
Pacific Graphics 2016
E. Grinspun, B. Bickel, and Y. Dobashi
(Guest Editors)

Volume 35 (2016), Number 7

Programmable Animation Texturing using Motion Stamps

A. Milliez1,2† M. Guay2 M.-P. Cani3 M. Gross1,2 R. W. Sumner1,2

1ETH Zurich 2Disney Research 3Univ. Grenoble Alpes & CNRS (LJK), Inria

Figure 1: Our system provides a modular framework for authoring stylistic enhancements on complex animations such as fluids (left) or cloth
(right). All or parts of the animation can be selected for stylization. The selected points are clustered and tracked over time. A stylization
engine instantiates parameterized animations for each cluster, such as the fish and butterflies shown here that spawn when water is lifted off
or when wrinkles form.

Abstract

Our work on programmable animation texturing enhances the concept of texture mapping by letting artists stylize arbitrary
animations using elementary animations, instantiated at the scale of their choice. The core of our workflow resides in two
components: we first impose structure and temporal coherence over the animation data using a novel radius-based animation-
aware clustering. The computed clusters conform to the user-specified scale, and follow the underlying animation regardless
of its topology. Extreme mesh deformations, complex particle simulations, or simulated mesh animations with ever-changing
topology can therefore be handled in a temporally coherent way. Then, in analogy to fragment shaders that specify an output
color based on a texture and a collection of properties defined per vertex (position, texture coordinate, etc.), we provide a
programmable interface to the user, letting him or her specify an output animation based on the collection of properties we
extract per cluster (position, velocity, etc.). We equip elementary animations with a collection of parameters that are exposed
in our programmable system and enables users to script the animated textures depending on properties of the input cluster. We
demonstrate the power of our system with complex animated textures created with minimal user input.

1. Introduction

The appearance of 3D surfaces can be controlled with 2D im-
ages through the well-known process of texture mapping. Local 2D
parametrizations of a three dimensional object are packed in a UV
map and exposed to artists, who can use digital painting tools to
give a flat description of the appearance of the 3D model. Texture

† e-mail:antoine@disneyresearch.com

images can encode information such as color, normal perturbations,
or material parameters. At render time, programmable shaders let
users define the fragment colors of the rendered image as a function
of the surface geometry and of its texture-mapped parameters. Tex-
ture mapping is especially powerful for locally repetitive surface
appearance, where a pattern element can be defined once in texture
space, and replicated over a surface through a carefully crafted UV
map.

In the context of 3D animation, a wide range of tools of various

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



A. Milliez, M. Guay, M.-P. Cani, M. Gross, R. W. Sumner / Programmable Animation Texturing using Motion Stamps

complexity give artists fine control over the shape of a character,
its animation and its appearance, letting them craft complex ani-
mations. However, stylizing animations with locally repetitive ani-
mated elements remains a tedious task. In particular, while modern
simulation systems for fluids and cloth achieve a high degree of
physical realism and deliver results that are often indistinguishable
from reality, the creative vision for a computer animated film may
call for a more stylized look. While some variations, such as the
degree of turbulence in a fluid simulation or the apparent weight of
a garment’s fabric, are easily achieved through simulation param-
eter tuning, more dramatic art direction cannot be accommodated
by changing simulation parameters. For example, the creative vi-
sion for an animated film may call for portions of a fluid simulation
to be enhanced with an animated mesh that evolves over time as
the fluid moves, or for the wrinkles in a cloth simulation to exhibit
life of their own by spawning individual animated elements that are
coherent with the evolving wrinkle patterns.

These highly art-directed effects call for animated elements that
move and deform in a particular way based on the desired look, and
existing tools are not designed to incorporate such animations into
complex animations in a coherent and unified way. The complexity
of the rich motion created by simulation systems makes this co-
herent stylistic adjustment a highly cumbersome task. As a result,
animators must either abandon desired art-directed enhancements
or, when budget allows, invest the laborious effort needed for spe-
cialized one-off effects.

Inspired by texture mapping, our work targets art-directed stylis-
tic enhancements to complex animations using a novel algorithm
for spatio-temporal clustering, and a programmable framework for
animation instancing. Since complex animations such as simula-
tions often deliver unstructured data that is independent from frame
to frame, we apply our clustering algorithm to impose structure and
temporal coherence on the selected points. Clusters are tracked over
time and dynamically added and removed as the animation evolves.
They provide information about the local behavior of the under-
lying animation, in analogy to UV maps that provide information
about the local geometry of the underlying surface.

Finally, each cluster is used as input to a stylization engine
that instantiates parameterized animation components called mo-
tion stamps. Each motion stamp represents a parameterized ani-
mated scene that can have geometry, motion, and other parametric
variations. Our system connects parameter values associated with
the clusters, such as position, size, velocity, or other feature values,
to the motion stamp parameters so that the stamp animations are di-
rectly parameterized by the animation that should be textured. This
concept is analogous to fragment shaders, that let users define frag-
ment colors depending on the input geometry parameters. Taken to-
gether, this framework provides a flexible procedure for animators
to texture animations with custom, art-directed content. Examples
of our method used to enhance a fluid and a cloth simulations are
shown in Figure 1.

