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Figure 1: Capturing both relative and global motion in natural environments using cameras mounted on the body.

Abstract
Motion capture technology generally requires that recordings be
performed in a laboratory or closed stage setting with controlled
lighting. This restriction precludes the capture of motions that re-
quire an outdoor setting or the traversal of large areas. In this paper,
we present the theory and practice of using body-mounted cameras
to reconstruct the motion of a subject. Outward-looking cameras
are attached to the limbs of the subject, and the joint angles and root
pose are estimated through non-linear optimization. The optimiza-
tion objective function incorporates terms for image matching error
and temporal continuity of motion. Structure-from-motion is used
to estimate the skeleton structure and to provide initialization for
the non-linear optimization procedure. Global motion is estimated
and drift is controlled by matching the captured set of videos to ref-
erence imagery. We show results in settings where capture would be
difficult or impossible with traditional motion capture systems, in-
cluding walking outside and swinging on monkey bars. The quality
of the motion reconstruction is evaluated by comparing our results
against motion capture data produced by a commercially available
optical system.
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1 Introduction

Motion capture has been used to provide much of the character mo-
tion in several recent theatrical releases. In Avatar, motion capture
was used to animate characters riding on direhorses and flying on
the back of mountain banshees [Duncan 2010]. To capture realistic
motion for such scenes, the actors rode horses and robotic mock-
ups in an expansive motion capture studio requiring a large number
of cameras. Coverage and lighting problems often prevent directors
from capturing motion in natural settings or in other large environ-
ments. Inertial systems, such as the one described by Vlasic and
colleagues [2007], allow capture to occur in outdoor spaces but are
designed to recover only the relative motion of the joints, not the
global root motion.

In this paper, we present a wearable system of outward-looking
cameras that allow the reconstruction of the relative and the global
motion of an actor outside of a laboratory or closed stage. The
cameras can be mounted on casual clothing (Figure 1(a)), are
easily mounted and removed using Velcro attachments, and are
lightweight enough to allow unimpeded movement. Structure-
from-motion (SfM) is used to estimate the pose of the cameras
throughout the capture. The estimated camera movements from a
range-of-motion sequence are used to automatically build a skele-
ton using co-occurring transformations of the limbs connecting
each joint. The reconstructed cameras and skeleton (Figure 1(b))
are used as an initialization for an overall optimization to compute
the root position, orientation, and joint angles while minimizing the
image matching error. Reference imagery of the capture area is
leveraged to reduce drift. We render the motion of a skinned char-
acter by applying the recovered skeletal motion (Figure 1(c)).

By estimating the camera poses, the global and relative motion of
an actor can be captured outdoors under a wide variety of light-
ing conditions or in extended indoor regions without any additional
equipment. We also avoid some of the missing data problems in-
troduced by occlusions between the markers and cameras in tradi-
tional optical motion capture, because, in our system, any visually
distinctive feature in the world can serve as a marker in the tradi-
tional systems. A by-product of the capture process is a sparse 3D
structure of the scene. This structure is useful as a guide for defin-
ing the ground geometry and as a first sketch of the scene for 3D
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animators and directors. We evaluate our approach against motion
capture data generated by a Vicon optical motion capture system
and report a mean joint position error of 1.76 cm and a mean joint
angle error of 3.01◦ on the full range-of-motion sequence used for
skeleton estimation. Our results demonstrate that the system can
reconstruct actions that are difficult to capture with traditional mo-
tion capture systems, including outdoor activities in direct sunlight,
activities that are occluded by near by proximal structures, and ex-
tended indoor activities.

Our prototype is the first, to our knowledge, to employ camera sen-
sors for motion capture by measuring the environment and to esti-
mate the motion of a set of cameras that are related by an under-
lying articulated structure. Current cameras are inexpensive, have
form factors that rival inertial measurement units (IMUs), and are
already embedded in everyday handheld devices. Our approach will
continue to benefit from consumer trends that are driving cameras
to become cheaper, smaller, faster, and more pervasive. Given the
expected continuation of these technological trends, we believe that
systems such as the one proposed here, will become viable alterna-
tives to traditional motion capture technologies.

2 Related work

There are a variety of motion capture technologies currently avail-
able both commercially and as prototypes. The advantages and dis-
advantages of the different designs are discussed in several surveys
(e.g., [Welch and Foxlin 2002; Moeslund et al. 2006]). Motion
capture systems can be classified as outside-in [Welch and Foxlin
2002], in that they rely on sensors mounted in the environment and
passive, if any, markers on the body. By definition, this require-
ment restricts their use to laboratory environments or closed stage
settings, because the capture space has to be instrumented with the
sensors. Inside-out systems [Welch and Foxlin 2002] rely on sen-
sors on the body to recover the 3D pose. This portability allows
their use in both indoor and outdoor environments. Our approach
falls into the latter category. Here, we review the most relevant
methods and systems.

