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Abstract

We propose a method of representing audience behavior
through facial and body motions from a single video stream,
and use these motions to predict the rating for feature-
length movies. This is a very challenging problem as: i) the
movie viewing environment is dark and contains views of
people at different scales and viewpoints; ii) the duration of
feature-length movies is long (80-120 mins) so tracking peo-
ple uninterrupted for this length of time is an unsolved prob-
lem; and iii) expressions and motions of audience members
are subtle, short and sparse making labeling of activities
unreliable. To circumvent these issues, we use an infra-red
illuminated test-bed to obtain a visually uniform input. We
then utilize motion-history features which capture the sub-
tle movements of a person within a pre-defined volume, and
then form a group representation of the audience by a his-
togram of pair-wise correlations over small time windows.
Using this group representation, we learn a movie rating
classifier from crowd-sourced ratings collected by rotten-
tomatoes.com and show our prediction capability on audi-
ences from 30 movies across 250 subjects (> 50 hours).

1. Introduction
Having the ability to objectively measure group experi-

ence would be of major benefit within the educational, mar-
keting, advertising and behavioral science domains. How-
ever, due to the complexities of the observed environments
and task, the de-facto standard of measuring audience or
group experience is still via self-report [4]. As self-report
measures are subjective, labor intensive, and do not provide
feedback at precise time-stamps; an automated and objec-
tive measure is desirable. In an attempt to provide an objec-
tive measure, Madan et al. [19] utilized a wearable device
which measured audio, head movement and galvanic skin
responses of a group interacting. Eagle and Pentland [7]
developed a system using a PDA which required continu-
ous user input. While both are interesting approaches, our
goal is to implement a less invasive solution.

Figure 1. In our infra-red illuminated screening room, we use both
face (top left) and body motion features (top right) to profile each
audience member (bottom left) and find the synchrony or coher-
ence of motion to analyze, summarize and predict audience rat-
ings to movies (bottom right - each curve color corresponds to an
audience member).

For measuring reactions to consumer products, almost
all ratings are via self-report (i.e., “likes” or a Likert-type
scale [5]). Given enough crowd-sourced ratings (100k’s),
useful measures can be obtained which can be used to pre-
dict other products that a person maybe interested in based
on their previous behavior. Such recommendation sys-
tems are often based on matrix factorization approaches.
Pandora1 (songs), Netflix2 (movies/tv-shows) and Amazon3

(products) are popular examples for content-based and col-
laborative filtering approaches [15].

For movies, Rotten Tomatoes [1] have both critic and
crowd-sourced audience ratings. Such information is only
useful at a coarse level as it captures the overall global re-
action to the stimuli and does not contain any specific lo-
cal “interest” information. For long continuous time-series
signals like movies, knowing which parts the audience (or
sub-groups of the audience) like and do not like would be
very beneficial to writers/directors/marketers/advertisers.
Achieving this through self-report is subjective and diffi-
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cult, as it would require a person to consciously think and
document about what they are watching (most likely caus-
ing subject to miss important parts of the movie). Simi-
larly, subjects could be instrumented with a myriad of wear-
able sensors, but such approaches are invasive and unnatural
which may not be a good indicator of the actual rating.

In this paper, we use a single camera as our input
sensor and use face and body motion features to pre-
dict and summarize audience ratings of full-length movies
(see Figure 1). Our work is motivated by the noted
film editor Walter Murch who speculates in his book
“In the Blink of an Eye” [22], that the engagement of an
audience can be gauged through the synchrony of audience
motion. Apart from the very dark environment, monitoring
an audience from a single vantage point for a full-length fea-
ture film is a challenging problem because: i) it spans a very
long time period (typically movies normally range from 80-
150 minutes) which is an enormous amount of video data
to process; ii) people are at different vantage points and
resolutions; iii) we required frame-based measurements to
measure synchrony; and iv) getting ground-truth labels of
activity is subjective and time-consuming.

To counter these issues, we calculate the motion-history
features of each audience member within a 3D volume to
capture his/her face and body movements. We then propose
an entropy of pair-wise correlations measure to gauge the
collective behavior of the audience. We show that our ap-
proach outperforms human-annotated labels which do not
pick up on these fine details. Using the audience ratings
from rottentomatoes.com, we then use this feature to predict
the movie rating solely from audience behaviors. Addition-
ally, we use change-point detection to temporally cluster
and summarize audience behaviors into a series of interest
segments.

