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Abstract— This paper presents methods and experimental
results regarding the identification of kinematic and dynamic
parameters of force-controlled biped humanoid robots. We
first describe a kinematic calibration method to estimate joint
angle sensor offsets. The method is practical in the sense that
it only uses joint angle and link orientation sensors, which
most humanoid robots are equipped with. The basic idea is
to solve an optimization problem that represents a kinematic
constraint that can be easily enforced, such as placing both
feet flat on floor. We then present two methods to identify
physically consistent mass and local center of mass parameters

even when obtaining enough excitation is difficult, as is always
the case in humanoid robots. We demonstrate by experiment
that these methods give good identification results even when
the regressor has a large condition number. Moreover, we show
that gradient-based optimization performs better than the least-
square method in many cases.

I. INTRODUCTION

Compared to traditional manipulators, identification of

kinematic and dynamic parameters of floating-base hu-

manoid robots can be difficult for a number of reasons.

In particular, it is often difficult to get a well-conditioned

regressor not only because there are many parameters to

identify, but also because the robot has to maintain balance

throughout the data collection process. Furthermore, global

position and orientation measurements may be inaccurate or

even unavailable.

This paper addresses the problem of identifying kine-

matic and dynamic parameters of force-controlled humanoid

robots. Section II describes a method for identifying joint

angle sensor offsets that does not require external measure-

ments such as motion capture. In Section III, we present two

methods for inertial parameter identification that is easy to

implement and robust against poor excitation data.

We use the Carnegie Mellon University/Sarcos Humanoid

Robot (Fig. 1) as a test case. The robot has 31 joints in the

arms, legs and trunk. Each joint is actuated by a hydraulic

actuator with a force sensor to measure the actuator force,

which can be converted to the joint torque by multiplying the

moment arm. Joint angles are measured by potentiometers.

There is also a six-axis force sensor at each foot to measure

the ground contact force. An inertial measurement unit

(IMU) is attached to the pelvis link.

II. KINEMATIC CALIBRATION

A. Motivation

The purpose of kinematic calibration described in this

section is to estimate the offsets in joint angle sensors. In our
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Fig. 1. CMU/Sarcos humanoid robot used for the experiments.

robot, it is known that the potentiometers may slide with re-

spect to the link to which they are supposed to be fixed when

a large torque is applied, especially at the four ankle joints

(flexion/extension and adduction/abduction) that do not have

enough space to obtain good fixture. Identifying the joint

angle sensor offsets usually requires external measurement

devices such as motion capture systems. However, setting

up such systems is tedious if the recalibration needs to be

done frequently.

This section describes an algorithm that can identify the

joint angle offsets by only measuring the orientations of one

or more links in addition to the joint angles. Link orientations

can be measured using IMUs, which most humanoid robots

are equipped with for balance control. The algorithm there-

fore does not require external measurements for calibration.

The key idea is to move the joints randomly under simple

kinematic constraints such as placing the feet flat on the floor.

If the joints are backdrivable with reasonable magnitude

of external force, we can collect the data by moving the

robot’s joints by hand. After collecting sufficient variation of

poses, we can compute the offsets by solving an optimization

problem with a cost function that decreases as the kinematic

constraints are better satisfied. For example, if the feet are in

flat contact with the ground, the cost function would be the

height variation of the sole vertices. Note that we cannot use

the height itself because IMUs do not give accurate height

information.

Similar methods can be found for autonomous kinematic
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calibration of fixed-base manipulators where the joint angles

are measured while the endpoint moves on the surface of a

fixed plane [1]–[3]. We have to use a different formulation

because the Cartesian position of the root joint is unknown,

and therefore we cannot assume co-planar contact points

across frames. Instead, we determine the kinematic param-

eters so that multiple contact points in each frame form a

single plane.

In our experiment, the we keep both feet in flat contact

with the floor during data collection and the optimization

problem is summarized as follows:

• Inputs (measurements): orientations of one or more

links and joint angles at various sample poses.

• Variables: orientation of the root joint at each sample

pose and joint angle sensor offset of each joint.

• Cost function: orientation error and variation of sole

vertex heights.

