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Abstract

Point sets generated by image-based 3D reconstruction tech-
niques are often much noisier than those obtained using
active techniques like laser scanning. Therefore, they pose
greater challenges to the subsequent surface reconstruction
(meshing) stage. We present a simple and effective method
for removing noise and outliers from such point sets. Our
algorithm uses the input images and corresponding depth
maps to remove pixels which are geometrically or photo-
metrically inconsistent with the colored surface implied by
the input. This allows standard surface reconstruction meth-
ods (such as Poisson surface reconstruction) to perform less
smoothing and thus achieve higher quality surfaces with
more features. Our algorithm is efficient, easy to implement,
and robust to varying amounts of noise. We demonstrate the
benefits of our algorithm in combination with a variety of
state-of-the-art depth and surface reconstruction methods.

1. Introduction
Acquiring the 3D geometry of real-world objects is a long

standing topic in computer vision and graphics research, with

many practical applications, ranging from scanning small

objects up to modeling complete cities. Consequently, there

is an abundance of 3D reconstruction techniques, which can

be roughly classified into active techniques [3] relying on

illuminating the scene (e.g. by lasers or structured light), and

passive techniques that analyze a multitude of images of the

scene and are thus referred to as multi-view stereo or pho-

togrammetry methods [33]. The latter, image-based methods

have a number of benefits compared to active techniques.

One main advantage is that the capture process is simple

and cheap, only requiring standard imaging hardware like

consumer digital cameras. Additionally, image-based meth-

ods provide color information of the scene and offer high

resolution scanning thanks to the advances in image sensors.

A popular approach to image-based 3D reconstruction is to

first compute camera poses and then estimate per-view depth

maps by finding corresponding pixels between views and

triangulating depth [14]. All pixels are then projected into

3D space to obtain a point cloud, from which a surface mesh

is extracted using point cloud meshing techniques [2].

As illustrated in Figure 1 (a)–(c), a downside of image-

based methods is that they are prone to producing outliers

and noise in the depth maps due to matching ambiguities or

image imperfections (lens distortion, sensor noise, etc.). The

resulting point clouds are thus often noisy, and even state-

of-the-art meshing methods often fail to produce reasonable

results. Typically, the meshes computed from such noisy

point clouds either miss many details (when a lot of regular-

ization is applied) or reconstruct wrong geometry such as

disturbing blobs. A common remedy to reduce outliers in

image-based methods is, similarly to the surface reconstruc-

tion, to use strong smoothing or regularization in the depth

computation, but this inevitably destroys fine details and is

also costly to compute as it typically comes down to solving

large global optimization problems.

We take a different approach in this paper. Starting from

many, high resolution input images of the scene, we com-

pute per-view depth maps using a depth estimation method

of choice, but preferably one with little to no regulariza-

tion (such as [21]) to reconstruct as much detail as possible.

Our main idea is then to detect and remove noisy points

and outliers from each per-view point cloud by checking if

points are consistent with the surface implied by the other

input views. Not only do we evaluate geometric consistency,

but also consider photometric consistency between the in-

put views, which improves the robustness of the method

and is typically not possible for active techniques such as

laser scanning. As shown in Figure 1 (d)–(e), merging the

denoised point clouds from all views retains full coverage

of the captured scene while being more compact and less

noisy. This renders the subsequent surface reconstruction

less demanding, allowing common techniques to produce

favorable surface meshes with a high degree of detail.
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(a) one input image (b) point cloud (c) meshing of (b) (d) our filtered point cloud (e) meshing of (d)

Figure 1. From a set of images of a scene (a), multi-view stereo methods such as [9] can reconstruct a dense 3D point cloud (b), which

however often suffers from noise and outliers. This leads to disturbing artifacts when used in subsequent surface reconstruction (meshing)

methods such as [20] (c). We propose a simple and efficient filtering method that produces clean point clouds (d) that allow for a favorable

surface reconstruction (e).