2. Related Work
A survey of recent work in automatically measuring a

person’s behavior using vision-based approaches is pre-
sented in [33]. Much of this work has centered on rec-
ognizing an individual’s facial expression, with notable
progress made in the areas of smile detection in consumer
electronics [32], pain detection [17] and human-computer-
interaction [29]. An emerging area of research over the
last couple of years is the use of affective computing for
marketing and advertising purposes. When a user watches
video clips or listens to music, they may experience certain
feelings and emotions [14] which manifest through gestural
and physiological cues such as laughter. These emotional
responses to multimedia content have been studied in the
research community [25]. Shan et al., [25] studied the re-
lationship between music features and emotions from film
music. In a recent study, Joho et al., [13] showed that facial
expression is a good feature to predict personal highlights
in media content. Hoque et al., [11] further showed that

these facial behaviors vary from the laboratory setting to
real-world. Teixerira et al.,l [28] demonstrated that joy (i.e.,
smiles) was the most reliable emotion that accurately re-
flects the user’s sentiments when analyzing the engagement
with commercials. McDuff et al., [21] utilized crowdsourc-
ing to collect responses from people watching commercials
and used smiles to gauge their reaction. They extended this
work to predict the effectiveness of advertisements using
smiles instead of “likes” [20]. Finally, Hernandez and col-
leagues [10] used a similar approach to measure the engage-
ment of a single person watching a TV show. They mounted
a camera on top of a TV set and recorded the responses of
47 participants, using the Viola-Jones face detector [30] to
locate the face, and detected in which of four states of en-
gagement the viewer was based on facial movements.

This prior work was applied only to individuals and lim-
ited to stimuli of short duration (i.e., 10−60 seconds), with
the exception of [10]. We expand this research to include
simultaneous recording of multiple individuals and contin-
uous tracking over long periods of time (e.g., up to 2 hours).
Automatic long-term monitoring of human behavior is dif-
ficult: tracking people for this period of time is still an un-
solved problem in vision (see Section 4). Additionally, be-
ing in a group environment introduces extra variability as
behavior can be altered by other audience members as well
as by the stimuli.

3. Experimental Setup
3.1. InfraRed Illuminated Testbed

Observing people watching visual stimuli from a screen
is difficult because: 1) the environment is very dark,
and 2) the reflected lights from the visual stimuli causes
a non-uniform illumination environment. Wide aperture
lenses and sensor sensitivity are two important features to
consider when selecting a good camera to capture the ob-
jects in low-light conditions. We instrumented a test-bed
with an infra-red (IR) sensitive low-light camera (Allied Vi-
sion GX 1920 with a 2/3” Sony ICX674 CCD sensor and
a f/1.4 9mm wide angle lens), two IR illuminators (Bosch
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Figure 2. A schematic of the audience-test bed used in this work.



Figure 3. (Left) Capturing video in a movie environment without IR illumination. (Middle) Example of the screening room with IR
illuminators on - reflectance from the screen is problematic. (Right) To remove the reflected illumination from the screen we used a
band-pass filter to obtain a uniform lighting environment.
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Figure 4. A bar chart comparing the ratings of the audience com-
pared to the crowd-sourced ratings from rotten-tomatoes.com.

Movie No No Time Budget Box Off. Rating
No Sess People (min) ($ mill) ($ mill) (%)
1 3 25 103 200 1063 87
2 3 25 81 150 315 53
3 3 25 96 150 310 72
4 3 27 101 165 471 89
5 3 24 96 175 731 87
6 3 22 83 105 172 47
7 3 25 87 30 16 35
8 3 23 93 185 555 76
9 3 22 86 47 38 43

10 3 19 88 95 877 62

Table 1. An inventory showing the number of audience members,
attributes and the rotten-tomoatoes.com rating per movie.

UFLED95-8BD AEGIS illuminators with 850 nm wave-
length and 95 degree wide beam pattern), and an IR band-
pass filter to reduce reflections from the viewing screen
(850nm ± 5nm). The resulting images are 1936 × 1456
pixels captured at 15 frames per second. The schematic di-
agram of the infra-red illuminated test-bed and effects of
those instruments are shown in Figure 2 and in Figure 3 re-
spectively.

3.2. Audience Footage

We used www.rottentomatoes.com [1] to select
movies from the genre “Animation, Comedy, Kids & Fam-
ily”. Out of a total of 62 movies (year 1998 – 2013) in
that genre, we selected a subset of ten movies (refer to Ta-
ble 1) with varying crowd-sourced audience ratings again
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Figure 5. (Left) An example of the he distribution of labeled activi-
ties for an entire movie - about 95% of the time audience members
do nothing. (Right) The distribution of activities when audience
members are active.

from [1]. To do this, we chose three good movies (ratings
greater than 80%), three average movies (ratings from 60%
to 80%), and four bad movies (ratings below 60%).