Our main contribution is a modular framework for authoring
stylistic enhancements of complex animations such as fluids and
cloth. On a technical level, we contribute an artistically motivated
spatio-temporal clustering method to establish coherence over time,
and a parameterized instancing component based on the feature val-

ues. We demonstrate our system with several examples, including
a water simulation that is represented by swimming fish and erupts
into a flock of birds when different components of the fluid splash
together and a wrinkle pattern on cloth whose high curvature values
lead to butterflies that spawn and fly away.

2. Related work

Adding realistic details to simulations. A large body of work has
focused on adding realistic details to existing simulations. A strat-
egy in fluid simulations is to enhance a coarse velocity field with
higher resolution sub-scale turbulence. Different sub-grid mod-
els of turbulence were introduced to computer graphics [KTJG08,
SB08, PTC∗10, NSCL08], modeling the transfer from coarse fluid
velocity to fine scale turbulence. Other methods focus on special-
ized procedural techniques for generating spray, droplets and foam
on height-field [MY97, CM10] and 3D particle-based simulations
[OCv13,IAAT12]. These methods have succeeded at increasing the
realistic details of a fluid simulation, but do not accommodate ex-
pressive and artistic styles of motion. Similarly, in cloth simula-
tion, many works seek to upscale a coarse simulation with detailed
wrinkles either procedurally [HBVMT99,KWH04,RPC∗10], using
data-driven techniques [dASTH10, WHRO10, KGBS11, ZBO13],
or through explicit user direction [BMWG07] . These methods are
compatible with our work, as we can offer animated stylistic en-
hancements on top of the simulation output to achieve particular
artistic effects.

Gross control of simulation shape. Other work enhances the
art-directability of simulations by focusing on gross control over
the shape of the simulation itself. Research in this area allows
artists to direct simulations of smoke [TMPS03, SY05], liquids
[TKPR06, RTWT12], clouds [DKNY08], cloth [WMT06], or elas-
tic solids [MTGG11, STC∗12] to take on particular shapes, such
as a cow made of smoke or a horse made of water. Rather than en-
forcing these large modifications of the shape of the simulation, our
work aims to enhance simulations with animations that target spe-
cific art-directed effects. By focusing on a modular pipeline based
on feature detection, our system can support a variety of enhance-
ments that connect fluid features to animation instances.

Stylizing fluids with 2D exemplars. One technique to en-
hance fluids is to use 2D texture patches along the velocity field
[Ney03, SMC04, BBRF14, JFA∗15]. Texture advection [Ney03]
consists in transporting the UV coordinates the texture, while lim-
iting the distortion of the UVs over time as much as possible. An
alternative is to consider small individual stencils as particles and
splat them to produce the final look—as is done for cartoon smoke
in [SMC04]. Similar in spirit to our work, they improve the coher-
ence over time of the stylization by modulating the stencils based
on particle properties. Recent techniques reduce the distortion with
a synthesis process based on self-similarity when blending between
textures [BBRF14, JFA∗15]. While these methods allow creating
impressive looks, they are focused on 2D texture exemplars while
we target 3D stylistic enhancements and provide a general frame-
work that supports both fluids and cloth. Additionally, the inter-
nal motion of the texture example is entirely guided by the texture
synthesis optimization routine and the fluid velocity. In contrast,

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Milliez, M. Guay, M.-P. Cani, M. Gross, R. W. Sumner / Programmable Animation Texturing using Motion Stamps

our programmable framework allows our motion stamps to vary
according to other features such as the radius of the cluster.

Dynamic texture synthesis. One way of facilitating the pro-
cess of stylizing an animation with potentially non-realistic anima-
tions is to extend texture synthesis to the dynamic case. The ba-
sic idea is to repeat a pattern over a domain following principles
of coherence and causality. Traditional 2D texture synthesis meth-
ods have been extended to the 3D domain with 3D mesh texture
elements [MWT11] and then to the temporal domain [MWLT13].
Given a user-provided exemplar and an animated domain to texture
(a 2D surface or a set of 1D strands), their goal is to automatically
cover the domain with the exemplar while ensuring coherence in
both the spatial and temporal dimensions. It is unclear how to adapt
their example-based structural similarity to topologically varying
domains such as liquids. In contrast, our method can synthesize co-
herent trajectories over topologically varying domains and provides
artistic control over the instantiation in time.

Motion stamps. Dynamic stylization can be time consuming
when performed manually. Hence previous works have investigated
the idea of linking parametric motions to larger scale movements
designed by the animator [CHG14, MNB∗14]. In these works, 2D
or 3D animated stamps are controlled by sketching their positions
or trajectories. Chevalier et al. propose an interface for designing
2D flows and controlling the parameters of overlaid 2D texture ele-
ments moving along the flow [CHG14]. Milliez et al. allow the user
to sketch the position of 3D animated meshes and control additional
parameters such orientation using gesturing strokes [MNB∗14]. We
adopt the same “motion stamp” concept proposed by Milliez et al.
and extend it to work in the context of simulation enhancement.
Neither method addresses the problem of feature selection or tra-
jectory extraction in the context of complex fluid or cloth simula-
tions.