Our method is simple to implement and easy to paral-

lelize, while effective in removing noise and outliers in point

clouds. As shown in Section 4, it can handle varying amounts

and types of noise produced by several multi-view stereo

methods [6, 9, 21, 45] and tangibly improves the results of

various surface reconstruction techniques [5, 8, 20, 39] that

are subsequently applied. Our method works with virtually

any image-based technique that reconstructs scene geometry

in the form of depth maps and any surface reconstruction

method based on point sets. We thus believe that our method

is a versatile tool bridging the two steps of image-based 3D

reconstruction and facilitating the standard workflow. We

demonstrate the benefits of our method on a variety of dense

and high-resolution multi-view datasets.

2. Related work

Active 3D acquisition techniques, such as laser scanning

and structured light approaches, have been predominantly

used in professional domains, as they provide high accuracy

albeit requiring specialized and expensive equipment. Due

to their limitations (e.g. the size of scannable objects) and

the restricted environment and illumination conditions, pas-

sive image-based techniques have also been developed and

deployed widely. However, such image-based multi-view

stereo methods are much more susceptible to produce noisy

depth estimates due to image imperfections, triangulation

inaccuracy, depth quantization, as well as outliers due to

matching ambiguities and non-diffuse surfaces. For these

reasons, image-based 3D reconstruction pipelines perform

denoising and outlier removal at virtually every step of the

pipeline, as outlined below.

Most multi-view stereo methods refine the reconstructed

depth maps, and often this is integrated into the depth es-

timation stage and formulated as a (global) optimization

problem [12, 45]. Furukawa et al. [10] use a filter based

on quality and visibility measures for merging points while

handling errors and variations in reconstruction quality. Tola

et al. [38] use a robust descriptor for large-scale multi-view

stereo matching in order to reduce the amount of outliers in

the computed point cloud. However, as shown in Section 4,

these approaches still often leave a significant amount of

noise and outliers in the final reconstructions, necessitat-

ing additional outlier removal steps to render the point sets

suitable for later surface reconstruction. Among a few such

attempts, Shan et al. [34] reconstruct dense depth maps from

sparse point clouds and use them to remove points that are in

significant visibility conflict and to augment the input point

cloud. However, they treat each view separately when den-

sifying the sparse depth maps and they need to modify the

standard Poisson surface reconstruction method. Similarly,

a free space constraint was used to clean up depth maps in

[29] and [27].

While the above techniques are presented as part of depth

reconstruction methods, there exist more dedicated point

cloud denoising and outlier removal techniques. Sun et

al. [37] propose a point cloud denoising method imposing

sparsity of the solution via L0 minimization. The method op-

timizes both point normals and positions with the piecewise

smoothness assumption, thereby preserving sharp features.

Rusu et al. [31] present a point cloud refinement method

with the application of indoor environment mapping. They

propose an outlier removal technique based on statistical

analysis of input points. Both methods consider the point

positions only and do not consider further information like

color or scanner positions. Rusu et al.’s method explicitely

assumes laser scanning as the point input source. Yücer et

al. [43] use accurate foreground segmentation of a dense im-

age set to refine the bounding volume of the object, resulting

in a detailed visual hull that is subsequently used to filter

outliers from the point cloud. However, the visual hull does

not filter points in concavities and may not be tight enough.

Since geometry acquisition inevitably includes measure-

ment noise at varying degrees, many surface reconstruction

methods provide some form of smoothing mechanisms to

deal with the acquisition noise and to adapt to the varying

quality of the acquired point clouds. A family of methods

uses moving least-squares (MLS) to resample the input point

cloud to a potentially smoother and more uniform point set

by projecting points onto a locally fitted smooth surface



represented by a low-degree polynomial [1, 13]. Instead of

computing local projections, implicit moving least-squares

(IMLS) methods [35] allow to reconstruct an implicit rep-

resentation of the surface. Although IMLS becomes more

robust to noise and also preserves sharp features when using

robust statistics [30], it still does not handle outliers very

well. Similarly, the parameterization-free projection operator

[25] results in a resampled point cloud by means of point pro-

jections, but onto a multivariate median, being more robust

to noise and able to detect outliers. By taking into account

the point density, the method was extended to deal with

sharp features [18] and a high level of non-uniformity [17].