Optical motion capture systems [Woltring 1974] are among the
most widely used in the industry today; commercial sys-
tems are available from Vicon (www.vicon.com) and Qualisys
(www.qualisys.com), among others. Optical motion capture sys-
tems use a set of specialized high-resolution video cameras to track
retro-reflective markers or light-emitting diodes (LEDs) placed at
key points on the body. Triangulation is used to recover the 3D
position of these markers in space, and the 3D marker positions,
in turn, are used to fit a skeletal model to the observed motion.
These systems are popular due to their accuracy; their major dis-
advantages are cost, portability, and intrusiveness. Optical systems
require indoor setups that typically cost between tens and hundreds
of thousands of dollars.

The use of photosensors was explored by Raskar and col-
leagues [2007]. Their proposed system relied on measuring the
spatio-temporal light modulations produced by multiple LED trans-
mitters that emitted gray coded patterns. The receiver modules,
equipped with infrared and RGB photosensors, were tasked with
decoding (demultiplexing) the observed patterns and, in doing so,
directly producing the 3D spatial location (and as a side effect mea-
suring incident light for scene light matching). While their system
was inspirational for us in that it utilized a simplified photosensor
as a “camera” worn on the body, it is fundamentally different from
our approach, because it requires transmitters in the environment.

To alleviate the intrusive characteristics of marker-based motion
capture systems, marker-less motion capture technologies have
been developed by a number of researchers [Cheung et al. 2003;
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Figure 2: Settings of cameras from (a) front view and (b) side view.
(c) Illustration of skeleton and body-mounted cameras. Blue: cam-
eras mounted on the body, and orange: cameras used as virtual
cameras.

Deutscher and Reid 2005; Moeslund et al. 2006; Hasler et al. 2009].
Marker-less methods most often use regular video cameras with
simple (e.g., chromakey) backgrounds to reconstruct a voxel rep-
resentation of the body over time and then fit a skeletal model to
the voxel representations. A similar paradigm is used by the system
developed by Organic Motion (www.organicmotion.com). Recent
studies [Corazza et al. 2006; Corazza et al. 2010] suggest that with
a sufficient number of cameras and favorable imaging conditions,
the accuracy of marker-less methods can rival that of traditional op-
tical motion capture. Hasler and colleagues [2009] introduced an
approach to capture the motion of an actor in outdoor environments
from multiple inward-looking moving cameras. The method uses
audio to synchronize the cameras and fits a 3D scan of the actor to
silhouettes estimated in each of the moving cameras. The marker-
less methods require image segmentation, or a 3D scan of the actor.

The most direct approach to measuring human motion is through
the use of a wearable electro-mechanical system; e.g., Gypsy
(www.animazoo.com). Such systems consist of an exoskeleton suit
with embedded lightweight rods that articulate with the performer’s
bones. Potentiometers at the joints measure the angular rotation of
the rods, and are converted to joint angles using a kinematic model.
Such systems, while capable of directly measuring the motion of
the subject, are intrusive and uncomfortable to wear.

Recently, there have been a number of self-contained, wearable ex-
perimental systems developed based on a variety of sensor tech-
nologies (e.g., [Schwarz et al. 2010; Zhang et al. 2009]), includ-
ing ultrasound, IMUs, and tri-axial accelerometers. Inertial motion
capture systems (e.g., Xsens MVN, www.xsens.com) measure the
rotation of body parts in the world using accelerometers and gyro-
scopes. These systems are portable and can be taken outside; how-
ever, they are only able to measure the orientation of body parts, not
the motion of the body in the world. Multiple sensors can be com-
bined to alleviate drift. For example, Vlasic and colleagues [2007]
added ultrasonic sensors to IMUs. Alternatives for battling drift in-
clude data-driven approaches based on motion capture data to sta-
bilize accelerometer estimates [Slyper and Hodgins 2008; Xie et al.
2008; Kelly et al. 2010; Tautges et al. 2011].

Our system is camera-based and therefore relies on the rich data
in a detailed view of the environment. We use the images from
the cameras along with the estimated 3D geometry of the envi-
ronment to recover the 3D limb positions and orientations in the
world over time. Thus, we build on substantial prior work in
SfM [Hartley and Zisserman 2004; Pollefeys et al. 2004; Snavely
et al. 2006] and visual Simultaneous Localization and Mapping
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Figure 3: Our system takes video data captured by body-mounted cameras and outputs the reconstruction of the human motion. The motion
of the body is estimated by using SfM on individual cameras as an initial guess and optimizing the reprojection errors of the 3D structure
while enforcing the underlying articulated relationships between cameras and the smoothness of motion across time.

