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Figure 1: An autonomous virtual character harnessing a wide array of contact-rich movement capabilities while navigating in a complex
virtual environment.

Abstract

The widespread availability of high-quality motion capture data and
the maturity of solutions to animate virtual characters has paved the
way for the next generation of interactive virtual worlds exhibiting
intricate interactions between characters and the environments they
inhabit. However, current motion synthesis techniques have not
been designed to scale with complex environments and contact-rich
motions, requiring environment designers to manually embed mo-
tion semantics in the environment geometry in order to address on-
line motion synthesis. This paper presents an automated approach
for analyzing both motions and environments in order to represent
the different ways in which an environment can afford a charac-
ter to move. We extract the salient features that characterize the
contact-rich motion repertoire of a character and detect valid tran-
sitions in the environment where each of these motions may be pos-
sible, along with additional semantics that inform which surfaces of
the environment the character may use for support during the mo-
tion. The precomputed motion semantics can be easily integrated
into standard navigation and animation pipelines in order to greatly
enhance the motion capabilities of virtual characters. The compu-
tational efficiency of our approach enables two additional applica-
tions. Environment designers can interactively design new environ-
ments and get instant feedback on how characters may potentially
interact, which can be used for iterative modeling and refinement.
End users can dynamically edit virtual worlds and characters will
automatically accommodate the changes in the environment in their
movement strategies.

Keywords: character animation, environment semantics, contact-
rich motion

1 Introduction

Humanoid character animation is a well-studied topic with many
solutions available to animate fully articulated virtual humans. An-
imated characters that rely on motion capture [Kovar et al. 2002;
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Arikan and Forsyth 2002] or artist-created content move in natural
and pleasing ways, and can be used to create complex data-driven
controllers [Lau and Kuffner 2005; Levine et al. 2011] for animat-
ing interactive, responsive virtual characters.

The widespread availability of high-quality motions, and the ma-
turity of character animation systems have enabled the design of
large, complex virtual worlds [Ubisoft 2014] which require com-
plex interactions between the environment geometry and the virtual
characters that inhabit it. Current automated approaches for motion
synthesis [Lau and Kuffner 2005; Lau and Kuffner 2006] cannot be
easily extended to address the increase in environment and motion
complexity, while being suitable for interactive applications such as
games. To mitigate this difficulty, environment designers are bur-
dened with the task of manually annotating motion semantics in
the environment, which helps inform character controllers which
motion(s) a character is able to perform and how, thus pruning the
search space for motion synthesis. This is very tedious, especially
for motions that involve intricate contacts between the character and
the environment.

This paper presents an automated approach for computing the se-
mantics of how a character can interact with the environment ge-
ometry. Given a database of motion clips representing arbitrarily
complex contact-rich behaviors of a virtual character, we first an-
alyze the motions in order to define its motion signature, which
characterizes the contacts between the character and environment
surfaces, spatial relationships between contacts, and the collision
representation of the character.

For any 3D environment, our system automatically identifies a se-
quence of proximal surfaces that satisfy the constraints of a spe-
cific motion, using a projection and intersection method that effi-
ciently identifies the spatial relationships between surfaces without
the need for global sampling or discretization, and taking into ac-
count surface-hand contacts. These motion transitions, along with
their associated semantics, can be easily integrated into standard
navigation systems to enhance the movement repertoire of virtual
characters, to rely on contact-rich behaviors while navigating in dy-
namic, complex virtual worlds.



The computational efficiency of our method enables interactive au-
thoring sessions where environment designers may iteratively de-
sign environments and get instant feedback of how characters may
potentially interact with it. Additionally, end users may dynami-
cally change game worlds and observe virtual characters automat-
ically modify their movement strategies in order to accommodate
motion transitions which may have been invalidated or made possi-
ble as a result of the user interaction. We demonstrate several exam-
ples of both static and dynamic scenes with multiple characters that
were authored using our system. Our approach can be seamlessly
integrated into existing animation and navigation pipelines.