This last work led to a class of methods very relevant to

our method, called point consolidation. These methods in-

clude multiple stages of point cloud processing, from merg-

ing points to denoising, decimating, and redistributing them

such that they become more suitable for later surface re-

construction [17]. The recent work of Wu et al. [42] further

completes the missing parts of a scanned object by utiliz-

ing point skeleton estimation. Our method also proposes to

facilitate the surface reconstruction, but exploits the informa-

tion available exclusively to the image-based reconstruction

workflows, namely, color information and 3D camera poses,

which purely geometry-based methods usually do not have

access to.

Streaming surface reconstruction using wavelets [26] al-

lows for fast processing of large point clouds but is only re-

silient to a low amount of noise. The popular Poisson surface

reconstruction technique [19] estimates a smoothed indicator

function of a surface by minimizing the distance between the

smoothed gradient of the unknown indicator function and the

smoothed surface normal vector field implied by the oriented

points. This renders the method resilient to noise, but at the

cost of overly smooth reconstructions. In a recent extension,

the energy functional includes a screening term, such that the

influence of the original point positions can be adapted [20].

Still, noisy point clouds require low screening, resulting in

smooth reconstructions and losing detailed features. Similar

restrictions apply to other methods, that explicitly model a

smoothness assumption [5, 32, 41].

Our method implicitly uses a surface represented by the

input depth maps when examining each point, similarly to

range image integration methods such as [7, 15] and the

more recent KinectFusion [28]. While most existing meth-

ods use a volumetric representation to cache the implicit

function in 3D space, our algorithm operates directly in im-

age space, avoiding premature explicit discretization and

large memory usage. We use a photo-consistency criterion

in our filter, which was first proposed in the space-carving

literature [23]. Despite that, color information has rarely

been used for surface reconstruction or outlier removal, ex-

cept for semantic analysis; see [2] for details. We use color

information in conjunction with the input point geometry.

In general, there have been many filtering approaches for

image-based reconstruction pipelines [4, 22, 24, 36, 40, 44],

but the combination of ideas proposed in this paper has not

been considered before.

3. Denoising and outlier removal
Our denoising algorithm removes inconsistent points from a

set of input depth maps {Di | i = 1, ..,N} by analyzing their

geometric and photometric consistency with other views.

3.1. Geometric consistency

To determine the geometric consistency, each 3D point p
originating from a depth map has to be examined against

all other depth maps. For this purpose, we measure how far

p is from the true surface by estimating and examining the

signed distance of p to the surface entailed by the input depth

maps. Since the actual surface is yet to be known and the

estimation of signed distances at all p would be expensive,

we utilize several steps of efficient approximation, which

were inspired by range image integration methods.

The depth maps are first trivially tessellated and back-

projected to represent triangulated range surfaces, as illus-

trated in Figure 2(a) and (b). Ill-shaped triangles having an

angle less than a threshold (1◦ in our implementation) are

removed to permit opening concavities over depth disconti-

nuities. We intend to compute the average distance of each

point p to the range surfaces. However, computing the dis-

tance from a 3D point to a number of meshes may potentially

require building spatial acceleration structures and multiple

point-to-triangle projections, which is computationally ex-

pensive. Further, as we deal with noisy surfaces, we need to

assure that the distance estimation is robust enough.

Instead of computing the exact point-mesh distance, we

calculate the distance along the viewing ray from the camera

center vi to point p. This still requires to intersect the ray

with the triangulated range surface, but since the range sur-

face is simply the back-projection of the depth map Di, the

intersection can be efficiently calculated by projecting p to

the image space of Di. Then the vertices of the 2D triangle

in the tessellated depth map into which p was projected cor-

respond to the vertices of the intersected triangle in 3D. The

depth at the intersection point is interpolated barycentrically

from the three vertices. We approximate the signed distance

di(p) between p and the range surface of depth map Di by

the z-distance between p and the intersection point in camera
space, i.e.,

di(p) = zi(p)− z, (1)

where z is the depth (z-coordinate) of p and zi(p) is the

interpolated depth at the intersection.