B. Formulation

Consider the case where we can obtain orientation data

of M (M ≥ 1) links, and there are N rotational joints

whose angles affect the orientations of the feet and/or the

links with IMUs. In the following discussion, we assume

that we want to identify the offsets of all N joints for

simplicity of representation, although it is trivial to exclude

some of the joints from offset identification while using their

measurements.

Let us assume that we have collected K sample poses that

satisfy the kinematic constraint. The measurements available

for the k-th sample are the orientation data from the IMUs

R̂
m

k (m = 1, 2, . . . ,M) and joint angles θ̂k ∈ RN . The

parameters to be identified are the joint offsets ∆θ and the

root orientation at each sample qk.

By solving the optimization problem, we obtain

q1, q2, . . . , qK and ∆θ that minimizes the cost function Z ,

which is chosen as

Z =
1

2

∑

k

(Lk + Ck) (1)

where Lk and Ck represent the link orientation error and

constraint error, respectively, at the k-th sample. Each term

will be described in detail below.

The first term Lk is computed by

Lk =
∑

m

∑

i

(pm
i − p̂

m
i )T (pm

i − p̂
m
i ) (2)

pm
i = Rm(qk, θ̂k +∆θ)si (3)

p̂
m
i = R̂

m

k si (4)

where Rm(∗, ∗) denote the forward kinematics function to

compute the orientation of the m-th link with IMU from root

orientation and joint angles. We evaluate the orientation error

by the squared position error of the predefined three points

fixed to each link with orientation measurement, and denote

their relative position by si (i = 1, 2, 3). For example, we

can choose si as (d, 0, 0)T , (0, d, 0)T and (0, 0, d)T where

d is a user-defined constant. Using larger d corresponds to

using larger weight for the Lk term because the position error

will be larger for the same orientation error.

The second term Ck represents the kinematic constraint

enforced during the data collection. If the feet are supposed

to be in flat contact with a horizontal floor, for example, we

can define Ck as

Ck = σ2
z(qk, θ̂k +∆θ) (5)

where σ2
z(∗, ∗) is the function to compute the variation of

the heights of the sole vertices obtained from the given root

orientation and joint angles. The sole vertices are typically

chosen as the four corners of each sole.

In our implementation, we apply the conjugate gradient

method [4] to obtain the solution. The initial values for ∆θ

are set to zero. The initial qk is chosen by taking the average

of root orientations computed using all IMU measurements

individually.

C. Experimental Results

We used one IMU attached the pelvis link to measure its

orientation (M = 1). Because this orientation is not affected

by any joint, only the offsets of the leg joints can be identified

(N = 14). We used four corners of the sole (eight points in

total) to compute the height variance.

The sample pose data were collected at 500 Hz while

hanging the robot from a gantry at several different heights

and leg configuration. The robot can be moved with a rea-

sonable force with the pump turned off. The data collection

process resulted in eight motion sequences about 4 minutes

long in total.

Because the pose changes slowly during the data collec-

tion, we can significantly downsample the data. It is also

desirable to use as few samples as possible to minimize the

computation time.

Figure 2 shows how the cost function value and computa-

tion time relate to the interval of data used for the calibration.

The cost function value is averaged over frames taken at

0.2 s interval, regardless of the sample interval used for

calibration. This result therefore includes cross-validations

at samples not used for the optimization. As shown here,

the cost function value after calibration maintains reasonably

small value up to 1.8 s interval, which takes only about a

minute for computation.

Figure 3 shows several examples of poses before and after

the calibration. Note that the root position is fixed because we

do not have that information. It can be observed that the left

and right feet are flat at the same height after the calibration,

while they are clearly not before. This fact is also obvious in

Fig. 4, which shows the height of eight sole corners at sample

poses with the average height in each sample subtracted.

III. DYNAMIC CALIBRATION

A. Motivation

Accurate inertial parameters are crucial for model-based

control and their identification for robot manipulators has

been actively studied [5]–[7]. These methods utilize the fact

that the joint torques can be represented as a linear equation

270



0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−7

10
−6

10
−5

10
−4

10
−3

c
o
s
t 
fu
n
c
ti
o
n
 v
a
lu
e
 (
m
2
)

interval (s)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

350

interval (s)

c
o
m
p
u
ta
ti
o
n
 t
im
e
 (
s
)

before identification

after identification

Fig. 2. Cost function value (top) and computation time (bottom) using
samples at various intervals.

of the inertial parameters. In particular, the set of parameters

that affect the dynamics and therefore are identifiable with

this process is called base parameters. Given the joint torque

and motion data, the base parameters that give the minimum

error can be obtained by the pseudo-inverse of the regressor.