2 Related Work

Example-based Motion Synthesis. The widespread availability of
high-quality motion capture data has led to the prominence of data-
driven approaches such as motion graphs [Kovar et al. 2002; Arikan
and Forsyth 2002] for synthesizing motions for virtual characters.
Building on top of these foundational contributions, the computer
animation community has developed solutions for parameterizing
motion graphs [Heck and Gleicher 2007], optimizing its structure
for extended types of search [Safonova and Hodgins 2007], anno-
tating them with semantics for efficient querying [Min and Chai
2012], and developing controllers that produce responsive animated
characters [McCann and Pollard 2007] which can be interactively
controlled [Lee et al. 2002; Lee et al. 2009] and suitable for interac-
tive applications such as games. Lee and Hoon [2004] precompute
avatar behavior from unlabeled motion data and adopt dynamic pro-
gramming in order to animate and control avatars at minimal run-
time cost.

Motion Planning. Planning-based approaches have been exten-
sively applied to generate complex motion sequences around ob-
stacles by searching among possible concatenations and blending
between motion clips in a library. Lau and Kuffner [2005] propose
a method that searches over animation sequences generated by a
finite state machine, in order to generate animations that traverse
complex environments. Follow-up work [Lau and Kuffner 2006;
Lau and Kuffner 2010] describes a precomputed acceleration struc-
ture that enables the method to be used in real-time applications.
These approaches however only address locomotion behaviors or
specific behaviors that avoid collisions with the environment (e.g.,
jump over, crouch), and do not process contact-rich motions or de-
termine motion fitting to complex environments. Other approaches
include planning using probabilistic roadmaps [Choi et al. 2003],
and approaches suitable for uneven and sloped terrain [Hauser et al.
2005]. Planning-based approaches have also been extended to dy-
namic environments by generating motion plans in both space and
time [Levine et al. 2011]. In a different direction, the work in [Lo
and Zwicker 2008] proposes a real-time planning approach based
on reinforcement learning for parameterized human motion. The
common disadvantage of these methods is that they do not consider
contact-rich motions in complex environments. Our method exactly
addresses this limitation by focusing on processing and represent-
ing complex motions and environments for real-time planning.

Contact-aware Motion Synthesis In addition to planning in the
space of motions, researchers have also explored motion synthe-
sis techniques that explore the space of viable contacts between
characters and the environments. Lie et al. [2010] reconstruct the
implicit contact forces from motion capture data and propose a
randomized sampling strategy to synthesize dynamically plausible
contact-rich motions. The work in [Tonneau et al. 2014] synthe-
sizes skeletal configurations for the virtual character that satisfy
task and contact constraints by sampling the reachable workspace
in the environment. The work in [Kalisiak and van de Panne 2001]
presents a grasp-based motion planning algorithm for character an-

imation. Mordatch et al. [2012] automatically discover complex
contact-rich behaviors by using an offline contact-invariant opti-
mization process. Kang and Lee [2014] generate contact-rich char-
acter poses by sampling points on the character and the environ-
ment to identify admissible support points. Ho and Komura [2009]
use topology coordinates to synthesize motions that involve close
contacts such as wearing a t-shirt. Shape2Pose [Kim et al. 2014]
predicts a corresponding human pose including contact points and
kinematic parameters by analyzing geometric structures of shapes
and local region classification combined with global kinematically-
constrained search. The work in [Al-Asqhar et al. 2013] adopts an
interactive motion adaptation scheme for close interactions between
skeletal characters and mesh structures by introducing a new spatial
relationship-based representation which describes the kinematics of
the body parts by the weighted sum of translation vectors relative
to points selectively sampled over the surface of the mesh.

Dynamics. Physics-based approaches [Coros et al. 2009; Liu et al.
2012] synthesize physically plausible motions that can locally gen-
eralize to unknown environments. [Fang and Pollard 2003] opti-
mizes input motion data by introducing physically-based objec-
tive functions and constraints, but do not address global behavior
planning in complex environments. Our work is complementary to
physics-based approaches in which we provide global plans based
on input behaviors, which could be specified from the control con-
straints of physics-based behaviors. In this case a solution from our
method could be executed by physics-based controllers.