When considering the distance of p to a range surface Di,

a negative distance di implies that p lies behind the range

surface and could not have been observed from this view.
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Figure 2. Our point denoising pipeline: An object is captured from different views, with camera positions vi, resulting in several depth maps

Di. The depth maps are triangulated (a) and represent range surfaces in 3D space (b). For each point p from each depth map, intersection

points p̃i with all other depth maps are calculated (c). (We do not display the fifth depth map here from which p originates.) Color, depth and

weight values are available at the triangle vertices and can be interpolated for the intersection point. The signed distances between p and the

intersection points p̃i (green lines in (d)) are approximated. Only range images for which p does not lie too far behind the surface (gray area

in (d)) are considered further. A weighted average of the signed distances d(p) is calculated together with a photo-consistency measure p(p)
and visibility measure v(p) (e). All three values are used to decide whether p should be discarded (f).

Therefore, we discard such di in computing the weighted

average. Allowing for a certain error margin, we define an in-

dicator function that specifies whether a point lies no farther

than a certain distance σ behind the surface:

I
G
σ (di) =

{
1 if −σ < di

0 otherwise.
(2)

A large positive distance di implies that p could have been

seen from this view but is far away from the actually ob-

served range surface. To limit the influence of these outliers,

we truncate the signed distance di to σ if di > σ , but still
include it in the computation of the weighted average since it

has been seen from this view and makes the average compu-

tation more robust against cases where p is an outlier (instead

of a depth value di(p)). In cases where no intersection ex-

ists, e.g., D4 in Figure 2, the range surface is not further

considered for the distance calculation for p.

Additionally, to reflect greater uncertainty when a point

p from the range image Di has been observed at a grazing

angle to the surface, we introduce the weight

wi(p) = n(p)T
p−vi

‖p−vi‖ , (3)

where n(p) is the point normal at p. The weight wi measures

the similarity between the viewing direction p−vi and the

normal direction n at p and thus becomes small in absolute

value at a grazing angle. Point normals are calculated using

principal component analysis of their image-space neigh-

bors [16] and are oriented towards the camera center, hence

wi(p)> 0. Although more sophisticated normal estimation

could be used, we found this method to be fast and sufficient

for our purposes.

Depth maps from opposite sides of the object do only

overlap in small regions, usually at grazing angles, which

makes these observations unreliable without contributing

much to the overall distance estimate. To significantly de-

crease computation time, we do not consider depth maps

whose viewing direction v j differs too much from the view-

ing direction vi under which p was observed, by limiting the

angle between both viewing directions. Keeping only depth

maps for an angle smaller than 90◦, i.e., vTj vi > 0, yields

good results in our implementation.

We finally compute the signed distance d to the surface

as a weighted average over all range surfaces:

d(p) =
1

w(p) ∑
i
I

G
σ (di(p))wi(p) min{di(p),σ}. (4)

In practice, the weight wi is calculated only at vertices of the

range image and interpolated in the same manner as for the

signed distance in Equation 1. The normalization factor w(p)
is the summation of all weights: w(p) = ∑i I

G
σ (di(p))wi(p).

Note that p itself and its weight are included in the average,

with the distance of 0 to the range surface it originates from,

since we want to compute the distance to an averaged surface

from all depth maps.

3.2. Photometric consistency

In addition to the geometric consistency, the consistency

of colors of intersection points, as well as the visibility of



p are calculated. In contrast to the averaging of distances,

where outliers are truncated, we only want to consider range

surfaces that lie close to the point p, as only they provide

reliable color estimates. To this end, we define a second

indicator function that is similar to the first, but now encodes

whether a point is closer to the range surface than the distance

σ for both positive and negative directions:

I
P
σ (di) =

{
1 if −σ < di < σ
0 otherwise.

(5)

We use the same σ for both indicator functions.

The visibility is obtained by simply counting the depth

maps that fall into this margin and thus contribute to the

color consistency calculation:

v(p) = ∑
i
I

P
σ (di(p)), (6)

which gives us an estimate of the number of depth maps in

which p is visible.

The photometric consistency is measured by the standard

deviation of the color distribution:

p(p) =
( 1

v(p) ∑
i
I

P
σ (di(p))‖ci(p)‖2 (7)

− 1

v(p)2

∥∥∑
i
I

P
σ (di(p))ci(p)

∥∥2
)1/2

,

where ci denotes the (interpolated) color value at the inter-

section of p and the range surface of Di.