(SLAM) [Welch et al. 1999; Davison et al. 2007; Klein and Murray
2007]. These approaches have been used for estimating the mo-
tion of moving platforms [Ballan et al. 2010; Nı́ster et al. 2006] and
even humans [Oskiper et al. 2007; Zhu et al. 2007; Zhu et al. 2008].
However, they recovered only the independent ego-motion of indi-
vidual camera platforms. Our work is the first to reconstruct the
3D motion of a set of cameras related by an underlying articulated
structure.

3 Hardware Setup

One camera is attached to each body segment using a Velcro strap-
on mount, as shown in Figures 2(a) and (b). Three cameras are at-
tached to the waist for root pose estimation, and two cameras are at-
tached to the torso. The cameras are synchronized using a standard
audio calibration signal1. The subject performs a range-of-motion
trial for skeleton estimation and then performs the desired activity
for capture. The video data are downloaded from the cameras after
the capture for processing. Our system produces the skeleton of the
actor, root position, and orientation and joint angles across time and
also the 3D structure of the scene as a by-product.

We use 16 or more commercially available wide-angle (170◦

field of view) sport action cameras called HD Hero from GoPro
(www.goprocamera.com) at a cost of 250 dollars per camera; mak-
ing our entire setup approximately 5,000 dollars. The cameras are
lightweight at 94 g and have a small form factor (42 mm × 60 mm
× 30 mm). HD Hero cameras are equipped with a CMOS sensor
and are capable of a variety of resolution/frame rate settings; we
record at 720p (1280 × 720) resolution at 60 frames per second. If
cameras on some body segments are often occluded by limbs (e.g.,
waist, torso), we use additional cameras to provide robustness by
creating a wider aggregate field of view.

All the cameras are calibrated in advance using a fisheye lens dis-
tortion model [Devernay and Faugeras 2000] to provide estimates
of focal length, principal point, and the distortion coefficient. As
the lens and focal length are fixed for the cameras, these estimates
need to be computed only once and are re-usable across captures.

4 Reconstructing Human Motion

Conventional SfM can provide visually feasible estimates of 3D
structure and camera pose, but these estimates are often not suffi-
ciently accurate for capturing human motion. In order to compute

1We use a clapper board to produce a loud clap at the beginning and end
of each trial. We find peaks in the audio signal of resulting movie files from
all the cameras and look for the most consistent duration between peaks
using a simple form of clustering and exhaustive search [Hasler et al. 2009].

appropriate estimates of human motion across time, our SfM solu-
tion considers the articulation of body-mounted cameras with the
underlying skeleton of the actor and fits them to image measure-
ments:

{O
∗
,A

∗
} = argmin

O,A
Er + λOEO + λAEA, (1)

where O and A are the time-series data of the root position and
the joint angles, respectively. Er accounts for reprojection errors
of the 3D reconstruction with measured image feature locations us-
ing the skeleton constraint for the cameras. EO and EA consider
the smoothness of resulting motion. λO and λA are weights that
control the influence of the smoothness constraints.

Equation (1) is highly non-linear and optimization of the equation
requires good initial estimates of camera poses and skeleton. We
develop the pipeline shown in Figure 3. After the data are captured,
we reconstruct the 3D structure of the scene from reference images
using SfM. While this step is optional in principle, it substantially
reduces the drift in the reconstructed motions, and we chose to per-
form it for all our captures. The 3D structure is used to recon-
struct body-mounted camera poses across time (Section 4.1). If a
new skeleton is required, the subject is asked to perform a standard
range-of-motion exercise at the beginning of the capture session.
The skeleton is automatically generated (see Appendix) and is used
to reconstruct whole body poses from the cameras (Section 4.2).
The user can optionally refine the skeleton by changing the pose of
the camera with respect to the joint through a graphical user inter-
face. Finally, the motion is refined using an image-based non-linear
optimization that incorporates temporal smoothing (Section 4.3).

4.1 Initializing Camera Poses Using SfM

Direct incremental SfM from body-mounted cameras yields pre-
cise 3D reconstruction locally but suffers from global drift when
the capture area is large and 3D structure is far from the camera
locations [Hartley and Zisserman 2004]. To avoid this problem, we
record reference images of the capture area, and reconstruct the 3D
structure using the images. Using this 3D structure and correspond-
ing 2D measurements from a body-mounted camera, the camera
pose can be reconstructed. We call this process absolute camera
registration. If there are significant differences in view between the
reference images and the recorded videos, some cameras may not
be reconstructed. We handle this situation by adding new structure
points with newly registered cameras, and rerun the camera regis-
tration. We call this iterative process relative camera registration,
and repeat the process until most of cameras are reconstructed.