The data should have enough excitation in order to identify

all base parameters reliably and methods for optimizing the

excitation have been developed [8]. With poor excitation,

the regressor will be ill-conditioned and the identification

may result in physically inconsistent inertial parameters

such as a negative mass. Possible solutions for this issue

include grouping and eliminating non-identifiable parameters

using the singular values of the regressor [9] or a statistical

model [10], and constraining the inertial parameters within

the consistent parameter space [10], [11].

Unfortunately, applying these methods to floating-base

humanoid robots is not straightforward. The main issue is

how to realize accelerations large enough to perform reliable

identification while maintaining the robot’s balance. Ayusawa

et al. [12] proved that, in theory, the set of base parameters

identified by using only the floating-base dynamics is the

same as that using the joint dynamics. It is therefore possible

to identify the base parameters with motion and six-axis

external force data without joint torque measurements [13].

Using the same technique, Venture et al. [14] developed a

method for finding the combination of available data that

optimizes the identification quality. Mistry et al. [15] gener-

alized the idea of [12] to allow different combinations of joint

torque and contact force measurements for identification.

Fig. 3. Robot poses before (top row) and after (bottom row) the calibration.
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Fig. 4. Foot vertex heights from the average in each frame. Blue (dashed):
before calibration, red (solid): after calibration.

Another practical issue is the complexity of the humanoid

robot dynamics and additional codes required to perform

the identification and to use its results for robot control

and simulation. Computing the regressor usually requires

reorganization of the rigid-body dynamics equations, which

is difficult for complex mechanisms. The identified base

parameters have to be converted to the parameters used in

standard inverse dynamics formulation [16].

In this section, we first present a practical method for

computing the regressor only using an inverse dynamics

function that is usually available for model-based control. We

then present two methods that directly computes physically

consistent inertial parameters even with poor excitation: 1)

consider only the major singular vectors of the regressor to

obtain the least-square solution, and 2) apply a gradient-

based method to solve an optimization problem with lower
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bounds on the mass parameters. Experimental results suggest

that the former method can yield reasonable least-square

solutions if appropriate condition number threshold is used.

However, the latter method works well even with the original

regressor and appears to give better cross-validation results.

The second method is closely related to Ayusawa and

his colleagues’ work on inertial parameter identification of

human body segments [11] in that they also apply gradient-

based optimization. One of the differences is that they

represent a link by a set of point masses placed on its

surface to obtain consistent parameters. We do not use

this representation because the hydraulic hoses typically run

outside the link geometry in the robot’s CAD model. Also it

would be easier to obtain good excitation in their application

because humans can do much more aggressive motions than

humanoid robots.

Because we do not expect to obtain excitation good

enough to identify the moments of inertia of the links, we

focus on identifying the mass and local center of mass (CoM)

parameters and use the CAD model to compute the link

moments of inertia. Except for the poor excitation issue,

however, including the moments of inertia is straightforward.

B. Problem Formulation

The dynamics of humanoid robots with a floating base is

described as

M(θ,φ)θ̈ + c(θ, θ̇,φ) = ST τ + JT (θ)f (6)

where

θ : the generalized coordinates

φ : the N inertial parameters to be identified

M : joint-space inertia matrix

c : the centrifugal, Coriolis and gravitational forces

τ : active joint torques

J : the contact Jacobian matrix

f : contact forces

and ST is the matrix to map joint torques to generalized

forces. In particular, if the robot has M degrees of freedom

(DoF) and the first six elements of the generalized coordi-

nates correspond to the six DoF of the floating base, ST has

the form

ST =

(

06×(M−6)

1(M−6)×(M−6)

)

