videos at every frame. This is visible as a col-
ored bar that exists above the overlap region of two videos (please
see the supplemental video for an example), and is computed by
evaluating the cost matrix at each frame-correspondence as de-
termined by the path. This alignment-quality visualization gives
artists instant feedback, allowing her to judge which parts of the
video are well aligned given the current constraints.

7 Limitations and Future Directions

In order to synchronize object actions or camera motion with non-
linear temporal relationships, we must incur some amount of tem-
poral warping. In certain applications this warping may be unac-
ceptable, and lead to visible temporal distortions. In these cases
(and if linear temporal alignment is not sufficient), aligning the
videos without warping is not feasible. To address these concerns,
we gave the artist the ability to set the bounds of allowed tempo-
ral warping per video, after which the best possible path will be
found. Additionally, by choosing the parameterization of the path,
it is possible for the artist to direct temporal distortion into different
videos, or to spread it out evenly.

Currently our method supports only one frame alignment con-
straint. Technically it is trivial to allow the artist to select multiple
points in a video, and then interpolate the alignment between these,
requiring only the computation of additional min-cost trees from
each added constraint point. In our interface, we tried to keep the
interactions as simple as possible, e.g., in this case just dragging a
video. The cost matrix and path visualization was intended only as
a debug tool so far. However, for advanced artists, much more com-
plex interactions are possible, for example drawing directly into the
cost matrix could specify complex alignment constraints that could
be integrated in the optimal path computation.

While our method is very robust, it still depends on the existence
of usable and descriptive features. When such features do not ex-
ist, our method cannot find temporal relationships, as is visible
in Figure 15g. However, we have provided a general framework
for alignment, and when alternate modalities are available (such as
skeletons), these can be easily incorporated into our system.

Finally, consistent spatiotemporal alignment is still an unsolved
problem. Our method simplifies the task by computing a tempo-
ral mapping such that the content is as similar as possible, however
if views are significantly different, alignment can still pose prob-
lems. We hope that by showing that high quality spatiotemporal
results can be found using a naive spatial alignment method, future
researchers will be encouraged to consider robust temporal syn-
chronization as an essential preprocessing step to developing more
advanced spatial alignment methods.

8 Conclusion

At the center of our work is a robust technique for computing tem-
poral mappings in an efficient manner. We have designed our ap-
proach to operate at interactive speeds and for multiple videos, thus
creating a natural fit into existing modern video editing pipelines,
and allowing for a new interaction mechanism. We made relevant
design decisions to present nonlinear temporal snapping to the artist
in the most intuitive way possible. In addition, we present solutions
to some important new problems for the video editing framework,
specifically a constrained shortest path method for finding shortest
path trees, and a graph construction that supports partial overlap.
Additionally, we presented a novel method for computing a global
temporal alignment of multiple clips, using a graph-based pairwise



alignment approach. This method enables new applications such as
placing multiple independent videos into a single global time axis.

Our method is capable of robustly finding high quality non-linear
temporal alignments and it has few parameters that remain fixed for
almost all results presented. While user interaction is a key part
of the paper, fine tweaking of the paths was not required. In no
case was the amount of interaction needed greater than a couple of
seconds for any examples presented.

We believe that our synchronization technology has the potential
to enable new applications. By bringing the often ignored aspect
of temporal alignment into light, we hope to encourage both re-
searchers and video artists alike to consider the significant new pos-
sibilities that can be achieved.

Acknowledgments

We would like to thank the reviewers for helpful comments, Victo-
ria Bloom and Peter Sand for sharing their datasets, Federico Per-
azzi for stitching the panorama example, and Tze-Koong Wang for
three decades of encouragement and inspiration.

References

AGARWALA, A., ZHENG, K. C., PAL, C., AGRAWALA, M., CO-
HEN, M. F., CURLESS, B., SALESIN, D., AND SZELISKI, R.
2005. Panoramic video textures. ACM Trans. Graph. 24, 3, 821–
827.

BAKER, S., AND MATTHEWS, I. 2004. Lucas-kanade 20 years on:
A unifying framework. IJCV 56, 3, 221–255.

BAKER, S., SCHARSTEIN, D., LEWIS, J. P., ROTH, S., BLACK,
M. J., AND SZELISKI, R. 2011. A database and evaluation
methodology for optical flow. IJCV 92, 1, 1–31.

BLOOM, V., MAKRIS, D., AND ARGYRIOU, V. 2012. G3d: A
gaming action dataset and real time action recognition evaluation
framework. In CVPR Workshops, 7–12.