Clustering. A core component of our system addresses tempo-
rally coherent clustering of 3D points respecting a user-specified
size. Data clustering is a research field in itself, and Xu and Wun-
sch provide a survey of clustering algorithms [XW05]. We are in
particular inspired by spatial hierarchical clustering techniques, of
which a detailed review is available in [HKT01]. In order to sup-
port an artist-inspired workflow, we favor an application-oriented
clustering and tracking algorithm. Related techniques for spatio-
temporal clustering target data such as moving pedestrians or ve-
hicles [LHY04,HP04,NP06,AAR∗09,JLO07,JYZ∗08,KMNR10].
One of the core differences with our work is that these techniques
are designed to track grouped points over time, while we support
more general feature-based space-time clustering where the sets
of points constituting the features being clustered are allowed to
change over time.

3. Overview

Our method enables artists to texture complex animations by ex-
tracting temporally coherent structures that locally describe these
animations. The artists can then specify a correspondence between
the characteristics of the extracted structures and parameters of
user-defined animation elements called motion stamps. Our method
allows one to specify the size of the structures that locally describe

the underlying animation, and is applicable even when the set of
animated points change over time.

When analyzing artistic stylization in hand-drawn animations,
we observe that animators often stylize visually salient areas of
an animation in order to emphasize or exaggerate their qualities.
Based on this observation, we let artists choose to texture a whole
animation or only parts of it. We provide a UI letting artists specify
relevant areas based on features such as vertex curvature, position,
or velocity. Texturing salient parts of an animation such as waves
rolling over an ocean or cloth wrinkles sliding along the surface of
a garment is made possible thanks to our structure extraction that
is independent of the topology of the underlying animation.

Our solution includes two main components:

• Space-time clustering. Since the points that define a simulation
are often unstructured without temporal consistency, we propose
a novel spatio-temporal clustering method to establish coherence
in the simulation data. Clusters may appear or disappear, split or
merge over time, triggering the appearance or disappearance of
motion stamps when and where needed, based on the evolution
of the animation.

• Motion stamp control. For each cluster, a stylization engine in-
stances a motion stamp whose parameters are connected to the
detected feature values. Our method allows one to control time
cycles of motion stamps, temporal warping, changes in scale
and orientation, as well as deformation parameters such as the
amount of stretch or twist of an animated shape.

The parts of our work are respectively described in the next two
sections.

4. Dynamically Coherent Clustering

Given a set of 3D points Ps defining all or parts of an animation,
our goal is to create a uniform distribution of clusters that meet
the desired radius of the animated stamps. While many methods
targeting spatial clustering exist (see Section 2), they do not allow
directly specifying the radius of the computed clusters. Since the
clusters will be used as support to instantiate motion stamps, it is
crucial that our method provides control over the size of those clus-
ters. We let users specify a radius and a tolerance threshold, defin-
ing the range of acceptable cluster sizes. This enables the detection
of clusters whose size varies over time. The second challenge is
to create a dynamically coherent clustering, i.e. the ability to have
clusters that move over time without temporal discontinuities.

To allow the user to specify a range of acceptable cluster radii,
we employ a hierarchical clustering strategy (described below), and
track the clusters over time by mixing advection and dynamic re-
clustering. In other words, we initialize a clustering at the beginning
of the animation, and then advect the clusters over time by sampling
the velocities of the clustered points, and re-clustering areas that
hold new features that appeared over time.

4.1. Spatial Clustering

Our spatial clustering routine is a hierarchical clustering which re-
sults in a tree graph with bottom leafs holding a cluster with a sin-
gle 3D point, and the root node a single cluster containing all the

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Milliez, M. Guay, M.-P. Cani, M. Gross, R. W. Sumner / Programmable Animation Texturing using Motion Stamps

Animation

Feature-based
Selection

Clustering
and Tracking

Motion Stamp
Generation

Figure 2: Overview of our pipeline.

points. Each node describes a set of points and its radius, a node’s
parent always has a larger radius, while a node’s child always has a
smaller one. Given a range of acceptable cluster radii, we can parse
the tree and select clusters at the appropriate hierarchical level.

To create the hierarchical clustering structure, we start by cre-
ating a cluster for each 3D point, setting its radius to 0. Then we
iteratively merge the two nearest clusters into a larger one until all
clusters have been merged into a root node containing all 3D points
(see Figure 3). In practice, building the whole hierarchy is not nec-
essary since the root cluster will often be larger than the maximum
desired radius. Instead, we keep track of the radius of each cluster
at each iteration. If two clusters get merged and the new cluster’s
radius is above the maximum allowed value, we stop this iteration
and look at the two clusters getting merged. If a cluster has its ra-
dius larger than the minimum authorized radius, then it is tagged as
a valid cluster and will be propagated further down our pipeline.

Note that this algorithm computes clusters only if their radii
are within the acceptable range and therefore does not necessarly
provide a partition of the selected 3D points. For instance, water
droplets smaller than the prescribed radius and too far apart will
merge into a cluster with an undesirable large clusters, and they
will be discarded since they are too small, which complies to the
user-specified cluster size.