(7)

where 0∗ and 1∗ represent the zero and identity matrix of

appropriate sizes. In the rest of the paper, we represent the

left-hand side of Eq.(6) by F (θ, θ̇, θ̈,φ).
Assume that we have an K-frame long sequence of exper-

imental data comprising the joint angles θk, joint torques τ k,

and contact forces fk at frame k (k = 1, 2, . . . , K). Using

an inverse dynamics algorithm, we can compute F (∗) from

θk and its velocity and acceleration at frame k:

F k(φ) = F (θk, θ̇k, θ̈k,φ). (8)

It is known that F k(φ) becomes a linear function of φ [5],

[6]. Note that instead of the local CoM position of the i-th
link si, φ should include the first moment of inertia msi =
(msix msiy msiz)

T = misi to make the equation linear,

where mi is the mass.

Let Ak denote its coefficient matrix (regressor) at frame

k, i.e.,

F k(φ) = Akφ. (9)

By concatenating Eq.(9) for all frames, we obtain

F̄ (φ) = Āφ. (10)

On the other hand, we can compute the right-hand side of

Eq.(6) from the force measurements at frame k as

F̂ k = ST τ k + JT (θk)fk. (11)

Concatenating Eq.(11) for all frames, we obtain

¯̂
F = S̄

T
τ̄ + J̄

T
f̄ . (12)

The goal of the parameter identification process is to

compute the parameters φ that satisfy

Āφ =
¯̂
F . (13)

However, we may not be able to compute
¯̂
F due to sensor

limitations. For example, joint torque measurement may be

not be available as is the case with most humanoid robots

driven by electric motors. Also, some contact forces may be

unavailable or less accurate due to limitations in the on-board

force-torque sensors.

In general, we can divide τ̄ and f̄ into available and

unavailable components and formulate the optimization prob-

lem only using the available measurements [15]. Let us

divide τ̄ and f̄ into components whose measurements are

available and unavailable, τ̄ a, τ̄u and f̄a, f̄u respectively.

Then Eq.(12) can be rewritten as

¯̂
F =

(

S̄
T

a J̄
T

a

)

(

τ̄ a

f̄a

)

+
(

S̄
T

u J̄
T

u

)

(

τ̄u

f̄u

)

= H̄
T

a

(

τ̄ a

f̄a

)

+ H̄
T

u

(

τ̄u

f̄u

)

. (14)

Let N̄u represent the null space basis of H̄
T

u . By left-

multiplying N̄u to the both sides of Eq.(14), we obtain

N̄u
¯̂
F = N̄uS̄

T

a τ̄ a + N̄uJ̄
T

a f̄a (15)

because N̄uH̄
T

u = 0.

Multiplying both sides of Eq.(13) by N̄u, we obtain

ĀNφ =
¯̂
FN (16)

where ĀN = N̄uĀ and
¯̂
FN = N̄u

¯̂
F . Because of Eq.(15),

Eq.(16) only includes the measurable forces.

The base parameters are generally a linear combination

of a subset of the standard inertial parameters φ. Therefore,

computing the regressor requires the symbolic representation

of the robot dynamics and a dedicated code for evaluating the

symbolic equations with given motion data. These processes

can be difficult for complex mechanisms.
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In this paper, we choose to use the formulation with stan-

dard inertial parameters instead of the base parameters. The

drawback is that, because not all parameters are identifiable

in principle, it may be difficult to obtain physically consistent

parameters even with the optimal excitation. On the other

hand, this approach gives us an opportunity to explore the

following two advantages:

• The regressor can be computed easily using an inverse

dynamics function as shown in Section III-C.

• We can directly obtain the inertial parameters.

Instead of directly solving Eq.(16), we attempt to compute

a set of inertial parameters that is as close as possible to

known nominal parameters φ0 that can be obtained from,

for example, the robot’s CAD model. Accordingly, we divide

φ as φ = φ0 + ∆φ. Also, Eq.(16) does not have an exact

solution in most cases due to measurement noise.

Taking the above two points into account, our problem is

to find ∆φ that minimizes

Z = ||∆
¯̂
FN − ĀN∆φ||2 (17)

where ∆
¯̂
FN =

¯̂
FN − ĀNφ0.