For this study we sought subjects (age 18-70) to be apart
of an audience ranging in size of 5-10 people (mean 8 peo-
ple). This work was approved by an Institutional Review
Board, and participants were compensated for their time.
We screened the movies at the same time (6.00pm) and
for each screening, only participants who had not seen the
movie previously, and had normal or corrected-to-normal
vision and hearing were used. We had three sessions for
each movie (total 30 sessions) and each subject could only
participant once. At the completion of each session, every
participant completed a survey asking about their overall
rating of the movie (similar to a self-report), age, gender,
movie genre preference, and expectation/recommendation
of the movie. A comparison of movie ratings using the self-
report method from our audience (mean 67.3) to the rotten-
tomatoes.com users (mean 65.1) for each movie is given in
Figure 4. As shown in Figure 4, our audience had a rea-
sonably good compatibility compared to the crowd-sourced
measure.

To get a sense of how many different actions and activi-
ties a person normally performs while viewing a movie, we
selected a subset of sessions for human annotation. As we
were interested in both facial expressions and body move-
ments, we manually annotated the following gestures at the
frame-level. A description of these actions and activities are

www.rottentomatoes.com
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Figure 6. Face detection performance in clean and audience envi-
ronment. Off -the -shelf face detectors performs poorly in audi-
ence environment mainly, due to low lighting (we used IR camera
to capture footage) and different view point.

given below:

Smiles/laughter: Using FACS [9], we annotated smiles
and laughter. The onset of smiles/laughter were la-
belled as the onset of AU12 and the offset was labelled
at the end of that occurrence.

Body movements: We annotated the following com-
mon actions: talking to another person, raising arm,
moving hand to head/table, moving within chair, eat-
ing/drinking, watching through fingers, using lap-
top/iPad, checking phone/watch.

In terms of activity, approximately 90% of the time no ac-
tivity was observed, as can be seen in Figure 5. This could
be due to: i) people not moving at all, ii) intensity or dura-
tion of activity being so low or short that it does not warrant
labelling, iii) the activity not fitting into the pre-set activi-
ties vocabulary. It can be argued that ii) and iii) are due to
problems with annotations, but as a result of the long length
of input stimuli (approximately 1-2 hours per movie), it is
highly impractical and unscalable to get this level of anno-
tation4. Even if it is possible to get the level of annotation
it would be expected that the reliability of annotation would
greatly diminish due to the high level of subjectivity. Moti-
vated by this analysis, we require a solution that captures
both facial and body movements. In terms of automatic
analysis, this can be circumvented as the continuous flow
features of each person can be used to temporally segment
potentially interesting behaviors.

4. Extracting Audience Features
To extract features from each audience member, we first

register the image region that he or she occupies over the
course of the movie, and then extract motion features. The
following section describes each method.
4 Note that this process was very time consume (annotation time was >
90 hours per session)

4.1. Registering Audience Members

Despite a person remaining relatively stationary whilst
watching a movie, continuous tracking is a challenging be-
cause there are considerable appearance changes due to out-
of-plane head motion or self-occlusion (e.g., hands on the
face). While face tracking is a mature area of research, most
of the previous work has only looked at videos of small peri-
ods of time (i.e., up to one minute). In contrast, our problem
represents a paradigm shift in this area called long-term face
tracking. To illustrate the issues in this method, we provide
the following example. First, the intuitive method of reg-
istering each audience member would be to use a “off-the-
shelf face-detector on each frame and then track each detec-
tion. As can be seen in Figure 6, this approach works well in
ideal conditions but not so well in our test-bed because we
are capturing faces from a different viewpoint (i.e., cam-
era is looking down on the audience), we are operating in
the infra-red spectrum, and the resolution of faces can be
small. An example of the “off-the-shelf” face detector per-
formance is given in Figure 7(a). Alternatively, we could
use a template update method, where we register an initial
face and then update the template at every frame [3, 18].
This works reasonably well, but it tends to drift over long
periods of time (Figure 7(b)). New methods that use a dic-
tionary of templates have worked reasonably well, espe-
cially those of the l1 variety [12]. However, as shown in
Figure 7(c), they perform worse when there is considerable
change in appearance or pose - i.e., when a key frame is not
in the dictionary. A solution to this is to have prior knowl-
edge of the key frames in the dictionary, but this is not ideal
as it requires manual intervention (Figure 7(d)).