3D Reconstruction of Reference Images: From the reference im-
ages, we extract Scale-Invariant Feature Transform (SIFT) key-



(a) 3D structure (b) After absolute camera registration (c) After fifth iteration of relative camera
registration

Figure 4: (a) Reference structure reconstruction, (b) after absolute camera registration, and (c) after the fifth iteration of relative camera
registration. Adding points from absolute and relative camera registration processes allows us to make the camera registration denser.

points [Lowe 2004] and find correspondences between a pair
of images using an approximate nearest neighbor search [Muja
and Lowe 2009]. The fundamental matrix estimation based on
RANSAC [Fischler and Bolles 1981] enables us to obtain geomet-
rically consistent matches.

To estimate the extrinsic parameters of the cameras, we choose an
initial pair of images that has a significant number of matches that
cannot be accounted for by a homography. From those matches,
we estimate the relative camera orientation and translation ex-
tracted by the essential matrix and triangulate the location of the
matched feature points in 3D using the Direct Linear Transform
algorithm [Hartley and Zisserman 2004], followed by a two-image
bundle adjustment [Lourakis and Argyros 2009]. We incrementally
add an image that has the greatest number of inlier 3D-2D corre-
spondences, among the remaining images. From these correspon-
dences, we reconstruct the camera pose using a Perspective-n-Point
(PnP) algorithm [Lepetit et al. 2009] inside a RANSAC procedure.

Once the extrinsic parameters for the new camera are reconstructed,
2D-2D correspondences between reconstructed images and the
newly added image are reconstructed in 3D. For accuracy, we ex-
clude 3D points with the following criteria: any point that has high
reprojection error (>1 pixel) and any point when the angle sub-
tended by the rays used for triangulation is small (<2◦). Once the
structure has been updated, a sparse bundle adjustment is run to
refine the entire model. This process continues until most of the
reference images are registered.

Absolute Camera Registration: After the 3D structure is recon-
structed from the reference images, it is used to estimate the body-
mounted camera poses. The process of registering images from
body-mounted cameras is similar to that of adding a new reference
image in the SfM process. Using RANSAC with PnP, we find the
best extrinsic camera parameters that produce less than 1 pixel re-
projection error when the number of inlier 3D-2D correspondences
is sufficient (>50). Once the camera parameters are estimated, new
3D points are triangulated using 2D-2D correspondences between
the newly registered image and the previously registered images.
To reduce the computational cost of keypoint matching for new 3D
points, we ignore camera pairs whose optical axes have more than
90◦ orientation difference. The criteria for adding a new point are
the same as those used in the SfM process. The bundle adjustment
refines newly registered camera poses and the 3D structure. The
3D structure obtained from the reference images is fixed during the
optimization so that the structure can act as an anchor to avoid drift.

Relative Camera Registration: The reconstruction from the ab-
solute camera registration may be sparse, particularly when the
viewing angles of the reference images are different from those of
images from the body-mounted cameras. To increase the density
of the reconstruction for the body-mounted camera poses, we find
matches between the images from the absolute-registered camera
and the images from the unregistered cameras. Because the un-
registered cameras are close to the absolute-registered cameras, the
viewpoints are similar. This process enables us to reconstruct the
poses of the remaining cameras.

The relative camera registration processes are iterated until camera
registration is satisfactory. Figures 4(b) and 4(c) show the results
of absolute and relative camera registration. While the absolute
camera registration produces gaps, the fifth iteration of the relative
camera registration fills most of the gaps.

Homographies for Unregistered Cameras: After the iterative
camera registration, there may still be unregistered cameras for par-
ticular windows of time. This situation occurs, for example, when
an actor performs a fast motion such as running and the images are
blurry.

To deal with the remaining unregistered cameras, we estimate rela-
tive camera orientation between consecutive frames C1 and C2 us-
ing a homography. When the camera centers of two images coin-
cide, the relative orientation can be estimated from the homogra-
phies. Here, we assume that the camera center difference between
two consecutive frames is small enough to neglect, compared to the
distance between the 3D points and the camera centers. We ex-
tract 2D-2D matches based on the SIFT keypoint descriptors and
robustly find the consistent homography using RANSAC. Once the
homography H is estimated, the relative orientation, C2RC1 , can be
obtained by

C2
RC1 = K

−1
C2

HKC1 , (2)

where K is an intrinsic parameter matrix. To avoid drift caused
by one-way camera orientation estimation with homographies, we
take an average of forward and backward interpolation. If camera
positions are also needed, linear interpolation of the positions be-
tween registered cameras is used. This interpolation provides the
initialization of joint angles and root positions. The inlier 2D-2D
correspondences used for the homography computation are used as
image measurements in the subsequent optimization.