4.2. Space-time clustering

Given two clusterings of the animation at two different moments
in time, the correspondence between the two sets of clusters can
be ambiguous; it can be hard to know which cluster at a time step
corresponds to which cluster at the next step. One possible strategy
to overcome this ambiguity is to perform a hierarchical space-time
clustering of the animated points. Such an algorithm would be sim-
ilar to the spatial clustering described in Section 4.1. Each particle
at each time frame would be assigned to one cluster, and the two
closest clusters in both time and space would be iteratively merged.
While our experiments have shown that this method provides sat-
isfying results, the cluster hierarchy computed over a complex ani-
mation is very memory and time consuming, which is not desirable
when interactively manipulating animations.

Our strategy is instead to create a first spatial clustering at time
tk, and to then advect the clusters, predicting their positions at time
tk+1. We can use the predicted cluster positions to efficiently com-
pute a clustering at tk+1 as shown in Figure 4, and iterating this
step results in a fast algorithm producing temporally coherent clus-
ter data.

Advecting clusters requires the definition of cluster velocity. Two
velocities can be defined for a specific cluster: the average of its el-
ement (vertex or particle) velocities, or the velocity obtained by fi-

nite differences over the cluster’s successive positions. We found in
our experiments that both definitions can be appropriate depending
on the application. When clustering wrinkles moving over a shirt,
the vertices constituting the wrinkles follow a trajectory mostly
along the normal direction to the shirt, while the wrinkles slide tan-
gentially to the cloth. When clustering particles in a flowing river
simulation however, a cluster should move along the water and fol-
low the particle velocities. Ignoring the particle velocities could re-
sult in static clusters, that would be surrounded by particles at each
time step while having a null velocity.

This observation lead us to offer the user the choice to compute
clustering based on point velocities or on cluster velocity. When
choosing to use cluster velocities, we initialize the cluster velocities
after the initial spatial clustering to be zero, they are then updated
as the spatio-temporal clustering progresses.

During spatio-temporal clustering, after any time step tk, we es-
timate each cluster’s position at time tk+1 by advecting its previous
position using the velocity type chosen by the user. We use a pri-
ority queue to store all the pairs (estimated cluster position, 3D
point) at time tk+1 and use it to successively assign 3D points to
their closest estimated cluster center. Each assignment is discarded
if it conflicts with the user specifications: if the assignment would
bring the cluster radius over the maximum authorized one, or if the
displacement of the cluster would increase the cluster velocity over
the maximum authorized value.

Once the assignment step done, the remaining points (features
appearing in the animation, or points that would have enlarged ex-
isting clusters beyond user specifications) are clustered using our
spatial clustering method and added to the set of computed clusters.
Note that since this spatial hierarchical clustering is only computed
when and where needed, the computation time of our method does
not suffer much from rebuilding a cluster hierarchy.

Finally, we detect splits and merges between clusters. Using the
initial velocity of a cluster, we backtrack its first position one frame
in time, and look at the backtracked position’s neighborhood. If the
existing cluster closest to that position is within δt ∗maxvel , with
maxvel the maximum authorized cluster velocity, we mark this as
a split event: the already existing cluster has its own trajectory, but
splits to spawn the new one. We apply a similar process to detect
merges at the end of a cluster’s life. Later in the pipeline, the user
can chose to use that split/merge knowledge for stylization.

5. Programmable motion stamps parameterization

Our goal is to texture animations with animated motion. In the pre-
vious section, we described how to obtain dynamic clusters of pre-
selected size moving along the animation. Each cluster provides lo-
cal spatio-temporal information about local parts of the animation.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Milliez, M. Guay, M.-P. Cani, M. Gross, R. W. Sumner / Programmable Animation Texturing using Motion Stamps

Figure 3: Each 3D point is assigned to an individual cluster of radius 0 (blue). We iteratively merge the two closest clusters until we reach
one cluster covering all the data (orange). The cluster hierarchy (right) can then be used to get clusters with a desired radius.

Figure 4: The cluster velocities at time tk (left) are used to predict
the cluster positions at tk+1 (center). Assigning 3D points to the
closest predicted centers (right) yields a partial clustering at tk+1.
The non-clustered points (black) are then clustered in an indepen-
dent step.

We build an analogy with traditional texture mapping. To render
a textured surface, it is discretized into faces, bounded by vertices
and edges. Each vertex can carry information such as its position,
color, normal, or texture coordinate, the latter helping to define lo-
cal 2D parameterizations of the 3D surface. By writing a vertex
shader, the user defines how 3D vertices are projected onto the
screen. Then by writing a fragment shader, the user can specify
an output color, defined by four parameters (red, green, blue, al-
pha), depending on the information carried by the vertices that are
projected onto the screen.

In our framework, the base animation is discretized into clusters,
that carry information sampled from their components: their clus-
ter velocity and component velocity, their position, radius, normal,
etc. The user can write scripts that we call motion shaders to pa-
rameterize animation instances. We use the formalism introduced
by Milliez et al. [MNB∗14] and define elementary animations as
motion brushes. A motion brush can be as flexible as a procedu-
rally defined shape and as rigid as a baked 3D animation. A motion
brush is analogous to a 2D texture. Instances of motion brushes in a
scene are called motion stamps, and carry a set of parameters such
as position, scale, orientation, opacity multiplier, animation speed,
etc. When writing motion shaders, users define the values of a sin-
gle motion stamp’s parameters based on a single input cluster, the
same way fragment shader programs define the color of a single
fragment at a time (Figure 5).