C. Minimizing Eq.(17)

A straightforward method to obtain ∆φ is to use the

pseudo-inverse of ĀN :

Ā
♯

N = (Ā
T

NĀN )−1Ā
T

N (18)

which gives the minimum-norm ∆φ that minimizes Eq.(17)

as ∆φ = Ā
♯

N∆
¯̂
FN . However, if the condition number of

ĀN is large, the resulting inertial parameters φ0 +∆φ may

include inconsistent values.

A workaround for this problem is to omit small singular

values of ĀN . Let the singular-value decomposition of ĀN

be

ĀN = UΣV T (19)

where U and V are orthogonal matrices and Σ is a diagonal

matrix whose diagonal elements are the singular values of

ĀN , σi (i = 1, 2, . . . , N, σ1 ≥ σ2 ≥ . . . ≥ σN ). The

pseudo-inverse of ĀN can be written as

Ā
♯

N = V Σ
−1UT . (20)

Instead of the regular Σ
−1 = diag{1/σi}, we use Σ̂

−1

whose elements are given by

Σ̂−1
ii =

{

1/σi if σ1/σi < cmax

0 otherwise
(21)

where cmax is a user-defined maximum condition number.

We refer to this method as the least-square method.

Another way to minimize Eq.(17) is to apply gradient-

based numerical optimization using ∆φ = 0 as the initial

guess. The advantage of this method is that we can explicitly

set lower and/or upper bounds for each parameter. In our

implementation, we use the conjugate-gradient method [4]

with lower bounds set to prevent negative mass parameters.

We also replace ĀN by

Ā
′

N = UΣ̂V T (22)

where Σ̂ is a diagonal matrix whose elements are given by

Σ̂ii =

{

σi if σ1/σi < cmax

0 otherwise.
(23)

This method will be referred to as the gradient-based

method.

D. Computing the Regressor

Computing the regressor Ak in our formulation is trivial

because we use the standard inertial parameters. This sub-

section describes a method for computing the i-th column of

Ak, aki. This method is partly inspired by the unit vector

method for computing joint-space inertia matrix for robot

manipulators [17].

First we compute the generalized forces F 0
k with the nom-

inal inertial parameters using the inverse dynamics function:

F 0
k = F (θk, θ̇k, θ̈k,φ0). (24)

We then make a unit change to the i-th element of φ0

to obtain φ′

i, and compute the new generalized forces

corresponding to the new inertial parameters by F i
k =

F (θk, θ̇k, θ̈k,φ
′

i). Finally, aki can be computed by

aki = F i
k − F 0

k. (25)

We now describe how to modify the mass and local CoM

parameters according to a unit change to the i-th element of

φ. If the i-th element of φ corresponds to the mass of link

j, we modify the inertial parameters of link j as

mj ← mj + 1 (26)

sj ←
mj

mj + 1
sj (27)

where mj has been increased by a unit mass but msj
remains the same. If the i-th element of φ corresponds to

msj∗ (∗ = x, y, z), we modify the CoM as

sj∗ ← sj∗ +
1

mj

(28)

so that msj∗ increases by 1.

E. Experimental Results

We collected three sequences of data using the controller

described in [18], where the robot is controlled to track a

human motion capture sequence while maintaining balance.

We use one sequence for identification and the other two for

cross validation, each of which is about 30 s long. During the

motion, no contact state change occurs and both feet keep

flat contact with the ground. The motion contains significant

amount of upper body movement, while the lower body is

relatively stationary but does have small amount of motion

mostly due to the errors in the dynamics model used for the

experiment. The arm joints are controlled by a proportional-

derivative position controller. A model-based controller for

maintaining balance and tracking a reference motion is used

to compute the joint torque commands of other joints.

We measure the joint angles, joint torques, and ground

contact forces during the experiments. The root orientation
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is measured by an IMU attached to the pelvis link. The

root position is estimated as described in [18] using the

reference motion and leg joint angles. Although each joint

has a joint torque sensor, we cannot obtain joint torque data

for position-controlled joints due to the specification of the

control software. Also, we are aware that the horizontal force

components of the six-axis force-torque sensors in the ankles

are not well calibrated.

The original data have been recorded at 2 ms interval,

and downsampled to 100 ms interval for the identification.