4.2 Mapping Cameras to a Skeleton

At the beginning of the capture, the actor is asked to perform a pre-
defined range-of-motion exercise, in which he exercises each joint
through its full range of motion. We extract the underlying skeleton
structure from the images recorded during the range-of-motion per-
formance. As is common with commercial motion capture systems
like Vicon, we use a predefined kinematic structure. One or more
cameras are associated with each link in the kinematic structure,
as shown in Figure 2(c). The root of the skeleton has six degrees
of freedom (DOFs), and the joints have three DOFs. We apply
the method of O’Brien and colleagues [2000] to estimate the skele-
ton and the 3D spatial relationship of each camera to the kinematic
structure (see Appendix). We do not currently consider biomechan-
ical constraints.

Forward Kinematics from Camera Poses: The skeleton provided
by the range-of-motion exercise is parameterized by the root posi-
tion, root orientation and joint angles. The root position and orien-
tation are taken to be coincident with the root camera. Hence given
the skeleton, we can obtain a pose for each time instant by applying
the waist camera pose to the root segment directly and applying the
relative orientations between pairs of cameras, along the kinematic
chain, to the joints. Note that positions of the camera poses are not
used except for the waist cameras.

Equation (1) considers the skeleton as a hard constraint for refine-
ment. Forward kinematics enables us to maintain this constraint by
estimating camera positions with respect to the skeleton. The Eu-
clidean transformation from the joint coordinate system, J , to the
world coordinate system, W , is defined as

W
TJ (t) =

�
W
RJ (t) W�pj(t)
0 1

�
, (3)

where W
RJ and W�pj are the orientation of the corresponding

camera and the position of the joint in W , respectively2. There-
fore, the position of its child joint, W

pj+1(t), in W is computed
as

W
pj+1(t) =

W
TJ (t) J

q, (4)

where J
q is a vector from the parent joint to the child joint in J .

This formulation allows us to estimate the hierarchical joint posi-
tion, recursively. Similarly, the camera position in the world coor-
dinate system can be re-estimated as

W
Cj(t) =

W
TJ (t)

�
−

J �pj

1

�
, (5)

where W
Cj(t) is a camera center attached to the j-th joint at time

t in W .

Virtual Cameras for Robust Limb Pose Estimation: Estimating
body-attached camera poses from SfM while the body is moving
is sometimes difficult because of motion blur, the rolling shutter ef-
fect, occlusion by limbs, and lack of texture in the background (e.g.,
sky). Under such conditions, the camera poses cannot be recon-
structed or are very noisy. When camera poses are mis-estimated,
the resulting motion of the skeleton is incorrect. To alleviate this
problem, we attach multiple cameras to the limb and estimate the
limb motion from a virtual camera, which takes a robust average
of those cameras (estimated using SfM). We use a virtual camera
where occlusion occurs frequently, where a precise estimation is
essential (e.g., for the root), or where camera registration is difficult
(e.g., for the chest to account for non-rigidity, or shin to deal with

2�p is an inhomogeneous representation of p.

(a) Computing a virtual camera pose
with average transform

(b) Parameterizing physical
cameras with a virtual camera

Figure 5: Illustration of a virtual camera (blue) created from phys-
ical cameras (orange). The virtual cameras are used to combine in-
formation from multiple body-attached cameras for additional ac-
curacy. (a) Average relative transforms between the cameras are
estimated across time, and the virtual camera pose is estimated by
applying the average relative transforms to the physical cameras at
each time instant. (b) The physical cameras are parameterized by
the virtual camera using the average relative transforms.

fast motion and impacts that result in imaging artifacts). The vir-
tual camera reduces the occlusion problem significantly and allows
skeletal motion to be reconstructed robustly.