As described in 4.2, our space-time clustering detects if a cluster
has splitted from or is merging into another cluster. That informa-
tion is available in our motion shader framework and the user can
read the parameters of the clusters splitted from or merged into. The
motion shader can ignore it, or can adapt the instantiated motion
stamp’s parameters accordingly. For example in the provided sup-
plemental videos, the butterly motion shader ignores those events

and every butterfly appears with a rising animation, and disappears
by flying away. The fish motion shader however takes note of the
split information. When a cluster appears splitting from another
one, the motion shader aligns the motion stamp parameters with
the older cluster for a few frames. The result animation does not
result in a popping fish animation, but shows fish splitting in two.

Our motion stamp engine then runs the user-specified motion
shader on each computed cluster and automatically instantiates mo-
tion stamps within the scene. The attached video shows various ex-
amples of textured animations including changes between different
motion stamps during the life of a cluster.

Cluster
Motion
Stamp

Figure 5: Users can choose how the cluster data is used to parame-
terize the motion stamps.

6. Results

We implemented our pipeline as a plugin for Autodesk Maya (
[May16]), in order to take advantage of the production pipeline pro-
fessional artists are acquainted with. Both cloth and liquid anima-
tions seen in this paper were simulated using technology natively
available in Maya.

The user can open a scene, select a simulation object, and load
our plugin. When desired, we provide a visualisation of the selected
parts of an animation by coloring the selected particles or the mesh
vertices. Our plugin provides UI controls to adjust thresholds for a
variety of vertex and particle parameters, letting users select parts
of the animation depending on that information. In the case of com-
plex feature selection, the user can even script the value of the score
for each 3D point.

The user starts the clustering procedure by first using UI ele-
ments to specify the desirable cluster radius and the tolerance for
admissible cluster radii, as well as the maximum authorized clus-
ter velocity. Our clustering algorithm is fast and if the user is not
satisfied with the result, he or she can change the parameters and
run the clustering algorithm again. We present some performance
results in Table 1.

Finally, the user can edit motion shaders that parametrize motion

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Milliez, M. Guay, M.-P. Cani, M. Gross, R. W. Sumner / Programmable Animation Texturing using Motion Stamps

nPoints nFrames nClust. time
Water Fish 134,651 127 238 6s
Water Bird Drops 132,120 130 435 8s
Butterfly Shirt 457,748 215 2578 38s

Table 1: For each result, the number nPoints of 3D points clustered
in the animation, over nFrames frames, into nClust clusters. Com-
putation time reported in the last column.

stamps depending on the cluster data. The collection of already im-
plemented shaders is exposed to the user, who can decide to reuse
previous shaders, or to write a new one.

Figure 6 shows a simple toy example: a simulated cloth rectan-
gle is held by two handles that exerce a vertical motion. The cloth
simulation produces a wave motion. The goal here was to cover the
cloth with butterflies, that take off as the wave motion propagates
along the cloth.

The user could define the selection based on the y position of
vertices, as well as the animation time. The desired cluster radius
was defined as the desired butterfly radius, and the maximum au-
thorized velocity for each cluster was set relatively high (3 times
the cluster radius) to ensure proper tracking during the fast cloth
movement. Once the clustering was performed, the user could use
two motion brushes describing butterfly animations: idle and take
off, and script the motion stamp instantiation through the following
script (presented here as pseudo code).

while (cluster is alive)
{

stamp.position ← cluster.center
stamp.scale ← cluster.radius / stamp.radius
stamp.upDirection ← (0,1,0)
loop play idle animation

}
for (frame = cluster.end +1

to cluster.end + take off duration)
{

keep the same position, scale, orientation
play take off animation once

}

For the wrinkle stylization seen in Figure 1, the wrinkles on the
T-shirt were selected based on the vertex curvatures (wrinkles ex-
hibit a high curvature) and positions (so as to ignore the wrinkles
on the arms). Butterfly motion stamps were then scripted to fol-
low the cluster centers, first playing a spawning animation once,
followed by a looped idle animation. When clusters disappear, the
stamps were scripted to keep the same position and play a take off
animation once.

We also created different liquid simulation scenarios. First, as
shown in Figure 7, water is thrown with a high initial horizontal
velocity, and is projected in the air by a bump on the ground. The
user could select various parts of the animation to cluster them, and
use the clusters to texture the liquid with animated fish. In a similar
fashion to previous results, the fish radii are dictated by the cluster
sizes, while the fish positions and orientations are parametrized by

the cluster positions and velocities respectively. Replacing the fish
by another type of motion stamps like the birds seen in Figure 7
is simply done by changing the type of motion stamp used in the
motion shader.