But this begs the question: do we actually need to track
each person? As the person does not move substantially
during the movie - they are basically restricted within the
confines of their volume to maintain space between other
audience members - a more reliable solution is to pre-define
a volume that the person occupies throughout the movie. In
this work, we implemented such an approach by using the
first frame to define a volume that the person would occupy.
Across the 250 subjects, we found that this method worked
very well, even in cases where the person left to go to the
bathroom, as our feature extraction was robust to this issue.
In this work, we implemented such an approach and it was
much more reliable than the tracking approach, which con-
stantly failed.

4.2. Motion Features

In terms of recognizing individual and specific actions,
there is a plethora of research which has solely focussed
on this domain, with excellent progress being made [2].
Efros et. al., [8] used optical flow features to recognize ac-
tions from ballet, soccer and tennis. More recently, Ro-
driguez et. al., [23] used similar features to analyze crowds.
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Figure 7. Examples of various face detectors/trackers: (a) Fraun-
hofer face detector fails due to the low light conditions, viewpoint
(camera is looking down on the audience) and resolution of the
faces are small (b) Template tracking method fails when there is
pose/appearance change, (c) l1 tracker breaks when the key frames
are not in the dictionary, and (d) Modified l1 tracker works reason-
ably well but requires key frames to be found manually.

However, we are not interested in the specific actions of
one person but instead the synchrony of actions (i.e., is ev-
eryone doing something at the same time?). The screening
room environment introduced a natural spacing of audience
members so each person could watch the movie with unoc-
cluded and in comfort, resulting in each person occupying a
minimum uninterrupted 3D volume. We examined features
based on optical flow [16] and motion history images [6].

Optical Flow Features: To measure the synchronous
body movement of an individual, we developed an energy-
based flow-profile measure [27]. Having N audience mem-
bers, we initialize a local 3D volume for each person in the
horizontal and vertical directions x and y over the time t as
Q = f(x, y, t). We generate a flow-profile of each person
contained within their 3D temporal volume (which was de-
fined manually by a human) using optical flow components
Vx and Vy respectively. In this work, we used the following
optical flow formulation:

IxVx + IyVy + It = 0 (1)

where Vx and Vy are the optical flow components in x and
y directions and Ix, Iy and It are the image derivatives at
point (x, y) at time t. Using these flows, we calculate the
normalized local 3D energy for person q as,

Eq,t =
1

aq

√
V 2
q,x,t + V 2

q,y,t (2)

where the aq is the area defined for an individual to move
over the time.
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Figure 8. (Top) An example of the magnitude of the optical flow
of an audience member, (bottom) compared to the magnitude of
the motion-history features which had over 85% correlation.

Motion History Images: Using optical flow is very com-
putationally expensive to compute5, which limits the use-
fulness of this approach for this work. In order to overcome
the computation time from the optical flow method, we used
an aggregated real-time approach to represent the spatio-
temporal motion that recursively integrates into a single mo-
tion history images [6]. This is done by layering the thresh-
old differences between consecutive frames one over the
other. This represents how motion in the image is mov-
ing opposed to where, which is our interest. These motion
history images can be calculated as follows:

Hγ(x, y, t) =

{
γ if D(x, y, t) = 0
max(0, Hγ(x, y, t− 1)− 1) otherwise

(3)
where, D(x, y, t) is a binary image sequence indicating re-
gions of motion at pixel (x, y) in time t and parameter γ is
the temporal duration of the motion history images. Then,
we calculate the normalized local 3D energy for person q
as, Eq,t = 1

aq

∑
Hγ(x, y, t).

The normalized energy from optical flow and motion his-
tory can be vectorized over the duration of the movie time
T as eq = [Eq,1, Eq,2, · · · , Eq,T ]. Finally, we define a
aggregate normalized measure of overall audience engage-
ment over the movie time T as emovie =

1
N

∑N
q=1 eq .

Comparison: To see how reliable each feature was, we
analyzed the correlation between flow features (i.e optical
flow features and motion history images) for a one movie.
An example of an individual flow-field for an audience
member using these features is given in Figure 8. We ob-
served 85% of average cross-correlation between motion
history features and optical flow magnitudes.

5 Calculating the optical flow of an audience for a 2-hour feature length
movie took more than 2-3 days on a high-performance computing cluster
which is not tractable for our application



X

y

Individual Feature

Learn/Predict
Movie Rating

Movie 1 87
Movie 2 53

Movie 10 62

.. ..