Path Planning and Multi-Character Navigation. Traditional
planning-based navigation approaches [Kallmann and Kapadia
2014] compute a discrete representation of the free space in the en-
vironment which can then be efficiently queried to generate walk-
able paths. Motion Patches [Kim et al. 2012] orchestrates interac-
tions among multiple characters by collecting deformable motion
patches which each describes an episode of multiple interacting
characters and till them spatially and temporally using a combi-
nation of stochastic sampling. These approaches scale to handle
hundreds, even thousands of agents at interactive rates, however are
restricted to agents with simple movement capabilities. Our work
complements these methods by extending navigation meshes to in-
clude transitions for contact-rich motions in complex environments.

Contributions. While previous work has explored complex inter-
actions between characters and environments, none has addressed
planning motions that require contact-rich behaviors in order to
overcome obstacles with detailed hand-surface contact constraints
required to use the surfaces in the 3D environment. Our work intro-
duces an environment processing method that is suitable to handle
complex animations at interactive rates.

3 Overview

Fig. 2 illustrates the main steps of our framework. Given raw mo-
tion data and geometry data of the environment, our system ana-
lyzes both of them in order to find valid motion transitions in the
environment. Motion transitions are then annotated in the environ-
ment combined with standard navigation mesh representations for
runtime pathfinding and motion synthesis.

Motion Analysis. Given a database of motion clips representing
different motion skills for a character, we analyze each motion (or a
set of similar motions) to define its motion signature – which char-
acterizes the different contacts between the character’s body parts
and the environment during the motion, the spatial constraints be-
tween pairs of contacts, as well as the collision bounds of the char-
acter while performing the motion.

Environment Analysis. Given an arbitrarily complex 3D environ-



Figure 2: Framework Overview.

ment, our system identifies surfaces that can be used to support
the character using different kinds of contacts. For each motion
signature (a sequence of contact configurations), a corresponding
sequence of proximal contact surfaces is identified which satisfy
the spatial constraints between the contacts in the motion. We
use a “projection and intersection” based method that efficiently
identifies spatial relationships between surfaces and can handle de-
formable motion models. The set of valid surfaces are pruned to
ensure that the resulting motion performed in that part of the envi-
ronment is collision-free, producing an annotated environment that
identifies areas where different motion skills are possible.

Runtime Pathfinding and Motion Synthesis. We extend tradi-
tional navigation graph approaches to include additional edges for
connecting disconnected surfaces using a particular motion skill,
with semantics that codify motion, contact, and collision con-
straints. During runtime, standard search techniques can be used on
this navigation graph to generate a path that includes these behav-
iors. A data-driven animation system is used to animate characters
to navigate along this path, and the annotated motion transitions are
used to animate the character to perform complex animations that
satisfy the exact contact constraints without the need for expensive
configuration-space motion planning.

4 Motion Analysis

The movement repertoire of an animated character is defined by a
set of motion skills m ∈M. A motion skill may be a single motion
clip or a set of similar motion clips which can be blended together
to create a parameterized motion skill that can produce new contact
variations that are not present in the original motions.

Each motion skill is abstracted as m = 〈G,V,L〉 where: (1) the
contact constraint graph G = 〈C,E〉 is defined by a set of con-
tacts c ∈ C, and spatial constraints e(i, j) ∈ E between pairs of
contacts (ci, cj) ∈ C. (2) V represents the collision bounds of
the character over the course of the motion. (3) L is a data-driven
controller that is used for animating the character and may be a sin-
gle motion clip coupled with inverse kinematics, or a parameterized
blend tree of similar motions.

4.1 Contact Constraint Graph

Over the course of the motion, different parts of the characters body
might come in contact with different surfaces of the environment.
We define a contact pose P = {ci} as a body part (e.g., hands or
feet) coming in contact with one or more surfaces in the environ-
ment. Each contact c = {p,n} denotes the contact of a body part

with one environment surface, defined using the relative position p
and surface normal n of the contact, with respect to the initial posi-
tion of the center of mass of the character. Fig. 3 illustrates example
contact poses.