Motion stamp parameters are not limited to the ones used in
our results so far. We demonstrate the flexibility of our method by
parametrizing the deformation of spring-like shapes. Each spring’s
stretch factor is parametrized by the underlying cluster’s veloc-
ity, its bending by the curvature of the cluster’s trajectory, and its
revolution angle is scripted to increase over time. Considering the
spring shape as a 1-frame animation, this example fits in the formal
definition of motion stamps described in [MNB∗14]. However, we
are essentially producing the shape animation on the fly depending
on the cluster data, instead of reusing animated examples.

Finally, we show more complex examples of animation textur-
ing. In the first, two liquids collide and create a splash, as shown
in Figure 8. Selecting particles based on their position and veloc-
ity, the user could successively stylize the two sets of fast moving
particles aiming at the collision area. By setting the same desired
cluster properties on the two sets, and texturing them using the fish
parametrization described above, the user could easily instantiate
two crowds of fish with similar radii aiming at a frontal collision.
Then, selecting particles based on their position and time of exis-
tence, the user could isolate the particles that constitute the splash.
After clustering them, a bird parameterization similar to the previ-
ously described one was used, thus texturing the splashing drops
with flying birds. We show a composition of the fish and birds, ren-
dered along with the meshed particles.

The last example seen in Figure 1 shows a hand lifting water
from a pond. After selecting particles based on their vertical posi-
tion, the user textured the water lifted off by the hand, turning the
water into fish as it is being manipulated.

7. Conclusion

In this work, we have devised an animation texturing framework
that allows animators to author stylizations on top of complex ani-
mations. Our programmable approach allows artists to select salient
areas of basic animations, as well as to link the stylization behavior
and motion of the instantiated motion stamps to the attributes of the
underlying animation. Our clustering algorithm can be efficiently
implemented without copying any point data, and we have shown
results of its performance. However, its sequential design makes a
performance improvement through parallelization challenging. We
have implemented our work within Autodesk Maya for artistic con-
venience: it provides all the necessary tools for animation author-
ing, and our method integrates well within that workflow. However,
while motion shaders are simple programs and our motion shader
processor can be straightforwardly parallelized, the time spent pro-
cessing the shaders is negligible compared to the processing time
required by the Maya API to read motion brush files from disk and
to set motion stamp parameters and keyframes.

While our method lets artists semi-automatically create complex
arrangements of animations that would otherwise be very challeng-
ing to produce by hand, we could already identify interesting areas
for future work.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Milliez, M. Guay, M.-P. Cani, M. Gross, R. W. Sumner / Programmable Animation Texturing using Motion Stamps

Figure 6: From left to right: original animation with colored selection of vertices, clustering over the selected vertices, motion stamp, textured
animation.

While we have demonstrated our implementation on cloth and
particle simulations, we believe that our method can easily extend
to other types of animated data. Eulerian simulations for example,
are typically used to represent smoke or fire. Each cell in a Eulerian
simulation grid provides a velocity vector that we could rely on
in our spatio-temporal clustering algorithm, and scalar data such
as density or temperature could be used to parameterize motion
stamps.

While our method instantiates and tracks clusters based on the
underlying animation, there is so far no interaction between the
clusters. Using the detected splits and merge informations, the user
can decide to temporarily align rigidly new appearing clusters to
existing ones, giving the impression that instantiated stamps are
splitting, as is seen in the accompanying video. However, one could
imagine designing, in addition to a motion stamp animation, a mo-
tion stamp merging animation, that would be played when two clus-
ters merge. While our current method rigidly transforms a motion
stamp to instantiate it, instantiating merging motions would require
a non-rigid deformation of the motion stamps’ trajectories, which
we do not currently support.

Our clustering is based solely on point positions, which is an ac-
ceptable limitation for the results targeted in this paper. However,
one could envision use-cases where more metrics would be rele-
vant. For example in the complex case of particles moving in dif-
ferent directions while being in the same vicinity, one might want to
cluster them based on velocity. It is unclear whether exposing sev-
eral metrics to the user would result in an intuitive and predictable
interface, which would be an interesting question to explore when
extending this work.

Another feature that could contribute to interesting results would
be a remeshing step to merge the animation mesh and the instan-
tiated motion stamps. While our method is already satisfying for
instantiating fish in water for example, it is not well suited to chang-
ing the shape of the water. If a user wants to select every wave in
an ocean to change their shape, the current approach would be lim-
ited to instantiating new wave shapes on top of the existing ones.
Computing a smooth mesh over the animation and the instantiated
geometry would provide more appealing results.

Finally, we feel like our clustering algorithm could be used for
level of detail stylization of 3D scenes. Indeed, by incorporating a
camera model into our clustering, one could imagine seeing more
clusters appear on a scene as the camera zooms in. The radius oc-
cupied by each cluster on the screen could also be used to parame-
terize the motion stamp animations.