To compute joint velocities and accelerations, the joint an-

gle measurements are interpolated by piece-wise third-order

polynomials whose coefficients are determined considering

125 data points before and after each frame. This interpola-

tion therefore also serves as a low-pass filter without delay.

We compare the following parameter sets for identifica-

tion:

1) Individual links (L): mass and local CoM parameters

of individual links are identified.

2) Individual links with symmetry constraint (LS): mass

and local CoM parameters of the links on the left side

of the robot are identified, and the links on the right

side are assumed to have the same parameters with

mirroring.

The second and third rows of Table I summarize the basic

properties of each parameter set with the data we used. As

expected, the regressors in both parameter sets have large

condition numbers.

The rest of Table I shows the cost function values Eq.(17)

using the two methods. We tested with three values of

cmax. Setting cmax = 1 × 106 essentially uses all singular

values because it is larger the condition numbers of both

regressors. The cost function values using the original inertial

parameters (obtained from CAD data) are in the range of

2.11×107 to 2.29×107 for the three motions.

Because we do not know the real inertial parameters, the

only failure we can detect is negative mass parameters, which

is indicated by “n/a” in Table I. Resulting in negative mass

parameters is not surprising because individual mass param-

eters are not identifiable even theoretically. However, the two

methods are able to compute positive mass parameters except

when the condition number threshold is too large in the least

square method.

The following observations can be made from these re-

sults:

• Small singular values must be omitted to obtain reason-

able results using pseudo-inverse, while the gradient-

based method gives consistent results regardless of

cmax.

• Enforcing symmetry generally gives better cross-

validation results with slightly worse direct-validation

results.

• In most of the cases where both pseudo-inverse and

gradient-based methods give reasonable results, the

gradient-based method gives significantly better cross-

validation results, although the direct-validation results

are similar.

Figure 5 shows representative direct- and cross-validation

results for the cmax = 1 × 106 case obtained by the

gradient-based method without symmetry constraint. While

the identified parameters show better match with the mea-

surements in general, they have larger error than the nominal

parameters in the cross-validation of the root front-aft force.

This mismatch may be due to the hydraulic hose bundle that

applies unknown external force to the rear side of the root.

The hose forces may be different in the two sets of data

because the cross-validation data sequence was obtained a

few months before the identification data.

IV. DISCUSSION

In this paper, we have presented methods and experiments

regarding the identification of kinematic and dynamic param-

eters force-controlled biped humanoid robots.

The first method allows us to estimate joint angle sensor

offsets only using the sensors that are usually available

on most humanoid robots. The key idea is to utilize a

constraint enforced by the environment instead of the global

position and orientation measurements commonly used for

this purpose. In our experiment, we manually moved the

robot by hand while keeping both feet in flat contact with

the floor, and demonstrated that the constraint is enough to

estimate the joint angle sensor offsets. A limitation of this

method is that it cannot identify offsets of joints that are not

related to the constraint or the IMUs.

In the second part of the paper, we presented two methods

for inertial parameter identification of humanoid robots, with

focus on easy implementation and robustness against poor

excitation data. The former feature is realized by identifying

the standard inertial parameters instead of the base param-

eters, while the latter is handled by either omitting small

singular values of the regressor in the least-square method,

or by solving an optimization problem using a gradient-based

method. We demonstrated by experiments that the least-

square approach can yield consistent inertial parameters if the

condition number threshold is appropriate. We also showed

that the gradient-based method gives reasonable results even

with ill-conditioned regressors, and that the cross-validation

results are better than the least-square method.
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TABLE I

COST FUNCTION VALUES FOR OPTIMIZATION AND CROSS-VALIDATION.

parameter set L LS

number of parameters 92 56

condition number of regressor 1.38×105 3.81×104

maximum condition number 1×10
6 1×10

3 1×10
2 1×10

6 1×10
3 1×10

2

direct validation n/a n/a 1.56× 10
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5

least square cross validation (1) n/a n/a 7.13× 10
5 n/a n/a 5.77× 10
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Fig. 5. Direct- and cross-validation results for cmax = 1× 10
6, gradient-based method, without symmetry constraint. Top row: self validation, bottom

row: cross validation (1). From left to right: root vertical force (downward is positive), root front-aft force (backward is positive), and left knee joint torque.
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