BRYAN, N. J., SMARAGDIS, P., AND MYSORE, G. J. 2012.
Clustering and synchronizing multi-camera video via landmark
cross-correlation. In ICASSP, 2389–2392.

CASPI, Y., AND IRANI, M. 2002. Spatio-temporal alignment of
sequences. IEEE TPAMI 24, 11, 1409–1424.

DIEGO, F., PONSA, D., SERRAT, J., AND LÓPEZ, A. M. 2011.
Video alignment for change detection. IEEE Transactions on
Image Processing 20, 7, 1858–1869.

DIEGO, F., SERRAT, J., AND LÓPEZ, A. M. 2013. Joint spatio-
temporal alignment of sequences. IEEE Transactions on Multi-
media 15, 6, 1377–1387.

DIJKSTRA, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1, 269–271.

EVANGELIDIS, G. D., AND BAUCKHAGE, C. 2013. Efficient
subframe video alignment using short descriptors. IEEE TPAMI
35, 10, 2371–2386.

JIANG, Y.-G., NGO, C.-W., AND YANG, J. 2007. Towards opti-
mal bag-of-features for object categorization and semantic video
retrieval. In CIVR, 494–501.

KANG, S. B., UYTTENDAELE, M., WINDER, S. A. J., AND
SZELISKI, R. 2003. High dynamic range video. ACM Trans.

Graph. 22, 3, 319–325.

LI, R., AND CHELLAPPA, R. 2010. Aligning spatio-temporal
signals on a special manifold. In ECCV (5), 547–560.

LIU, C., YUEN, J., AND TORRALBA, A. 2011. Sift flow: Dense
correspondence across scenes and its applications. IEEE TPAMI
33, 5, 978–994.

LOWE, D. G. 1999. Object recognition from local scale-invariant
features. In ICCV, 1150–1157.

NGO, C.-W., MA, Y.-F., AND ZHANG, H. 2005. Video sum-
marization and scene detection by graph modeling. IEEE Trans.
Circuits Syst. Video Techn. 15, 2, 296–305.

PÁDUA, F. L. C., CARCERONI, R. L., SANTOS, G. A. M. R.,
AND KUTULAKOS, K. N. 2010. Linear sequence-to-sequence
alignment. IEEE TPAMI 32, 2, 304–320.

PRIM, R. C. 1957. Shortest connection networks and some gener-
alizations. Bell system technical journal 36, 6, 1389–1401.

RAO, C., GRITAI, A., SHAH, M., AND SYEDA-MAHMOOD,
T. F. 2003. View-invariant alignment and matching of video
sequences. In ICCV, 939–945.

RÜEGG, J., WANG, O., SMOLIC, A., AND GROSS, M. H. 2013.
Ducttake: Spatiotemporal video compositing. Comput. Graph.
Forum 32, 2, 51–61.

SAND, P., AND TELLER, S. J. 2004. Video matching. ACM Trans.
Graph. 23, 3, 592–599.

SCHARSTEIN, D., AND SZELISKI, R. 2002. A taxonomy and eval-
uation of dense two-frame stereo correspondence algorithms.
IJCV 47, 1-3, 7–42.

SHRESTHA, P., BARBIERI, M., AND WEDA, H. 2007. Synchro-
nization of multi-camera video recordings based on audio. In
ACM Multimedia, 545–548.

SUMMA, B., TIERNY, J., AND PASCUCCI, V. 2012. Panorama
weaving: fast and flexible seam processing. ACM Trans. Graph.
31, 4, 83.

UKRAINITZ, Y., AND IRANI, M. 2006. Aligning sequences and
actions by maximizing space-time correlations. In ECCV (3),
538–550.

VEDALDI, A., AND FULKERSON, B., 2008. VLFeat: An open and
portable library of computer vision algorithms.

YÜCER, K., JACOBSON, A., HORNUNG, A., AND SORKINE, O.
2012. Transfusive image manipulation. ACM Trans. Graph. 31,
6, 176.

ZHOU, F., AND LA TORRE, F. D. 2009. Canonical time warping
for alignment of human behavior. In NIPS, 2286–2294.

ZHOU, F., AND LA TORRE, F. D. 2012. Generalized time warping
for multi-modal alignment of human motion. In CVPR, 1282–
1289.

ZIMMER, H., BRUHN, A., AND WEICKERT, J. 2011. Optic flow
in harmony. IJCV 93, 3, 368–388.