References
[AAR∗09] ANDRIENKO G., ANDRIENKO N., RINZIVILLO S., NANNI

M., PEDRESCHI D., GIANNOTTI F.: Interactive visual clustering of
large collections of trajectories. In Visual Analytics Science and Tech-
nology, 2009. VAST 2009. IEEE Symposium on (Oct 2009), pp. 3–10.
3

[BBRF14] BROWNING M., BARNES C., RITTER S., FINKELSTEIN A.:
Stylized keyframe animation of fluid simulations. NPAR 2014, Proceed-
ings of the 12th International Symposium on Non-photorealistic Anima-
tion and Rendering (June 2014). 2

[BMWG07] BERGOU M., MATHUR S., WARDETZKY M., GRINSPUN
E.: Tracks: Toward directable thin shells. ACM Trans. Graph. 26, 3
(2007). 2

[CHG14] CHEVALIER F., HABIB R., GROSSMAN T.: DRACO: Bringing
Life to Illustrations with Kinetic Textures. ACM CHI Conference . . .
(2014), 351–360. 3

[CM10] CHENTANEZ N., MÜLLER M.: Real-time simulation of large
bodies of water with small scale details. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (Aire-la-
Ville, Switzerland, Switzerland, 2010), SCA ’10, Eurographics Associa-
tion, pp. 197–206. 2

[dASTH10] DE AGUIAR E., SIGAL L., TREUILLE A., HODGINS J. K.:
Stable spaces for real-time clothing. ACM Trans. Graph. 29, 4 (July
2010), 106:1–106:9. 2

[DKNY08] DOBASHI Y., KUSUMOTO K., NISHITA T., YAMAMOTO T.:
Feedback control of cumuliform cloud formation based on computa-
tional fluid dynamics. ACM Trans. Graph. 27, 3 (2008). 2

[HBVMT99] HADAP S., BANGERTER E., VOLINO P., MAGNENAT-
THALMANN N.: Animating wrinkles on clothes. In Proceedings of the
Conference on Visualization ’99: Celebrating Ten Years (Los Alamitos,
CA, USA, 1999), VIS ’99, IEEE Computer Society Press, pp. 175–182.
2

[HKT01] HAN J., KAMBER M., TUNG A. K. H.: Spatial clustering
methods in data mining: A survey. In Geographic Data Mining and
Knowledge Discovery, Research Monographs in GIS (2001), Miller H. J.,
Han J., (Eds.), Taylor and Francis. 3

[HP04] HAR-PELED S.: Clustering motion. Discrete & Computational
Geometry 31, 4 (2004), 545–565. 3

[IAAT12] IHMSEN M., AKINCI N., AKINCI G., TESCHNER M.: Unified
spray, foam and air bubbles for particle-based fluids. Vis. Comput. 28,
6-8 (2012), 669–677. 2

[JFA∗15] JAMRIŠKA O., FIŠER J., ASENTE P., LU J., SHECHTMAN E.,
SÝKORA D.: Lazyfluids: Appearance transfer for fluid animations. ACM
Trans. Graph. 34, 4 (July 2015), 92:1–92:10. 2

[JLO07] JENSEN C. S., LIN D., OOI B. C.: Continuous clustering of
moving objects. Knowledge and Data Engineering, IEEE Transactions
on 19, 9 (Sept 2007), 1161–1174. 3

[JYZ∗08] JEUNG H., YIU M. L., ZHOU X., JENSEN C. S., SHEN H. T.:
Discovery of convoys in trajectory databases. Proc. VLDB Endow. 1, 1
(Aug. 2008), 1068–1080. 3

[KGBS11] KAVAN L., GERSZEWSKI D., BARGTEIL A. W., SLOAN P.-
P.: Physics-inspired upsampling for cloth simulation in games. ACM
Trans. Graph. 30, 4 (July 2011), 93:1–93:10. 2

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Milliez, M. Guay, M.-P. Cani, M. Gross, R. W. Sumner / Programmable Animation Texturing using Motion Stamps

[KMNR10] KISILEVICH S., MANSMANN F., NANNI M., RINZIVILLO
S.: Spatio-temporal clustering: a survey. In Data Mining and Knowledge
Discovery Handbook, Maimon O., Rokach L., (Eds.). Springer US, 2010,
pp. 855–874. 3

[KTJG08] KIM T., THÜREY N., JAMES D., GROSS M.: Wavelet tur-
bulence for fluid simulation. ACM Transactions on Graphics (TOG) -
Proceedings of ACM SIGGRAPH 2008 27, 3 (2008), 50. 2

[KWH04] KIMMERLE S., WACKER M., HOLZER C.: Multilayered
wrinkle textures from strain. In VMV (2004), Girod B., Magnor M. A.,
Seidel H. P., (Eds.), Aka GmbH, p. 225Ű232. 2

[LHY04] LI Y., HAN J., YANG J.: Clustering moving objects. In
Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (New York, NY, USA, 2004),
KDD ’04, ACM, pp. 617–622. 3

[May16] MAYA: Autodesk Maya, 2016. http://www.autodesk.com/maya.
5

[MNB∗14] MILLIEZ A., NORIS G., BARAN I., COROS S., CANI M.-P.,
NITTI M., MARRA A., GROSS M., SUMNER R. W.: Hierarchical mo-
tion brushes for animation instancing. In Proceedings of the Workshop
on Non-Photorealistic Animation and Rendering (New York, NY, USA,
2014), NPAR ’14, ACM, pp. 71–79. 3, 5, 6

[MTGG11] MARTIN S., THOMASZEWSKI B., GRINSPUN E., GROSS
M.: Example-based elastic materials. ACM Trans. on Graphics (Proc.
SIGGRAPH) 30, 4 (2011), 72:1–72:8. 2