The virtual camera poses can be estimated from motion over time.
Here, we assume that there are three physical cameras, C1, C2, and
C3, tightly connected to a single limb. One camera, e.g., C1, is
selected as a reference camera. As shown in Figure 5(a), the aver-
age relative transforms from the other two cameras to the reference
camera3, C1T̄C2 and C1T̄C3 , can be estimated across time,

C1
T̄C2 = fa

�
C1
TC2(1),

C1
TC2(2), · · · ,

C1
TC2(T )

�
, (6)

where fa(·) is a function that takes an average of the transforms.
Once the average transform is estimated, the inverse of the average
transform is used as a transform from the virtual camera, V , to the
physical cameras, i.e.,

C2
TV = C1

T̄
−1
C2

,
C3
TV = C1

T̄
−1
C3

. (7)

Then, the virtual camera pose can be obtained by again taking an
average of the transforms for C1, C2, and C3.

Now the transforms from the virtual camera to each physical cam-
era are known, which implies all physical cameras can be param-
eterized by the virtual camera pose (Figure 5(b)). This parameter-
ization will be used when reprojection errors are computed in the
subsequent optimization.

4.3 Estimating Body Poses with Global Optimization

The final step is to optimize body poses O and A by minimizing
the objective function in Equation (1). Conceptually, the optimiza-
tion seeks to find body poses of the skeleton, over time, that are
temporally smooth and result in low spatial error between the pro-
jected 3D structure, through the estimated cameras, and the actual
observed structure in the images. The initial guess of the body pose
is set with the registered camera poses and homographies, and the
Levenberg-Marquardt method is applied to refine the poses. Con-
sidering all poses over time in the optimization is computationally
expensive. Instead, we use a short time window and sequentially
optimize the poses by shifting the window.

3If the cameras are rigidly connected, the average relative transforms are
exactly the same as the relative transform at each time instant.



Reprojection Error Term: Er refines whole body poses based on
the reconstructed 3D structure and image measurements:

Er =
�

j,t,p

�Pj (Xp, t,O,A)− xj,t,p�
2
Σ

+
�

j,t,h

�Hj(t,A, �xj,t,h)− �xj,t−1,h�
2
Σ, (8)

where P (·) is a camera projection function, H(·) is a function to
apply a homography between consecutive images to an image mea-
surement, and j, t, p, and h are indices of cameras, time, 3D points
and 2D measurements for homographies, respectively. X is the lo-
cation of the 3D structure point in the world coordinate system, and
x is the corresponding 2D measurement. �x is a 2D measurement
after lens distortion correction for the homography.

The first term considers the reprojection errors of the 3D points
with the 2D measurements for the registered cameras. This mini-
mization is different from typical bundle adjustment of SfM in that
the camera poses are constrained by the skeleton. Using the projec-
tion matrix, Pj(t), of the camera associated with the j-th joint, the
projection function Pj is represented as

Pj (Xp, t,O,A) = Lj

�
Pj:1(t)Xp

Pj:3(t)Xp
,

Pj:2(t)Xp

Pj:3(t)Xp

�
, (9)

where Lj(·) distorts the reprojected position using the fisheye lens
distortion parameter of the j-th camera, and Pj:i is the i-th row of
the projection matrix Pj .

The second term is for the cameras that cannot be registered through
the absolute and relative registration. The rotation matrices of the
homographies in Equation (2) are parameterized with the joint an-
gles. The inlier 2D-2D correspondences detected in the RANSAC-
based homography estimation are used as image measurements.

Smoothness Terms: EO and EA can be also considered to ob-
tain smooth motion. The differences of the root positions and joint
angles between consecutive frames are minimized as

EO =
�

t

�O(t)−O(t− 1)�2Σ, (10)

EA =
�

t

�A(t)−A(t− 1)�2Σ. (11)

These terms are effective, particularly when the camera poses es-
timated from the absolute and relative registration contain undesir-
able jitter.

5 Results

In this section, we evaluate our system quantitatively using a con-
ventional motion capture system as ground truth, and show addi-
tional results collected out of doors.

5.1 Quantitative Evaluation

First, we evaluate the effect of the global optimization step. Fig-
ure 6(a) shows the comparison between the camera centers es-
timated by the Vicon markers and our reconstruction before the
global optimization but after the camera centers were adjusted
based on the estimated skeleton. Figure 6(b) shows the reduction in
error after global optimization with the smoothness terms.