0 200 400 600 800 10000

1000

2000

3000

Time

Energy

Figure 9. Individual Representation: We first break the motion-
history time-series into chunks across a small-window of time and
then form a histogram based on the mean energy for each chunk.
This gives us a feature representation for each movie, and we
learn a classifier by using crowd-sourced ratings from rottentoma-
toes.com.

5. Predicting Movie Ratings
To gauge how much the general public likes a partic-

ular movie, rottentomatoes.com has an interactive feature
which allows people to go online and give a rating. Over
time the number of ratings aggregate (100k’s) and based
on these crowd-sourced ratings, they generate an “audience
measure”. Based on these scores, an average audience mea-
sure is obtained, with a movie rating 75% or higher been
deemed a good movie, a movie rating between 50-75% be-
ing ok and below 50% denotes a bad movie.

Achieving this using self-report is difficult as it would
require a person to consciously think and document what
they are watching and subjects may miss important parts of
the movie, due to distractions. Similarly, subjects could be
instrumented with a myriad of wearable sensors, but such
approaches are invasive and unnatural and therefore may
not result in good indicators of the actual rating. Alterna-
tively, we derive the following representations of individual
audience members as well as the entire group solely on the
audience reaction to predict movie ratings.

5.1. Individual Representation

To represent the individual behavior, we used individual
motion features ei using motion history images. Given an
audience energy signal smoothed over 6 seconds, we gen-
erate histogram distribution X = p (ei), which allows us to
represent a measure of each audience behavior during the
movie. Given this representation and known movie ratings
y from [1], we learn a regression model to predict the movie
ratings solely on the individual audience reaction as shown
in Figure 9.

5.2. Group Representation

5.2.1 Joint Representation

We develop an objective measure using the facial expres-
sions and body motion of audience members to gauge the
synchrony of behavior. In order to represent the group, we
initially used the joint distribution of the audience. We used
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Figure 10. Group Representation: To capture the group interac-
tion we calculate the pair-wise correlations and then the entropy
for each time-chuck. The final representation is the histogram of
entropy values across the movie.

an aggregate normalized measure of overall audience en-
gagement over 30-second temporal segments, emovie. Once
we derive the aggregate measure, we generate the joint dis-
tribution/histogram X = p (emovie) for all audience mem-
bers (similar to Figure 9) that is used for prediction.

5.2.2 Mid-Level Representation

We utilized an entropy of pair-wise similarity between each
audience member at the local-level (i.e. pair-wise compari-
son) as well as the global-level (i.e. compared to the whole
group). In this regard, we first compare the small feature
segment between two audience members, e1 and e2, and
calculate the pair-wise similarity by using,

Ce1e2 = exp

(
− ‖ e1 − e2 ‖2

2σ2

)
(4)

where σ is an adjustable parameter for each similarity
matrix. We then exhaustively calculated all of the pairwise
correlations between audience members, yielding a similar-
ity matrix. When everyone is doing something at the same
time (e.g., laughing/smiling) the cohesion is high; similarly,
when everyone is doing nothing, the audience cohesion is
still high. Given that the similarity matrix of piece-wise cor-
relations can be represented by S, we can generate a proba-
bility distribution of S for that time segment p(S), allowing
us to gain a measure of audience disorder via entropy [26]

H(S) = −
N−1∑
i=0

p(i) log p(i) (5)

A high value of entropy means that there is great disorder
(i.e., random behavior), while a low value of entropy means
that there is cohesion or predictability of behavior. Finally,
we generate a probability distribution X = p(H(S)) to gain
a measure of synchrony of audience for predicting movie
ratings. The system is shown in Figure 10.



5.3. Performance Evaluation

Once we extract the features from individual and group
representation, we used those features to learn audience be-
haviors from a library of movies (See Table 1) and use
these features to predict the audience rating for an unseen
movie. We analysed this prediction using different pre-
dictors such as linear, logistic and support vector regres-
sion (SVR). There was not a big discrepancy between these
methods, and we present the results for SVR. Given the fea-
ture representation X and known movie ratings y from [1],
we learn w for SVR by minimizing the following objective
function,

argmin
w

1

2
‖ w ‖2 +C

n∑
i=1

(ξi + ξ∗i )

subject to yi −wTxi − b ≤ ε+ ξi

wTxi + b− yi ≤ ε+ ξ∗i

ξi ≥ 0, ξ∗i ≥ 0

where C > 0 is a parameter to control the amount of the
influence and ξi, ξ∗i are slack variables.