A constraint e(i, j) ∈ E defines the distance interval (dmin, dmax)
between the two contacts ci, cj ∈ C. For a motion skill that is a
single motion clip without any procedural deformation, this will be
a single numeric value. We do not consider temporal constraints as
they are not necessary in a static snapshot of an environment.

(a) (b) (c)

Figure 3: Contact Poses. (a) Planar contact pose. (b) L-shape
contact pose: two surfaces with angle between normals close to 90
degrees. This corresponds to placing hands or other body part on a
perpendicular edge in the environment. (c) Grasping contact: three
planar surfaces with normals spanning 180 degrees, corresponding
to placing hands on a curved surface.

For each motion, we identify the set of keyframes during which a
contact takes place using a semi-automated method, as described
in [Xiao et al. 2006]. A keyframe may have multiple body parts in
contact at a time, leading to simultaneous contact poses. Fig. 4
illustrates the keyframes of selected motions with their contacts
highlighted. Fig. 5 illustrates an example of a contact constraint
graph for a tic-tac motion. Our constraint graph allows to represent
constraints between all pairs of contacts. This is useful to spec-
ify global constraints, for example, such as lower and upper limits
between the first and last contacts for the behavior to be executed.

4.2 Collision Representation

In order to accurately handle the complex interactions between
characters and the environment, the system should satisfy not only
contact constraints but also collision constraints. One approach is to
precompute the sweeping volume of the character’s mesh over the
course of the motion, which can be then used for collision checks.
However, this is very computationally expensive. To enable motion
collision detection at interactive rates (useful for interactive author-



Figure 4: Keyframes of selected motions with annotated contacts.

(a) (b)

Figure 5: Contact Constraint Graph for a tic-tac motion. The
nodes represent the contacts c ∈ C over the course of the motion,
and the edges represent spatial constraints e(., .) ∈ E between
contacts.

ing or games), we provide a coarse approximation of the charac-
ter’s collision model as follows. For each motion skill, we first
extract the representative keyframes from trajectories of a subset of
the joints (we used the head, root, feet, and hands). A compound
collider using a combination of cylinders represents the collision
volume of the character at each of these keyframes, and is used
to check if a collision takes place. This coarse collision represen-
tation presents a tradeoff between computational performance and
accuracy, and may produce false positives or negatives, but works
well for the results described in the paper. Applications that have
strict requirements on accuracy may use more complex collision
representations [Hudson et al. 1997]. Fig. 6 illustrates detection of
collisions for a tic-tac motion.

(a) (b)

Figure 6: Collision Check Precomputations. (a) A collision-free
motion. (b) Collision representation collides with environment dur-
ing the parts of the trajectory which are highlighted in red.

5 Environment Analysis

Once the motions have been processed we analyze the environment
to automatically detect locations where motion skills may occur.

5.1 Contact Surface Detection

The environment W is a collection of objects o. The geometry of
each object is represented as a set of discrete triangles generated
from the environment modeling stage. We first cluster adjacent tri-
angles into larger surfaces s that have the same surface normals ns .
Starting from a triangle in the environment, we perform a breadth-
first expansion to neighbouring triangles and cluster adjacent trian-
gles that have similar facing normals. This clusters the environment
triangulation into a set of contact surfaces s ∈ S, where s is a col-
lection of adjacent triangles that face the same (or similar) direction.
Fig. 7 illustrates the contact surface clustering process.

(a) (b) (c)

Figure 7: Surface Clustering and Gathering. (a) Original Envi-
ronment mesh. (b) Triangles with the same normals are clustered
together to form surfaces. (c) Surfaces that share the same normal
properties are grouped and mapped to corresponding contacts in
the motion.

5.2 Motion Detection

Given a set of surfaces s ∈ S characterizing the environment, we
seek to identify spatially co-located surfaces that satisfy the con-
straints on the motion signature of a specific motion skill, while
avoiding collisions with any geometry, and to identify the valid sub-
regions on each surface where each contact in the motion might take
place. We provide an overview of the steps for detecting a valid
transition in the environment for a motion skill m. The complete
algorithm is provided in Alg. 2.