Figure 7(a) compares the joint angle trajectories obtained by our
system with the measurements from the Vicon motion capture sys-
tem. The top row shows the joint angle trajectories of the upper
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Figure 6: Quantitative comparison of estimated camera centers
with those obtained using a motion capture system. (a) SfM pro-
duces a noisy reconstruction of the camera poses, and (b) the non-
linear optimization with the smoothness terms results in a more ac-
curate estimation.

body and the bottom row shows the joint angle trajectories of the
lower body. The joint angles illustrated in the figure are the an-
gle of the axis-angle representation normalized by the angle of the
first frame in the capture session. The mean and median errors
are 3.0093◦ and 1.8076◦, respectively, and the minimum and the
maximum errors are 0.038◦ and 9.52◦, respectively. The standard
deviation is 2.1891◦. Because the error of a parent joint angle prop-
agates to a child joint, the joint angle errors may not be sufficient
to characterize the error of the overall system. Therefore, we also
evaluate the errors of the joint positions (Figure 7(b)). The error
does not propagate significantly, because the optimization of Equa-
tion (1) finds a solution such that all cameras satisfy the image mea-
surements. The mean and median position errors are 1.76 cm and
1.42 cm, respectively, and the minimum and the maximum errors
are 0.053 cm and 12.24 cm, respectively. The standard deviation is
1.26 cm.

Method of Comparison: We now describe how we obtained these
quantitative comparisons. Our system produces camera poses in
the SfM space, while the motion capture system outputs 3D marker
positions in the motion capture space. To compare the two different
reconstructions, we needed to compute the following transforms
between the two spaces.

We attached three markers on each of the cameras and several mark-
ers on static objects and collected images from the cameras and the
corresponding marker positions from the motion capture system as
the subject moved. Using the 3D positions of the static markers
in the motion capture space and the corresponding image measure-
ments specified manually, the camera center positions and orienta-
tions in the motion capture space were estimated. Thus we could
convert the three marker positions in the motion capture data to the
camera poses.

To recover the similarity transform from the SfM space to the mo-
tion capture space, we estimated a scale from the distances between
the camera center pairs in both of the spaces. Then, we estimated
translation and orientation from the SfM space to the motion cap-
ture space by applying the iterative closest point algorithm to the
two sets of the camera centers. The parameters were used for the
similarity transform after non-linear refinement.
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Figure 7: Comparison of (a) joint angle trajectories and (b) joint position trajectories with the motion measured by the Vicon motion capture
system.

5.2 Outdoor experiments

The major benefit of our system is that it is portable and self-
contained, allowing prolonged captures in outdoor environments.
To illustrate these benefits we captured two sequences in the local
playground; the results are illustrated in Figures 8(a) and 8(b). We
also tested the ability to capture fast motions with a running motion
on a street (Figure 8(c)). The top rows show the photos of the sub-
ject performing the motions, and the bottom rows illustrate a posed
skinned character using the joint angles estimated by our system.
Some of these motions were quite dynamic and we observed faster
than 2.4 m/s instantaneous velocity of a camera in the swing and
running sequences. Though these motions resulted in image blur,
and the rolling shutter effect, we were able to properly reconstruct
the sequences.

Figure 9 shows a reconstructed long walking motion along the
winding path on an uneven terrain. The subject traversed a con-
siderable distance that is far greater than what would be possible in
a traditional indoor motion capture setup. We superimposed the
sparse 3D structure and manually matched the viewing angle to
a photo taken during the capture for reference. The sparse struc-
ture provides the context for the motion by showing the path along
which the subject has walked.

6 Discussion

We introduce a novel system for capturing human motion in both
indoor and outdoor environments. Our system consists of 16 or

more consumer video cameras attached to body segments. We es-
timate their motion with respect to the world geometry through a
SfM algorithm. We then relate and refine camera and skeletal mo-
tion through a non-linear optimization procedure. Our system has a
number of advantages over traditional optical and IMU-based sys-
tems, because it: (i) requires no instrumentation of the environment
and can easily be taken outside, (ii) is stable and does not suffer
from drift, and (iii) provides sparse 3D reconstruction of the world
for contextual replay or scene creation.

The principal causes of failure for our system are motion blur, au-
tomatic white balancing, rolling shutter effects, and motion in the
scene. Low light and the cropped-frame formats found in many
commercially available cameras can introduce motion blur as the
camera moves quickly. The blur makes it difficult to estimate cor-
respondences across frames. Automatic white balancing, which
cannot be disabled on many commercial cameras including ours,
also makes finding correspondences challenging when lighting con-
ditions are changing rapidly. Most CMOS chips employ a rolling
shutter that becomes noticeable in high impact motions. Substantial
motion in the scene, that may occur, for example, when recording
in a forest on a windy day, are also likely to present challenges as
they violate the intrinsic assumptions made by SfM. Despite these
limitations, however, as we illustrate, our system is capable of cap-
turing everyday motions outdoors for extended periods of time and
without noticeable drift.