[MWLT13] MA C., WEI L.-Y., LEFEBVRE S., TONG X.: Dynamic el-
ement textures. ACM Transactions on Graphics 32, 4 (2013), 1. 3

[MWT11] MA C., WEI L.-Y., TONG X.: Discrete element textures.
ACM Transactions on Graphics 30, 4 (2011), 1. 3

[MY97] MOULD D., YANG Y.-H.: Modeling water for computer graph-
ics. Computers & Graphics 21, 6 (1997), 801–814. 2

[Ney03] NEYRET F.: Advected textures. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (Aire-la-
Ville, Switzerland, Switzerland, 2003), SCA ’03, Eurographics Associa-
tion, pp. 147–153. 2

[NP06] NANNI M., PEDRESCHI D.: Time-focused clustering of trajec-
tories of moving objects. Journal of Intelligent Information Systems 27,
3 (2006), 267–289. 3

[NSCL08] NARAIN R., SEWALL J., CARLSON M., LIN M. C.: Fast
animation of turbulence using energy transport and procedural synthe-
sis. ACM Transactions on Graphics (TOG) - Proceedings of ACM SIG-
GRAPH Asia 2008 27, 5 (2008). 2

[OCv13] ONDERIK J., CHLÁDEK M., ĎURIKOVIČ R.: Sph with small
scale details and improved surface reconstruction. In Proceedings of the
27th Spring Conference on Computer Graphics (New York, NY, USA,
2013), SCCG ’11, ACM, pp. 29–36. 2

[PTC∗10] PFAFF T., THÜREY N., COHEN J., TARIQ S., GROSS M.:
Scalable fluid simulation using anisotropic turbulence particles. ACM
Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH
Asia 2010 29, 6 (2010), 174. 2

[RPC∗10] ROHMER D., POPA T., CANI M.-P., HAHMANN S., SHEF-
FER A.: Animation wrinkling: Augmenting coarse cloth simulations
with realistic-looking wrinkles. In ACM SIGGRAPH Asia 2010 Papers
(New York, NY, USA, 2010), ACM, pp. 157:1–157:8. 2

[RTWT12] RAVEENDRAN K., THUEREY N., WOJTAN C., TURK G.:
Controlling liquids using meshes. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Aire-la-
Ville, Switzerland, Switzerland, 2012), SCA ’12, Eurographics Associa-
tion, pp. 255–264. 2

[SB08] SCHECHTER H., BRIDSON R.: Evolving sub-grid turbulence for
smoke animation. Eurographics/ ACM SIGGRAPH Symposium on Com-
puter Animation (2008). 2

[SMC04] SELLE A., MOHR A., CHENNEY S.: Cartoon rendering of
smoke animations. In Proceedings of the 3rd International Symposium

on Non-photorealistic Animation and Rendering (New York, NY, USA,
2004), NPAR ’04, ACM, pp. 57–60. 2

[STC∗12] SCHUMACHER C., THOMASZEWSKI B., COROS S., MARTIN
S., SUMNER R., GROSS M.: Efficient simulation of example-based ma-
terials. In Proceedings of the ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (Aire-la-Ville, Switzerland, Switzerland,
2012), SCA ’12, Eurographics Association, pp. 1–8. 2

[SY05] SHI L., YU Y.: Controllable smoke animation with guiding ob-
jects. ACM Trans. Graph. 24, 1 (Jan. 2005), 140–164. 2

[TKPR06] THÜREY N., KEISER R., PAULY M., RÜDE U.: Detail-
preserving fluid control. In Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Aire-la-
Ville, Switzerland, Switzerland, 2006), SCA ’06, Eurographics Associa-
tion, pp. 7–12. 2

[TMPS03] TREUILLE A., MCNAMARA A., POPOVIĆ Z., STAM J.:
Keyframe control of smoke simulations. ACM Trans. Graph. 22, 3 (July
2003), 716–723. 2

[WHRO10] WANG H., HECHT F., RAMAMOORTHI R., O’BRIEN J. F.:
Example-based wrinkle synthesis for clothing animation. ACM Trans.
Graph. 29, 4 (July 2010), 107:1–107:8. 2

[WMT06] WOJTAN C., MUCHA P. J., TURK G.: Keyframe control of
complex particle systems using the adjoint method. In ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation (2006), The Euro-
graphics Association. 2

[XW05] XU R., WUNSCH II D.: Survey of clustering algorithms. Trans.
Neur. Netw. 16, 3 (May 2005), 645–678. 3

[ZBO13] ZURDO J. S., BRITO J. P., OTADUY M. A.: Animating wrin-
kles by example on non-skinned cloth. IEEE Trans. Vis. Comput. Graph.
19, 1 (2013), 149–158. 2

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Milliez, M. Guay, M.-P. Cani, M. Gross, R. W. Sumner / Programmable Animation Texturing using Motion Stamps

Figure 7: From top to bottom: the original animation and a clustering obtained using our algorithm. The motion stamps used to create the
present results. Textured results of our algorithm.

Figure 8: Original, clustered data and textured animation.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.