We validate our framework using a leave-one-out cross
validation strategy (leaving out entire an movie). The pa-
rameters for SVR were chosen using a cross-validation
method as described in [31] with a polynomial kernel. For a
quantitative assessment, we compute the root mean squared
error (RMSE) between the predicted rating value ŷi and the
audience rating yi such that:

RMSE =

√∑n
t=1(ŷt − yt)

n
(6)

For the mid-level group representation, we tested differ-
ent timing window segments (i.e 30, 45, 60, 120 seconds) to
obtain pair-wise entropy values and different σ values. We
observed that 30 second window segments with σ = 0.5
gave the best prediction values.

The experimental results for leaving out an entire movie
in terms of average RMSE are shown in Table 2. As shown
in Table 2, audience behavior (i.e., synchrony/coherency
of audience motion) for a group is more robust than for
each individual. Overall, our framework showed that we
can predict movie ratings solely using audience behaviors,
a potential solution to the problems with current standard
self-report measures. Using the mid-level group representa-
tion and SVR, we show our average movie prediction (i.e.,
average from all the 3 sessions for a movie) results for a
movie in Figure 11. As can be seen from this result, we

Representation Average RMSE
Individual 21.2

Joint 13.4
Mid-Level 12.7

Table 2. Average movie prediction error in terms of RMSE using
SVR.
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Figure 11. Average results of our automatic approach compared to
the crowd-sourced ones from rottentomatoes.com.
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Figure 12. Average results of our automatic audience rating mea-
sure compared to the viewer’s self-report measure.

get a reasonable approximation to the rottentomatoes.com
crowdsourced ratings.

Finally, we also compared our automatic prediction from
audience behavior to their (our viewers) self-report audi-
ence rating, as shown in Figure 12. The average RMSE
value compared to the viewer’s self-report rating is 16.95.
In this environment, the result makes sense: self-report
is subjective and difficult as it would require an audience
to consciously think about what they were watching. In
addition, it does not contain feedback at precise times-
tamps [24].

5.4. Temporal Window Analysis

During the movie, audience members tend to move and
react. In this work, we are interested in the synchrony of
audience behavior (i.e., is everyone doing a particular thing
at the same time?). We looked at what is the optimal tim-
ing window in which the audience behaves in an interest-
ing way? To do this analysis, we selected different window
sizes from 10sec – 5min. For these different windows sizes,
we generated group representations and predicted movie
ratings. The average RMSE with different window sizes
is given in Figure 13. We observed that we can capture in-
teresting audience behaviors using 30-second increments.
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Figure 13. Variation of average RMSE with respect to different
temporal window sizes.



(a) (b)
Figure 14. An example of movie summarization for a: (a) good
movie and (b) bad movie. The green boxes show examples of
similar activities while red boxes illustrates random activities.

6. Movie Summarization

As feature-length movies are very long in duration, often
it is beneficial for a domain expert to quickly skim through
the behaviors of an audience. Finally, to summarize the re-
action of the audience to a movie signal eq (smoothed over a
6-second window), we chunk the movie into 1-minute win-
dows, and we find for each window the strongest audience
change-point (i.e., zero-crossing values in audience signal
eq). Using that as our index, we use a 1-second window
centered at that change-point to summarize the audience be-
havior over that minute. We piece this together to form a
summarization of the audience behavior, allowing someone
to assess a 90-minute movie over the course of 90 seconds.
Qualitatively, we found that we could find engaging and dis-
engaging segments during the movie using this approach.
Visual examples are given in Figure 14.

7. Summary

We proposed an automatic method of measuring, sum-
marizing and predicting audience behavior using face and
body motions from a single video stream. Due to the com-
plexity and difficulty of this task, no one has previously
looked at this problem. To do this: (i) we introduce an IR
based test-bed as the movie viewing environment is dark
and contains views of many people at different scales and
viewpoints, and we use more than > 50 hours of audience
data; (ii) we then utilize motion-history features that can
pick up on the subtle movements of a person within a pre-
defined volume; (iii) we propose a method to learn indi-
vidual and group behaviors; and (iv) we use these repre-
sentations to learn our movie rating classifier from crowd-
sourced ratings collected by rottentomatoes.com and show
our prediction capability on audiences from 30 movies and
250 viewers. We showed that we can give a reasonable ap-
proximation solely from audience behavior to the rotten-
tomatoes.com crowd-sourced ratings.
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