Occlusion by other body parts can cause errors in motion estima-
tion. In practice, three mitigation strategies are used. First, the
cameras are carefully placed on the body to minimize the probabil-



(a) Swinging on a monkey bar

(b) Swinging on a swing

(c) Running on a street

Figure 8: Three captures outside of the laboratory environment: (a) Swinging on a monkey bar, (b) on a swing and (c) running on a street.
Top rows illustrate recordings from a reference camcorder camera of the performance, approximately matched in time to the rendered results
below. We are able to reconstruct these motions even though they are quite dynamic.

ity of self-occlusion from body parts. For instance, the cameras on
the thighs and shins are placed looking outward on the right side
of the leg. Second, for body parts that are likely to be occluded
such as the pelvis, we place multiple cameras. This redundancy
allows us to estimate motion even when some cameras experience
self-occlusion. Finally, RANSAC provides robustness in the case
of minor occlusions.

Our system requires significant computation power compared to
other motion capture systems. The bulk of processing time in-
volves SIFT keypoint detection/matching. For a minute of capture,
this step may require a day of processing for all cameras4. After
matching, each sequence requires approximately 10 hours for 10
iterations of absolute and relative camera registration. The final op-
timization can take up to 4 hours. However, this process is highly
parallelizable and a GPU should be very effective in speeding up
this computation.

As consumer demand continues to push camera prices lower and
quality higher, motion capture using body-mounted cameras may
become the setup of choice for outdoor capture. Smaller cameras
will reduce the motion of the camera relative to its limb and also

4Our cameras produce approximately 1000 SIFT matches and approxi-
mately 300 inliers per image.

permit other attachment technologies. Cameras are already small
enough to be embedded invisibly in clothing. City-scale 3D geo-
metrical models are also starting to emerge [Agarwal et al. 2009] as
faster structure-from-motion implementations [Frahm et al. 2010]
are introduced. Such large scale models can be directly utilized in
our system to contextualize long-term motions and compose mo-
tions of multiple people in a single geometrically coherent environ-
ment.
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Appendix: Estimating Skeleton from Range-
of-Motion

Joints are a point that connects the parent and child limbs, and these
limbs are associated to the parent camera P and the child camera
C. While the joint positions in the world coordinate system, W

pj ,
change over time, the joint positions in the parent and child cam-
era coordinate systems, P

pj and C
pj , are constant [O’Brien et al.

2000] (Figure 10(a)):

W
pj(t) =

W
TP(t)

P
pj = W

TC(t)
C
pj , (12)

where W
TP and W

TC are 4×4 Euclidean transformation matrices
from the parent and child camera coordinate systems to the world
coordinate system, respectively. Equation (12) follows that

P
pj = W

TP(t)
−1W

TC(t)
C
pj

= P
TC(t)

C
pj . (13)

(a) Joint and associated cameras

Rotation
axis

(b) Knee joint

Figure 10: (a) The skeleton is parameterized by parent and child
camera poses, P and C using local coordinate vectors, C

pj and
C
pj+1. (b) One-DOF joints produce a family of solutions for a

joint position that lie on the axis of rotation. By assuming the rest
pose is a fully extended extremity, where both limbs coincident at
the joint are co-linear, joint position can be regularized.

Thus, collecting Equation (13) for the j-th joint across time pro-
vides the homogeneous equation for C

pj ,




P
TC(t1)−

P
TC(t2)

P
TC(t1)−

P
TC(t3)

...
P
TC(t1)−

P
TC(tT )




C
pj = ∆T

C
pj = 0. (14)

For two or three-DOF ball joints, the right null vector of ∆T ob-
tained with singular value decomposition (SVD) is a solution of
C
pj . P

pj can be also computed in a similar way.

To obtain the skeleton for the whole body, the (j+1)-th joint posi-
tion from the parent joint in the corresponding camera coordinate
system, J

q, is computed for each limb as

J
q =

�
J �pj+1 −

J �pj

1

�
, (15)

where �p is an inhomogeneous coordinate of p, and J is the joint
coordinate system.

Additional Constraint on Knees: Knees are one-DOF hinge
joints, and Equation (14) becomes an undetermined system: two
null vectors can be obtained from ∆T, and the knee joint position
in the thigh camera coordinate system, CT pK, is a linear combina-
tion of the null vectors (Figure 10(b)):

CT pK = VKc, (16)

where VK is a matrix consisting of the two null vectors of ∆T and
c is a 2D coefficient vector for the null vectors. To determine c, we
consider the collinearity constraint caused by straight knees in the
rest pose. This collinearity constraint is represented as

�
W
pH −

W
pA

�
×

�
W
pK −

W
pA

�
= 0, (17)

where W
pH and W

pA are the hip and ankle joint positions, and
[·]

×
is the skew-symmetric representation for vector cross product.

The collinearlity constraint enables a unique solution of the knee
joint positions.