Contact Rotation. The contacts c ∈ C of a motion skill contain
the relative positions of all contacts in the motion with respect to
the initial position of the character’s center of mass, assuming the
character is initially facing along the positive X axis. To detect the
execution of the motion skill in any direction, we first sample the set



of valid start directions and transform the contact signature for the
chosen direction. Note that the spatial constraints between contacts
remain unaffected as a result of this rotation.

Figure 8: Contact Rotation.

Surface Gathering. Next, we identify all contact surfaces si ⊆ S
with a surface normal which is consistent with each contact ci ∈
C for the motion skill. Fig. 7(c) illustrates the surface gathering
process.

Contact Constraint Satisfaction. For each pair of contact sur-
faces (sa, sb) ∈ S1 × S2, we find the subregions (s

′
a, s
′
b) on

each surface that satisfy the spatial constraint e(1, 2) between the
first two contacts c1 and c2 in the motion. This is accomplished
using the algorithm described in § 5.3. This produces a new set
R ∈ S

′
1 × S

′
2 comprising pairs of contact surfaces that satisfy

the spatial constraint between the first two contacts. This process
is iteratively repeated for each subsequent contact in C to produce
R ∈ S

′
1 × · · ·S

′

|C| which contains a set of surface sequences that
accommodate all the contacts in the motion, and each surface rep-
resents the set of all valid locations where the particular contact in
the motion may take place.

Figure 9: Motion detection results.

Collision Constraint Satisfaction. Each sequence of candidate
surfaces in r = 〈s1, . . . s|C|〉 ∈ R must additionally be checked
to see if the motion produces collisions with any aspect of the en-
vironment. This translates to finding all points on the start region
s1 ∈ r such that the motion can be successfully performed starting
from that location. We adaptively subdivide s1 to find all subre-
gions within the start region that are collision-free. The collision
check is performed using the coarse collisions representation of the
motion described in § 4.2. Note that this process may divide a start
region into multiple disconnected regions from which the motion
skill maybe performed.

5.3 Contact Constraint Satisfaction

We check the spatial relationship between two contact surfaces and
return subsurfaces that satisfy the distance constraint imposed be-
tween them, as specified by the contact constraint graph. We con-
sider a non-deformable motion skill (e.g., a single motion clip with
no procedural modification), where the spatial constraint is a sin-
gle discrete value. For motion skills that have deformable motion
models (e.g., a blend tree of multiple similar motion clips and/or
procedural deformation using inverse kinematics), this is a distance
interval, which is not considered here.

For a pair of contacts (ci, cj) ∈ C, let v̂i,j represent the unit vec-
tor along the direction of pi − pj . Let d denote the desired dis-
tance between the two contacts. Let Si, Sj be the set of contact
surfaces that have the same normal direction as ni and nj respec-
tively. Let sa, sb be a pair of contact surfaces in Si × Sj. We
translate the boundary points of sa along v̂a,b · d and check if the
translated surface overlaps with sb to produce s

′
a (polygon inter-

section operation). This process is repeated for sb to return the pair
of subsurfaces 〈s

′
a, s
′
b〉 that satisfy the spatial constraint between

the two contacts. If either of the translated surfaces do not overlap,
this constraint is not satisfied between sa,sb. Fig. 10 illustrates the
projection and intersection step, and the steps are outlined in Alg. 1.

Algorithm 1: ProjectIntersect (sa, sb, v̂i,j, d)

1 s∗a ← sa + v̂i,j · d
2 s
′
b = s∗a ∩ sb

3 s∗b = sb − v̂i,j · d
4 s
′
a = s∗b ∩ sa

5 return 〈s
′
a, s
′
b〉

Figure 10: ProjectIntersect for a motion skill. (a) Two contact
surfaces are parallel to each other, the overlapping region will ei-
ther be a 2D polygon or null. (b) Two contact surfaces are in ar-
bitrary positions relative to each other, the overlapping region will
either be a line segment or null.