3.3. Point filtering

The last step is to decide whether p should be kept based on

its geometric and photometric consistency. We retain a point

if it satisfies all of the following three conditions:

− td < d(p)< 0 , p(p)< tp , v(p)> tv , (8)

where td < σ , tp, and tv are thresholds for distance, pho-

tometric consistency, and visibility, respectively.

While σ influences the possible thickness of recon-

structed features of the object, td decides how much de-

viation from the surface we allow and thus controls the level

of removed noise. A small value of td reduces the number of

retained points significantly and results in smoother mesh

reconstructions from the filtered point clouds. If the input

depth maps are already sparse, a higher value should be

chosen. In practice, choosing td as a fixed ratio of σ (e.g.

td = 0.1 ·σ in all our examples) and only adjusting σ to the

object scale works well.

The choice of keeping only points with a negative signed

distance to the surface (first condition of Equation 8) is

based on the observation that most of the noise appears on

the “outside” of the surface, which can be attributed to the

image-based capturing process. The simple trick of retaining

points only on the inside removes most of such noise. Figure

3 shows the effects of doing so.

Figure 3. On the left we show a close-up of a denoised point cloud

with td =σ and −td <d<0. On the right we use −td <d< td and

set td =0.5 ·σ to keep the interval size the same and the comparison

fair. The amount of noise is visibly reduced in the first approach.

4. Results
In this section, we validate our denoising and outlier removal

algorithm on several multi-view image datasets. Since our

method is designed to work with existing multi-view depth

and surface reconstruction methods, we provide results with

a selection of such methods. For all depth and surface re-

constructions presented in our paper, we hand-picked the

parameters so as to achieve the best possible results. For our

own method, we used fixed parameters for all results. The

value of σ should be chosen according to the scale of the

scene, so we set it to 1% of the depth range (e.g., the length

of the bounding box along the z-axis); we set tσ = 0.1σ .

The visibility parameter tv is set to be 7.5% of the number

of input depth maps. For the photo-consistency threshold,

we always set tp = 0.2. To ease reproducibility, the supple-

mentary material accompanying this paper includes noisy

input point clouds, our denoised point clouds, as well as the

parameters used for the meshing.

Results for different depth reconstruction algorithms.
Figure 4 shows the reconstructed surfaces from several

datasets recently released by Yücer et al. [43]. These datasets

feature a very dense sampling of the scene in terms of views

per baseline and also offer a high spatial resolution, poten-

tially allowing to reconstruct a high degree of detail, but also

challenging the computational efficiency of reconstruction

methods. We used four different dense multi-view depth

reconstruction algorithms with different algorithmic prin-

ciples, levels of regularization, and noise and outlier char-

acteristics. While Fuhrmann et al. (MVE) [9] and Zhang et

al. (ACTS) [45] use sophisticated global regularization, Kim

et al. (LFD) [21] use local regularization only, and our im-

plementation of the plane-sweep algorithm (PS) [6] uses no

regularization at all. We used screened Poisson surface re-

construction (PSR) [20] for surface reconstruction as it is

very resilient to input noise and also widely used. Each pair

of images in Figure 4 shows the results without and with our

denoising algorithm.

We used about 200 input views for all depth reconstruc-

tion methods. For MVE we used the level-2 depth maps (4×
downsampling) as advised in the paper and the software doc-

umentation. The LFD method proposes a simplistic outlier
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Figure 4. Meshes and point clouds (shown in upper and lower triangles, respectively) obtained on dense multi-view datasets [43] using

various depth estimation methods: Multi-view environment (MVE) [9], light field depth reconstruction (LFD) [21], dense depth reconstruction

from video (ACTS) [45], and the plane-sweep algorithm (PS) [6]. The point clouds were meshed using the screened Poisson surface

reconstruction (PSR) [20] without our denoising method (left in each pair) and after our denoising (right in each pair). We hand-tuned all

parameters of the depth estimation methods and PSR to achieve the best possible results. We also show the result of PMVS [11] in the last

column as reference. Please see the supplementary material for a more extensive presentation of these results.

filtering step which we disabled when applying our filter (to

not filter twice), but we keep it enabled for the baseline re-

sults. ACTS required the input images to be at the resolution

of about 720p HD. Since the resulting point clouds often

contained multi-million points, we had to decimate some

input point clouds so that PSR can run with the available

memory (64 GB on our machine). In such cases, which only

happened with unfiltered point clouds, we downsampled the

input images using bicubic interpolation until PSR could

process them while keeping the number of views the same.