6 Runtime Navigation and Motion Synthesis

6.1 Runtime Navigation

The motion detection algorithm described above produces a a set
of surface sequences R that correspond to viable transitions in the
environment using the specific motion skill. Each surface sequence
r = 〈s1, . . . s|C|〉 contains information of the surfaces of the en-
vironment which can be used to support all the contacts C for a



Algorithm 2: DetectMotions (M, S)

1 foreach m ∈M do
2 foreach θ ∈ (0, 2π) do
3 foreach i ∈ (1, |Cm |) do
4 ci

θ = Rotate(ci, θ)
5 foreach s ∈ S do
6 if ns · nci

θ ≤ ε then
7 Si ← Si ∪ s
8 R ← S1

9 foreach i ∈ (2, |Cm |) do
10 Rt ← ∅
11 foreach (sa, sb) ∈ R × Si do
12 v̂i−1,i ← pi−1−pi

||pi−1−pi||

13 〈s
′
a, s
′
b〉 ← ProjectIntersect(sa, sb, v̂i−1,i, d)

14 Rt ← Rt ∪ 〈s
′
a, s
′
b〉

15 R ← Rt

16 R ← CollisionCheck(R,Vm);
17 return R

particular motion skill m. The surface s1 represents the set of all
possible locations from which the character can successfully start
executing m without violating contact or collision constraints. s|C|
represents the surface where the character ends the motion. This
translates to a motion transition t : s1 → s|C| which uses the mo-
tion skill, m. T is the set of all motion transitions for all elements
in R.

Figure 11: Integration of motion transitions into a navigation
mesh.

Let Σ = 〈N,A〉 be a navigation graph generated using stan-
dard approaches such as navigation meshes [Memononen 2014] or
roadmaps [Sud et al. 2007], where N are walkable regions in the
environment (e.g., polygonal surfaces) and A represent valid tran-
sitions between elements in N using simple locomotion behaviors
(e.g., walking or running). We generate an extended navigation
graph Σ+ = 〈N∪S,A∪R〉 that includes the transitions between
previously disconnected environment surfaces using the extended
set of motion skills available to the character. A navigation mesh
extended with motion transitions is illustrated in Fig. 11.

Path Computation and Steering. Given the current and desired
location of the character s0, sg respectively, we use standard dis-
crete search methods such as A* [Hart et al. 1968] to generate a
plan π = Plan(s0, sg,Σ

+) which can include one or more mo-
tion transitions t ∈ T. A steering system [van den Berg et al.
2011] is used to move the root of the character along the computed
path while avoiding other characters. Note that the steering sys-
tem is only used while moving (walking or running) along standard

(a) (b)

Figure 12: Generation of smooth motion path to enter a motion
transition while satisfying position, orientation, and speed con-
straints.

transitions A in the navigation graph. The motion synthesis sys-
tem described below superimposes an animated character to follow
the trajectory generated by steering, and handles the motion of the
character while traversing motion transitions t ∈ T.

6.2 Motion Synthesis

Once the path π is determined, the animation system will synthesize
a continuous motion to move the character from its current position
to the target. We use a standard move graph approach to construct
a set of animation states, corresponding to the various movement
capabilities of the character. For example, there is a “locomotion”
state that handles the basic movement such as walking or running.
For more details on the implementations of the basic locomotion
system, please refer to [Johansen 2009]. There is one animation
state for each new motion skill which can be easily added into an
existing animation state machine by defining the appropriate transi-
tions between motion states. We manually construct this state ma-
chine, but automated solutions can also be used [Zhao et al. 2009].

Each motion transition specifies which skill to use, the facing di-
rection of the character, the admissible start region, and desired en-
try speed (e.g., a tic tac motion skill may require the character to
be running prior to entry). This imposes position, orientation, and
speed constraints that the character must satisfy. A naive stop and
turn strategy is to allow the character to simply move to the desired
location and then turn in place. However, this introduces undesir-
able motion discontinuities and violates speed constraints for more
dynamic behaviors.

The second strategy which works well for our application is to gen-
erate a cubic Bézier curve using the current position and orientation
of the character to select the initial control points, and adaptively
sampling a target location in the start region while meeting the de-
sired orientation constraint, to produce a collison-free continuous
path. The character linearly interpolates from its current speed to
the desired speed while traveling along the curve. This process is
illustrated in Fig. 12. In the remote case that no collision-free curve
is found, the character continues to move along a straight line to-
wards the centre of the start region, and repeats the process.

7 Results

We evaluate the performance of our approach in its ability to de-
tect a variety of motions in complex 3D environments. We used a
total of 16 motion skills including climbing, squat and roll, double
hand vaults, precision jumps etc. All results were generated using a
single-threaded application on a Macbook Pro, 2.4 Ghz Intel Core
i7 processor, with 8GB 1600 Mhz DDR3 RAM.

As shown in Fig. 14, our system seamlessly integrates into exist-
ing navigation and animation pipelines to produce virtual charac-



ters that can autonomously reason about their environments while
harnessing an increased repertoire of motion skills to navigate in
complex virtual worlds. Fig. 15 illustrates the scalability of our ap-
proach to handle multiple characters while still maintaing real-time
rates.

Dynamic Game Worlds. The computational efficiency of our ap-
proach also allows motion transitions to be repaired at interactive
rates, enabling new applications including dynamic game worlds.
We demonstrate two example game demos in the supplementary
video. In the first example, a player interactively manipulates ob-
jects in the game world while an autonomous character navigates
in the environment. The second example shows many characters
chasing a player-controlled character in the game.

Interactive Authoring of Game Worlds. We have developed a
simple authoring tool that allows game level designers to interac-
tively author game worlds while harnessing the power of our ap-
proach. Using our tool, an author simply drags and drops geometry
into the scene. Our system works behind the scenes to detect and
annotate potential ways in which a character may interact in the en-
vironment by highlighting the different possible motion transitions
between objects. At any time, the author can see a real-time an-
imation of the character navigating in the current environment to
get instant visual feedback, which can be used to iteratively refine
the initial design. The supplementary video shows the interactive
authoring session to create the complex scene shown in Fig. 14.

Computational Efficiency. Fig. 13 analyses the computational ef-
ficiency of our approach. For complex environments with greater
than 3000 surface elements (more than 20,000 triangles), nearly
100 motion transitions for 10 motion skills are detected within 5
seconds. For local repair of motion transitions for dynamic and
interactive use, the operation is instantaneous.

(a) (b)

Figure 13: Computational Efficiency Analysis.

Figure 15: Real-time navigation and motion synthesis of 10 char-
acters using the full set of 16 motion skills in a complex environ-
ment.

8 Conclusion

This paper presents an automated system for identifying and anno-
tating the different ways in which an environment can afford a vir-
tual character to move by using its surfaces. Detailed hand-surface
contact constraints are correctly taken into account. Our method
only receives as input the raw contact-rich motion data and the en-
vironment geometry. We provide efficient algorithms for precom-
puting and annotating motion semantics, and integrating them into
standard navigation and animation pipelines, to greatly enhance the
movement capabilities of virtual characters. Our tool can be used
in a variety of ways. For example, virtual world designers can get
instant feedback of how characters may potentially interact in their
current designed environments. Next-generation games can support
truly dynamic game worlds where players may dramatically manip-
ulate the environment geometry which is automatically reflected in
the movement strategies of autonomous virtual characters.

Our work is complementary to the rich body of work in character
animation, navigation, and local collision-avoidance, and can ben-
efit from the recent advances in these areas. Improved representa-
tions of the collision volumes [Hudson et al. 1997] of a motion can
address fine collision checks without imposing a considerable com-
putational overhead. Our algorithms for motion detection can be
extended to support deformable motion models [Choi et al. 2011],
more complex motion databases [Kapadia et al. 2013], and complex
multi-character interactions that have narrative significance [Shoul-
son et al. 2013; Shoulson et al. 2014]. An interesting avenue for
future exploration is to investigate the use of physically-based con-
trollers that rely on environment semantics to guide their control
policies. Finally, our work has potential applications beyond char-
acter animation to assist in the computational design of environ-
ments [Berseth et al. 2015].
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