Note that we did not have to downsample the images for our

denoised results, allowing us to use the full input resolution.

As can be seen in Figure 4, the results of MVE exhibit

outliers that are more structured and consistent across views,

hence forming areas with densely clustered points. Thus,

it is generally more difficult for a denoising algorithm to

detect them as ouliers or noise, often leaving them as fea-

tures. However, our method measures the photometric con-

sistency as well, rendering it easier to detect such outliers

than solely with geometric consistency. Without removal of

these outliers, we had to use a higher amount of smoothing

to remove the clutter, which was often impossible without

removing features. To demonstrate our method’s robustness

to noise, we reconstructed scene depth using the LFD method

that only performs local regularization, and also a simple

plane-sweeping (PS) algorithm with no regularization. The

resulting point clouds show an extreme amount of noise, but

also capture a lot of details. As can be seen, our method is

able to remove most of the noise and allows the subsequent

surface reconstruction to yield favorable meshes with many

details preserved. A similar observation can be made for

ACTS which results in less noise due to the global regulariza-

tion but still produces too many outliers to make meshing

feasible from unfiltered point clouds.

As a comparison we also show results of PMVS which

does not produce dense depth maps, but densifies sparse

points. While yielding reasonable results in general, dense

depth methods in combination with our denoising often pro-

duce more favorable meshes with more details revealed.

Results for different meshing algorithms. As shown in

Figure 4, PSR handles noisy input very well, but at the price

of increased smoothing and less accurate feature localiza-

tion, which sometimes results in missing features. Without
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Figure 5. Comparison between our algorithm and the smoothing

of PSR with varying amount of screening. Leftmost: mesh recon-

structed from our denoised point cloud with a large screening

weight pw=4 and 5 samples per node (spn). To the right: meshes

reconstructed from the noisy point cloud for different screening

weights. We had to use very low screening due to the noisy input

and use 20 spn to achieve smoother results. Without our denoising,

the resulting meshes are either too noisy or lack detail.

Point cloud PSR [20] SSD [5] FSSR [8]

Figure 6. The first column shows an input point cloud (top) and our

denoising result (bottom). The remaining columns compare meshes

reconstructed using different surface reconstruction techniques. The

meshes computed from the denoised points always exhibit more

details and less artifacts.

strong smoothing, the reconstructed surface is rough and

includes substantial amount of clutter; see Figure 5 for the

results of varying PSR parameters. We typically used a higher

screening term for our denoised results and a very low to no

screening term for noisy input point clouds.

While PSR is very resilient to noise, other surface recon-

struction methods tend to respect input points more. In such

cases, our method can be even more valuable. Figure 6 shows

the meshing results of noisy input and our denoised point

clouds using a range of widely used surface reconstruction

techniques. The effect of our method is consistent across

different meshing techniques.

Comparison against other denoisers. In Figure 7, we

compare our method with other point cloud denonising,

smoothing, or resampling methods. The point cloud con-

solidation method (WLOP) of Huang et al. [17] results in

Rusu et al. [31] RIMLS [30] WLOP [17] EAR [18] Ours

Figure 7. Comparison of our denoising method with other outlier

removal, resampling, or smoothing methods. Top: Filtered point

clouds, bottom: corresponding meshes computed using PSR. Our

result exhibits the most detail and least amount of artifacts.

very smooth, clean point clouds, however, lacking detailed

features. Edge-aware resampling of Huang et al. [18] also

presents very smooth results and while succeeding at remov-

ing noise, both methods left a significant amount of outliers.

We also tried the more recent work of Wu et al. [42], but

since our input point clouds do not include missing parts, the

effect was negligible. Robust IMLS of Öztireli et al. [30] pro-

duces a relatively sparse point cloud and suffers from many

outliers. Rusu et al.’s [31] outlier removal method successful

removes outliers, but did not handle noisy points. Also none

of these methods uses color information to remove the noise

or outliers, whereas our method handles such noisy point

clouds using the information that is available for image-base

techniques, but that is ignored by methods that only process

oriented point clouds.

Comparison to ground truth data. To assess the results

more quantitatively, we measured the bias of the recon-

structed meshes from ground truth results. Figure 8 shows

the errors of reconstructed DRAGON meshes taken from Fig-

ure 4. We evaluate the accuracy and completeness of each

mesh according to the metrics used in the Middlebury multi-

view stereo benchmark [33]. The meshes are color-coded

with green indicating no error and where blue and red denot-

ing negative (surfaces placed inside the ground truth) and

positive errors, respectively. We observe that meshes result-

ing from our denoising algorithm consistently mark higher

scores for all depth reconstruction methods.

Performance analysis. Figure 9 summarizes the perfor-

mance of our algorithm, where accuracy and completeness

errors as well as the runtime were measured with varying

number of input depth maps. It takes about 30 seconds to
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Figure 8. Quantitative evaluation of the DRAGON meshes using

different depth reconstruction methods and PSR meshing. The top

and bottom rows show the results without and with our denoising

algorithm, respectively. We measured errors in terms of accuracy

(in world units; the lower, the better) and completeness (in percent;

the higher, the better), using an accuracy threshold of 90%, and a

completeness threshold of 0.1 world units.
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Figure 9. The run-time and output quality of our method with

varying numbers of input depth maps calculated on the DRAGON

dataset for the LFD method.

process 20 depth maps at 1920×1080 resolution, about 5

minutes for 100, and 20 minutes for 200 depth maps, using

our simple, OPENMP-based parallel implementation on a

3.2 GHz 12-core Intel CPU. As can be seen in the graph,

with more than 200 depth maps as input, the output quality

does not change much while the runtime increases further.

When comparing different datasets using the PS method, the

running time for 200 depth maps is 10 minutes for DECO-

RATION, 13 for DRAGON, 16 for SCARECROW and STATUE,

and 7 minutes for TORCH.

The time complexity of our algorithm is O(MN) =
O(KN2), where M is the number of input points, i.e., all pix-

els from all N depth maps, and K is the depth map resolution

(thus M = KN). With small N and a parallel implementation,

the complexity becomes close to O(M), but the complexity

increases quadratically with the number of depth maps N.

Still, the algorithm can process large datasets since it does

not perform costly optimizations nor requires much addi-

tional memory except for the point set itself. Often the worst

case of O(NM) will not be reached, as we do not compare

depth maps from opposite sides of an object.

Limitations. As we rely on the redundancy of points and

need to calculate intersections with a range surface formed by

the depth maps, our method might fail for very sparse input,

e.g., very sparse depth maps (such as those reprojected from

a sparse point cloud), or for a low number of depth maps.

Also when the input images are taken under vastly different

lighting situations, the photo-consistency calculation might

be inaccurate. To mitigate this problem we can choose a

higher photo-consistency threshold, which however reduces

the efficiency of the filtering.

5. Conclusions

We presented an efficient, simple, and robust algorithm for

noise and outlier removal from the often extremely noisy

point sets generated by image-based 3D reconstruction tech-

niques. Our method reduces the amount of erroneous and

extraneous points in the input, which significantly improves

the reconstruction quality while reducing the computational

and storage overhead. We demonstrated the benefits of our

method in conjunction with a variety of existing depth esti-

mation and surface reconstruction techniques and thus be-

lieve that we presented a practical and useful tool for virtually

any image-based 3D reconstruction workflow.

Classic multi-view reconstruction methods often perform

costly optimizations for smoothing and regularizing the re-

sults, which removes a significant amount of detail present in

the scanned scene. With our method, simple reconstruction

techniques without much (or any) smoothing, e.g. [6, 21],

can be used to create over-redundant points. As shown in

the experiments, our method is able to reduce these large

and noisy point clouds so that meshing becomes feasible and

often even produces more accurate surface reconstructions

that preserve many details. We hence hope that our method

opens up the door to fundamentally novel basic approaches

for image-based 3D reconstruction.
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